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Abstract—Dementia is a chronic and irreversible condition
characterized by progressive cognitive and functional decline,
along with non-cognitive Neuropsychiatric Symptoms (NPS) that
significantly affect patients’ quality of life. This study explores
the application of artificial intelligence using wearable sensor
data collected from dementia patients (PwD) to develop an AI
system for detecting NPS, particularly episodes of agitation, in
an institutional setting. We present preliminary results from
a real-world study at the Ontario Shores Center for Mental
Health Sciences. The study outcomes indicate that by employing
sequential feature selection, we are able to improve detection
accuracy while reducing the number of features from an initial
set of 198. Further, the Extra Trees classification model outper-
formed other algorithms in accurately classifying non-agitated
normal events from agitated events. The study also shows that
personalized models yielded superior results, with an average
accuracy improvement of 5-10% compared to models trained on
all patient data combined.

Index Terms—Dementia; Agitation; Wearable sensors; Ma-
chine Learning; Neuropsychiatric Symptoms.

I. INTRODUCTION

Dementia is a chronic, neurodegenerative disease charac-
terized by progressive cognitive and functional decline. It is
a significant cause of disability and institutionalization and
is currently the seventh leading cause of death worldwide
[1]. There are approximately 55 million people with dementia
globally, which will grow to 78 million in 2030 and 139
million in 2050, making dementia a major global health
crisis [1]. In addition to mental and functional decline,
patients with dementia (PwD) often experience noncognitive
neuropsychiatric symptoms (NPS) during their illness [2].
Symptoms include symptoms of psychosis, agitation, aggres-
sion, depression, anxiety, appetite, and sleep disturbances.
Among NPS, agitation and aggression (AA) occur frequently,
are the most challenging to manage, and are a major source of
distress to PwD, caregivers, and healthcare systems [3]. These
behaviors commonly occur during care and are believed to be
manifestations of perceived or real unmet needs [3]. Behaviors
and their poor management can accelerate cognitive decline,
worsen the quality of life for patients and caregivers, and
increase the rate of accidents.

AA symptoms include hitting, shouting, throwing objects,
restlessness, and excessive motor activity such as pacing
or wandering. Early detection of potential episodes of AA
would allow the timely deployment of preventive measures or
therapies, reduce the cost of care, and reduce the prevalence
of critical incidents in this population [4, 5]. Recently, the
use of digital technology to detect neurological conditions in
a timely manner has gained great popularity; for example, the
use of smartwatches to detect epileptic seizures and prevent the
development of severe complications [6, 7]. There is growing
evidence that digital technology may also be a solution in
detecting behaviors in PwD when combined with Artificial
Intelligence (AI), feature analysis, and sensory technologies.
Using digital technology to develop a solution for the early
detection of AA will help guide the provision of personalized
interventions for PwD [8–11].

This work is a pilot study of our original system that
aims to detect episodes of AA and pre-agitation using AI
in PwD at Ontario Shores for Mental Health Sciences in
Ontario, Canada [12]. The main focus of the original system
is to detect and predict episodes of AA, explore pre-agitation
and agitation events, and investigate in depth the role of
exploratory data analysis in detecting episodes of AA. In this
study, we focus on demonstrating the use of AI and feature
exploration in detecting episodes of AA. We collect the data
from two PwD who participated in a study using the multi-
sensory Empatica E4 devices [13]. We compare classification
methods, feature extraction, feature selection, and performance
evaluation techniques to detect physiological changes during
episodes of AA in PwD.

We explore 198 features from the time domain, frequency
domain, and statistical features. Furthermore, we compare
multiple machine learning algorithms to find the finest model
and features to detect physiological changes in PwD during
episodes of AA by selecting the best set of features. We select
six machine learning algorithms to compare the results of each
patient individually and the combined records of both patients.
Our results revealed that the Extratrees model provided the
best results using the sequential feature selection technique
followed by the random forest and XGBoost classifiers. Our
results indicate that it is possible to detect agitated behavior us-
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ing sensor data with high-performance evaluation results. Fur-
thermore, we conclude that the personalized model provided
better results than the combined model with 5-10% higher
performance evaluation using the Extra trees classification
model. We assume that new ways of detecting agitation will
help to understand complicated behaviors in PwD, reduce the
risk of harm to people living with dementia and others in their
environments, and improve the quality of life of these patients.
The remainder of this paper is structured as follows. We
describe recent related work on the detection of AA in PwD in
Section II, discuss data collection, labeling methodology, pre-
processing, and evaluation techniques in Section III, present
the experimental results and performance evaluation in Section
IV. Lastly, we summarize the work in Section V.

II. RELATED WORK

There is proof that physiological signals, such as Actigraphy
(ACT) [14], Heart Rate Variability (HRV) [15], Electrodermal
Activity (EDA) [16], and body temperature [17] captured
via wearable sensors are highly associated with agitation
and aggression in PwD. These parameters may be combined
to create predictive algorithms that predict episodes of AA.
Amato et al. [18] used the Empatica E4 wristband to collect
physiological and behavioral data to identify symptoms in
people with Alzheimer’s disease in an Italian village devoted
to exploring new treatments for Alzheimer’s disease. They
proposed a solution to detect physiological and behavioral
symptoms. However, there was a lack of details about the
system’s performance and results.

Moore et al. [19] mentioned that a significant problem
when using sensors to detect agitation in PwD is processing
and labeling the enormous amounts of data generated for each
patient. They also discussed the importance of converting the
data into valuable information to detect agitation accurately
in a real-world situation. Goerss et al. [20] discussed that
studies on physiological sensors that focus on agitation in
dementia are limited to evaluations based on limited sensors
or a small number of features. They believe that future
research should explore the use of other sensors and use more
features to detect agitation in dementia. A recent survey [21]
discussed the use of wearable sensors for dementia care. They
found minimal published work on wearable computing and
intelligent technologies in dementia care, with approximately
300 publications. Also, they pointed out that the publications
lack work investigating the classification model’s training with
raw data. They conclude that it is essential to investigate new
algorithms or models applied in real life to identify PwD
behavior.

Furthermore, Spasojevic et al. [22] showed that the use
of useful features and multimodal sensor data helped identify
behavioral indications of PwD. Iaboni et al. [23] discovered
that personalized models improved the results of detecting
agitation events in PwD. However, both research investigations
of feature extraction, feature selection techniques, and classi-
fication algorithms are limited. Furthermore, the systematic
review by Khan et al. [10] indicated that most of the papers

discussing the relationship between sensors and agitation used
simple analysis techniques. They concluded that the available
research lacks focus on the data analysis component.

III. METHODOLOGY

A. E4 Wristband Data Acquisition

We selected the Empatica E4 [13] wristband for this study
as it is lightweight, portable, and accurate. It has the highest
precision level compared to other devices [25]. It is a smart-
watch configured with the necessary sensors to monitor the
following physiological parameters: Heart rate measurements
calculated by a Photoplethysmography (PPG) sensor at 64 Hz
frequency, movement captured using a 3-axis accelerometer at
32 Hz frequency, skin temperature and electrical properties of
the skin using an Electrodermal Activity (EDA) sensor at 4 Hz
frequency. The wristband collects these physiological signals
and can be connected to a smartphone via wireless Bluetooth
to analyze real-time signals. The recorded data from the E4
device is uploaded to the Empatica website. The data can then
be downloaded from the cloud.

B. Sample Data Collection of the Study

To demonstrate the functioning of the sensors, we conducted
a pilot study using PwD data, who participated in a study
conducted using Empatica E4 devices at the Ontario Shores
Center for Mental Health Sciences [12]. We collected data
from two male participants. Participant one was 83 years old,
and participant two was 85 years old. Participants in the study
had a clinical diagnosis of dementia - Alzheimer’s or mixed
type using the criteria of the Diagnostic and Statistical Manual
of Mental Disorders [24]. For privacy concerns, any data
collected is confidential, ensuring all participants’ anonymity.
We store the data in a password-protected computer, and
access to the data is restricted to the Research Team only

The participants wore the Empatica E4 device for 48 to
72 hours on three occasions during an eight-week study
period. Clinical staff monitored participants’ behaviors and
made notes of any AA. The data from the E4 devices were
compared to the clinical observational notes to confirm the
validity of the recordings. Participant One had 72.13 hours,
70.38 hours, and 50.41 hours during their first, second, and
third recordings, respectively. Participant 2 had 47.22 hours,
72.50 hours, and 58.56 hours during their first, second, and
third recordings, respectively. Using the start times of the
episodes of AA, the episodes were identified in the E4 data
and labeled with “0” for normal behavior and “1” for agitated
behavior. Our data structure followed two approaches: each
participant’s data in an individual dataset and combining both
participants’ data in one dataset. The goal was to investigate
whether the personalized model better detects AA episodes
than merging all patient data.

C. Preprocessing and Feature Extraction

Before analyzing the data, we pre-process it to obtain
reliable information. We use Flirt [26] for data processing
and feature extraction in the proposed system. Flirt is a toolkit

742



Temperature

EDA

Heart rate

Accelerometer

Preprocessing

Data Cleaning

Data Acquisition Features Extraction

Window segmentation

Signal Filtering

Statistical 

  Time Domain 

   Frequency Domain 

  Time-Frequency Domain 

Decision Tree

K-Nearest Neighbor

Random Forest

 XGBoost

Extra trees

Classification

Select Top  three

models

Logistic Regression
Sequential Feature

Selection

Classify Agitation

Events

AgitaionNormal

E4 Wristband

Fig. 1: E4 wristband classification system architecture.

to generate features for wearable devices, and it is an open-
source package using Python that concentrates on processing
physiological data. We use this open-source package as it is
well-studied, uses different techniques we can compare, and
provides a wide range of features to extract all necessary
information. The main goal is to perform data cleaning and
feature extraction of each attribute the E4 device collects with
the most recent techniques and comprehensive features.

We start with a file reader to read the E4 device data and
convert it to the correct format with the timestamps. The flirt
function then uses several pre-processing steps to generate
our features, such as filtering for noise removal and sliding
windows. For the heart rate signal, the flirt function calculates
the inter-beat interval (IBI), which is the time distance between
two heartbeats. IBI generates heart rate variability (HRV)
measures and removes artifacts within the IBI series. For
the accelerometer signal, the flirt function applies a low-pass
filter with a 10 Hz cut-off frequency. The EDA signal first
gets artifact removal and noise filtering, and then EDA signal
decomposition is included to generate the phasic and tonic
components. We then apply a sliding-window approach with a
window size of 1 minute and no overlapping to extract features
from the datasets and calculate a feature vector from the four
signals. Finally, we use the flirt function to extract features
from each window from the time domain, the frequency
domain, and statistical features with a total of 198 features
[26].

D. Feature selection

Feature selection is generally utilized for dimensional reduc-
tion. Investigating a useful feature subset involves discovering
features highly correlated with the selected feature set, but not
correlated with each other. This study examines the impact of
a feature selection technique called sequential feature selection
(SFS) algorithms. The outstanding merit of the SFS methods is
their straightforward implementation. This group of algorithms
sequentially counts one feature at a time and includes that
feature if it yields a more satisfactory classification accuracy.

Sequential feature selection chooses features from a set of
features and based on their correlation with the output, so
the model performs better with minimal features. SFFS and
SBFS add forward and backward steps at every iteration to
ensure that the chosen feature best matches the previous and
the following features. We use sequential forward floating
selection since it includes the extra step of forward iteration
that ensures the best set of features [27].

E. Classification Techniques and Performance Evaluation

The main purpose is to compare all algorithms, find the
optimal set of parameters for each algorithm, and find the best
algorithm for classification. We use Logistic Regression, De-
cision Tree, K-Nearesr Neighbor, Random Forest, XGBoost,
and Extra Trees classifiers for classification. We then select the
top three models and apply feature selection to reduce features
and enhance performance. We set the number of features
to the optimal features that provide the highest performance
evaluation results with a minimum set of features to minimize
the running time. We also apply cross-validation with k = 10
to protect against over-fitting.

Once we find the optimal features, we fit the new features to
the previously selected three models and generate the results.
For performance evaluation, we use several techniques to eval-
uate our results. Since the data is imbalanced between normal
and agitation events, we use the balanced accuracy function in
Sklearn. The function is built for binary classification problems
to handle imbalanced data and calculates the average recall
obtained from each class. We also calculate recall, F1-score,
specificity, precision, geometric mean, and index balanced
accuracy for evaluation. We use the imbalanced classification
report which provides a classification report based on metrics
used with imbalanced data.

IV. RESULTS

A. E4 Wristband Signals Classification

We classify our dataset using six different machine learning
algorithms with 198 features and two labels (Normal and
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agitation). We split the data into 70% training and 30% testing,
and we use a standard scaler to scale our features between
zero and one. We also use stratified folds with the same
normal and agitation sets for training and testing. Table I
shows the balanced accuracy for the different machine learning
algorithms on three different datasets; patient one individually,
patient two individually, and patient one and two combined.
We notice that the personalized models for Participant One
and Participant Two individually show better performance
than patients one and Two combined with an average of 5-
10% higher. These results confirm the proposed theory that
each patient’s aggressive behavior differs from others and that
combining the patient’s datasets will not show any obvious
pattern to recognize normal and aggressive behavior. We also
found that the top three models are Random Forest Classifier,
XGBoost Classifier, and Extra Trees Classifier.

TABLE I: The balanced accuracy for the different machine
learning algorithms.

Classification Model
/ Participant Participant 1 Participant 2 Participant 1&2

Logistic Regression 80.803 % 82.587 % 73.221 %
Decision Tree 76.839 % 81.785 % 71.863 %
K-Neighbors 85.103 % 90.266 % 80.006 %
Random Forest 91.657 % 94.147 % 86.235 %
XGBoostoost 95.479 % 96.124 % 91.783 %
Extra Trees 87.822 % 91.094 % 85.021 %

B. Sequential Feature Selection Technique

We use the sequential feature selection technique with the
top three models discussed in the previous section. We set the
cross-validation to k = 10 and the float and forward features
to true. Figures 2 (a), 2 (b), and 2 (c) show the Random
Forest, XGBoost, and Extra trees model performance after
using the sequential feature technique for participant one. The
figure shows the performance for adding each feature until we
reach 30 features and how it doesn’t show improvement after
adding more features. We conclude that approximately 30-35
features from the 198 were enough to classify the normal and
agitation labels since we noticed a minimal improvement in
performance for more features.

Table II shows the performance evaluation for the top
three machine learning algorithms for Participant One. The
results show that 2-10% enhances the accuracy after using
sequential feature selection. We also notice that the extra trees
model presents the best results with 96.19% accuracy, 98.54%
precision, 98.55% recall, 93.82% specificity, 98.64% Fl-score,
96.13% geometric mean, and 92.84% index accuracy. For
participant two, the results are shown in Table III. We notice
that 2-3% enhances the accuracy after using sequential feature
selection. We also notice that the extra trees model shows
the highest results with 95.16% accuracy, 99.65% precision,
99.65% recall, 90.67% specificity, 99.65% Fl-score, 95.04%
geometric mean, and 91.14% index accuracy.

Lastly, Table IV shows the performance evaluation for
participants one and two combined after using sequential

feature selection. After using sequential feature selection, the
results show improvement with 2-4% accuracy. Also, the extra
trees model shows the highest results with 94.15% accuracy,
98.85% precision, 98.85% recall, 89.47% specificity, 98.82%
Fl-score, 93.99% geometric mean, and 89.16% index accuracy.
Furthermore, features investigation showed that the heart rate
features were the most selected to classify agitation events,
followed by EDA and accelerometer with approximately the
same features, and then the temperature features.

V. CONCLUSION

This paper presents initial analyses from a sample study
using the Empatica E4 devices to detect episodes of AA
in PwD from The Ontario Shores Centre for Mental Health
Sciences. Our objective is to demonstrate the use of AI
and feature engineering in detecting episodes of aggression
and challenging behavior. We used up-to-date pre-processing
techniques and extracted time, frequency, and statistical do-
main features. We compare six classification techniques, with
Random Forest, XGBoost, and Extra Trees yielding the best
results. Personalized models trained on individual’s data out-
perform general models trained in aggregate data by 5-10%.
This demonstrates that personalized models better understand
the patient’s behavior and classify it more efficiently.

We also used sequential feature selection to find the optimal
set of features and showed that it improved results with
fewer features with an average of 2-10% higher. Utilizing
the Sequential feature selection technique reduces the running
time and number of features, and provides better performance.
The Extra Tree model achieved an average accuracy of 95.67%
on individual data and 94.15% on aggregated data. In the
future, we plan to collect more data and further investigate
the features for more accurate results.
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