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Abstract—In healthcare, building a supervised learning sys-
tem faces the challenge of access to a large, labeled dataset.
To overcome this problem, we propose a deep transfer learning
method that addresses imbalanced data problems in healthcare,
focusing on structured data. We use publicly available breast
cancer datasets to generate a source model and transfer learned
concepts to predict high-grade malignant tumors in patients di-
agnosed with breast cancer at Mayo Clinic. The diabetes dataset
is then used to generalize the transfer learning idea. We compare
our results with state-of-the-art techniques and demonstrate the
superiority of our proposed methods. Our experiments on breast
cancer data under simulated class imbalanced settings further
demonstrate the proposed method’s ability to handle different
degrees of class imbalance. We conclude that deep transfer
learning on structured data can efficiently address imbalanced
class and poor performance learning on small dataset problems
in clinical research.

Index Terms—Breast cancer, Deep transfer learning, Deep
learning, Class imbalance, SMOTE

I. INTRODUCTION

The problem of imbalanced data is a challenge for ma-
chine learning algorithms as they tend to generalize patterns
observed over the majority class and ignore the minor-
ity class. One of the most popular techniques to handle
class imbalance is the Synthetic Minority Over-Sampling
Technique (SMOTE). However, SMOTE and variants such
as RUSBoost may cause information deficiency problems.
To mitigate these issues, SMOTE has been combined with
ensemble learning techniques, but hybrid techniques can still
generate sub-optimal results for severely imbalanced datasets.

Identify applicable funding agency here. If none, delete this.

Data dependence is another problem in machine learning,
especially in healthcare, where it is difficult to construct a
large-scale annotated dataset due to the complexity or rarity
of diseases and heterogeneity of clinical data sources. The
transfer learning methodology can be used to mitigate insuf-
ficient training data and class imbalance problems in a given
target domain. Deep transfer learning has been well studied
in the context of image classification, but its application to
structured healthcare data is relatively unknown.

In this paper, we propose a deep transfer learning (DTL)
approach on structured data to address the imbalance and
insufficient data classification problem of healthcare data. We
hypothesize that DTL enables structured-data-based solutions
that can improve the early detection and classification of
disease. Two case studies are presented to illustrate the
importance of DTL.

A. Deep Learning

Deep learning is increasingly being used to analyze electronic
health records (EHRs) for various clinical tasks. It aids in
disease diagnosis, cancer identification, genotype-phenotype
relationships, and disease prediction. By discovering com-
plex relationships between features, deep learning assists
clinicians in decision-making without requiring extensive
data pre-processing. This machine learning algorithm utilizes
multiple hidden layers to learn healthcare data representa-
tions. Deep neural networks with more hidden layers are
considered ”deep,” while the final output layer acts as a non-
linear classifier using abstract features from the hidden layers.
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Feature transformations can be shared across related datasets,
while the classifier varies based on the dataset.

II. CHALLENGES IN APPLYING CLASSIFICATION IN
HEALTHCARE

Applying deep learning to health informatics presents chal-
lenges such as high-dimensional and heterogeneous data,
data scarcity leading to missing values and class imbal-
ance [1]. Additionally, addressing data credibility, model
interpretability, reliability, feasibility, security, and scalability
is crucial. Health’s unique characteristics, including limited
disease understanding, human interventions, and fragmented
data, require thoughtful application of machine learning in
healthcare.

A. Data Scarcity Problem in Healthcare

Healthcare data has several unique characteristics that dif-
ferentiate them from data in other areas. Healthcare data are
difficult to access due to privacy concerns, and structured due
to the extraction process. Additionally, healthcare data are
collected in safety-critical conditions and may be affected by
several sources of uncertainty. Furthermore, the insufficiency
of labeled data is a significant issue in machine learning
and data mining for healthcare. Semi-supervised learning can
address this problem by utilizing small sets of labeled data
and much larger unlabeled data collections. However, the
scarcity of labeled data renders many statistical approaches,
such as deep learning, unusable. The solutions to this issue
are to collect more data or develop techniques that can handle
smaller datasets.

B. Class Imbalance Learning

An imbalanced dataset presents a challenge to learning, as
standard classification algorithms assume that test data comes
from the same distribution as training data. Most standard
classifiers optimize a loss function based on minimizing error,
leading to a misleading performance metric in imbalanced
learning. Existing methods for handling class imbalance can
be categorized into three groups: data sampling, algorith-
mic modification, and cost-sensitive learning. Imbalanced
learning studies show that performance loss is mainly due
to the skewed class distribution, but feature selection may
also be beneficial in handling high-dimensional imbalanced
datasets. indicates that the original dataset may lack density
and information or that the classes may be overlapped, but
feature selection provides the right information needed to
discriminate between the classes [2].

III. TECHNIQUES TO ADDRESS THE CHALLENGES

A. Re-sampling Imbalanced Data

Class imbalance in datasets can be addressed by adjusting
the class distribution using random oversampling (ROS) and
random undersampling (RUS). However, these techniques
can lead to overfitting or loss of majority samples. Syn-
thetic Minority Over-Sampling TEchnique (SMOTE) gener-
ates synthetic minority examples using a k-nearest neighbor
algorithm, overcoming these limitations. Combining SMOTE

with ensemble methods like SMOTEBoost and RUSBoost
has been successful, but it can result in less informative
training data and suboptimal models for severely imbalanced
datasets.

B. Transfer learning

Transfer learning is a technique that leverages knowledge
from a source domain (Ds = (Xs, Ys)) to improve the
learning of a target domain (Dt = (Xt, Yt)) with partially
overlapping data distributions and feature spaces [3] . This
approach helps address the data dependence problem in sce-
narios with limited or unbalanced training data [4]. Consider
ns and nt observations for the source and target, respectively.
Figure 1 illustrates the transfer learning process. Let Ls and
Lt be the layers for the source and target tasks. Suppose there
are M transferable hidden layers, denoted as vskj j = 1M

and vtlj j = 1M , where kj , lj ∈ 1, ...,min(Ls, Lt). The
transferable hidden layers satisfy certain conditions related to
the dimension of the latent space and the distance between
source and target distributions. D

(
p(v

lj
s ), p(v

kj

t )
)

< ϵ,
where p(vl

s) and p(vl
t) denote the distributions of the source

hidden layer and the target hidden layer, respectively; D(·, ·)
denotes the “distance” between two distributions, such as the
Kullback-Leibler (KL) divergence. Transfer m layers from
the M transferable hidden layers to improve the learning of
the target predictive function ft.

Fig.1: Illustration of transfer learning. Left: locating
transferable hidden layers. Right: transferring layers that

can improve the learning of the target predictive function.

Notice that the value of M is based on the predetermined
threshold ϵ. A large ϵ means that more information can
be borrowed from source data. However, if the borrowed
information is too specific with the source data, it may results
in an inefficient model for the target data. If ϵ is small, we
turn to transfer hidden layers that contain less “detailed”
information, i.e., the transferred information could be too
general. As a result, the threshold ϵ need to be carefully
chosen in transfer learning

IV. CASE STUDY 1

A. Data

1) Source Data:
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a) Breast Cancer Datasets: In this paper, two publicly
available breast cancer datasets from the UCI machine learn-
ing repository were utilized to implement the proposed DTL
on structured data. The datasets used were the Wisconsin
Diagnostic Breast Cancer (WDBC) with 357 benign and 212
malignant cases, and the Wisconsin Prognostic Breast Cancer
(WPBC) data which represented follow-up data for patients
seen at the University of Wisconsin Hospital at Madison from
1984 until 1995, and included 47 breast cancer recurrence
and 151 nonrecurrence cases. The 30 features in each dataset
were calculated for each image and were used to create a
merged dataset consisting of 767 samples.

2) Target Data:
a) The Mayo Mammography Health Study (MMHS):

To demonstrate the effectiveness of the proposed transfer
learning method on structured data, a primary dataset consist-
ing of 15,386 women aged 37 or older diagnosed with breast
cancer between January 15, 2009, and January 15, 2016
was used. This dataset is a subset of the Mayo Mammog-
raphy Health Study (MMHS) Cohort, which included 19,936
women enrolled at the Mayo Clinic and had a screening
mammogram performed between 2003 and 2006. Table 1
presents the distribution of features selected for this study
stratified by diagnosis status. The dataset contains patient
demographics, BMI, family history, and clinical breast den-
sity measurements. During the follow-up period, 487 (3.2%)
women were diagnosed with invasive breast cancer, resulting
in severely imbalanced data (IR = 30.6). The dataset was
challenging for standard classification methods to learn due
to the limited number of features and severe class imbalance.
The MMHS was approved by the Mayo Clinic institutional
review board. Additional details about the MMHS can be
found in [5].

TABLE I
STATISTICAL ANALYSIS OF TARGET MMHS DATA (LOGISTIC

REGRESSION)

Features Number Benign(N=14899) Malignant(n=487) Total(N=15386) p-value coef OR (30.5)
BI-RADS Breast Density Changes 1

First Month 0.000 0.017
1 3652(24.5%) 74(15.2%) 3726 (24.2%) 0.020
2 6175(41.4%) 215(44.1%) 6390(41.5%) 0.034
3 4339(29.1%) 179(36.8%) 4518(29.4%) 0.041
4 733(4.9%) 19(3.9%) 752(4.9%) 0.025

Second Month 2 0.000 0.008
1 3434 (23.0%) 73(15.0%) 3507(22.8%) 0.021
2 6437(43.2%) 226(46.4%) 6663(43.4%) 0.035
3 4364(29.3%) 166(34.1%) 4530(29.4%) 0.038
4 664(4.5%) 22(4.5%) 686(4.5%) 0.033

Third Month 3 0.83 0.007
1 3193(21.4%) 86(17.7%) 3279(21.3%) 0.026
2 6459(43.4%) 200(41.1%) 6659(43.4%) 0.030
3 4633(31.1%) 178(36.6%) 4811(31.3%) 0.038
4 614(4.1%) 23(4.7%) 637(4.1%) 0.037

Fourth Month 4 0.78 -0.009
1 2990(20.1%) 89(18.3%) 3079(20.0%) 0.029
2 6638(44.6%) 201(41.3%) 6839(44.4%) 0.030
3 4702(31.6%) 177(36.3%) 4879(31.7%) 0.037
4 569(3.8%) 20(4.1%) 589(3.8%) 0.035

Family History of BC 7 2698(18.1%) 119(24.4%) 2817(18.3%) 0.007 0.009
Age at Enrollment 8 56.66(11.31) 58.82(10.30) 56.73(11.29) 0.000 0.037

Autofluorescence Bronchoscopy Group 9 0.000 0.005
0 1970(13.2%) 65 (13.3%) 2035(13.2%) 0.032
1 2267(15.2%) 69(14.2%) 2336(15.2%) 0.030
2 5801(38.9%) 193(39.6%) 5994(39.0%) 0.033
3 3308(22.2%) 107(22.0%) 3415(22.2%) 0.032
4 1445(9.7%) 47(9.7%) 1492(9.7%) 0.032

Age at Menarche 10 0.001 0.002
1 2503(16.8%) 80 (16.4%) 2583(16.8%) 0.031
2 7954 (53.4%) 283(58.1%) 8237(53.5%) 0.035
3 3481 (23.4%) 93 (19.1%) 3574(23.3%) 30.026

Menopause at Enrollment 11 9081(61.0%) 346(71.0%) 9427(61.3%) 0.20 0.004
BMI at Enrollment 12 28.14(6.42%) 28.39(6.43%) 28.14(6.42%) 0.000 0.004

BI-RADS at Enrollment 13 0.000 0.0151
1 3268(21.9%) 73(15.9%) 3341(21.7%) 0.022
2 5865(39.4%) 194(39.8%) 6059(39.4%) 0.033
3 4731(31.8) 176(36.1%) 4907(31.9%) 0.037
4 1035(6.9%) 44(9.0%) 1079(7.0%) 0.042

Age at Diagnosis 14 0.000 -0.035
0 30 352(2.3%) 0 352 0
1 40 4253(28.5%) 28(5.74%) 4281(27.8%) 0.006
2 50 4335(29.09%) 110(22.5%) 4445 (28.8%) 0.025
3 60 3492(23.4%) 167 (34.2%) 3659(23.7%) 0.047
4 70 2031(13.63%) 131 (26.8%) 2161 (14%) 0.064

5+ 80+ 435(2.8%) 51 (9.8%) 485(3%) 0.11

For the missing values in the data, we used two imputa-
tion techniques. The first technique, LOCF (Last Observa-
tion Carried Forward) and NOCB(Next Observation Carried
Backward), was used to impute the missing breast density
measurements. This involved carrying forward the last valid
non-missing level. Afterward, we transformed the serial val-
ues from a long to a wide format, with individual values
at each time point as feature vectors. MissForest was then
applied to impute any remaining missing features.

b) UCI Mammographic Mass Data: The publicly
available mammographic mass dataset from the UCI machine
learning repository was used in this study. The data was
used in this study to predict the classification (benign or
malignant) of a mammographic mass lesion. It contains 516
benign and 445 malignant cases. Because the mammographic
mass dataset was relatively balanced (IR = 1.2), the baseline
classifiers were expected to perform well. As such, we also
used the data to investigate the effect of imbalanced learning
by training the models under different IRs in the training
data. Specifically, we carried out a controlled experiment by
simulating class imbalance in the training data, whereby sam-
ples from the malignant class were removed randomly. We
created training datasets where the proportion of observations
in the minority class was: 10% (IR = 5.4), 5% (IR = 10.7),
and 2% (IR = 26.8).

B. Method

1) Proposed Deep Transfer Learning for Breast Cancer:
For our proposed deep transfer learning method, we utilized
the DNN as described previously. The objective of this
method is to transfer knowledge from a structured source
domain data with potentially large and balanced class
distribution to a structured target domain data that is
imbalanced. The model architecture is composed of an
input layer, an output layer, and three hidden layers, with
a total of 8334 parameters. The initial layers of a DNN
capture general features of the disease, while later layers
focus on specific characteristics. With transfer learning,
one can freeze the initial layers of a pre-trained model
and retrain the remaining layers on a new dataset, using
the same DNN architecture. This allows for faster and
more efficient training on new data. Any of the layers
of the DNN may be frozen or unfrozen during transfer
learning, and are referred to as transferred hidden layers. We

Fig.2: Deep transfer learning for breast cancer classification
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also develop our target DNN using 5 layered DNN and 7
layered DNN based on the Mayo Clinic Breast cancer data.
We implemented both freeze transferred hidden layers and
unfreeze transferred layers, with a different number of layers.

Specifically, we implemented and compared the performance
of several DTL models. Figure 2 illustrates the implemented
DTL network architecture, where the source model (shown
in blue) is a DNN. To derive the 5L-2T-Freeze model, for
example, we transferred the top two hidden layers of the
source model to target model and froze their weights.

C. Results

a) The performance of classifiers on Breast Cancer
dataset: Basic descriptive statistics of the features in the
MMHS target breast cancer data stratified by breast cancer
diagnosis is presented in Table 1. Each of the 4 BI-RADS
levels represents gradations of the likelihood that a cancer
exists, from lowest to highest probability. We also include a
transformed variable with levels (0, -1, and 1) indicating no
change, decrease, and increase in the BI-RADS respectively
over the four time periods.

1) Performance of Source DNN on Source Data: We used
AUC to select the best model parameters during training and
validation in predicting breast cancer on the source data. The
corresponding validation AUC on breast cancer source model
was 0.96(0.10).

2) Performance of DTL and Baseline Models: We equally
trained the DTL models: 5L-2T-Freeze, 7L-2T-Freeze, 5L-
2T-UNFreeze, and 5L-1T-UNFreeze as previously described
to classify breast cancer on the MMHS data and the UCI
Mammographic mass datasets.

TABLE II
PERFORMANCE OF MODELS ON HOLD OUT FOLD OF MMHS

Classifiers AUC-cv Sens-cv F1-cv
LR 0.59 0.20 0.30
RF 0.61 0.09 0.05
XGBoost 0.68 0.10 0.15
DNN-5L 0.65 0.32 0.37
DNN-7L 0.66 0.32 0.37
LR-sampling 0.65 0.20 0.31
RF-sampling 0.53 0.47 0.07
SMOTEBoost 0.67 0.36 0.44
RUSBoost 0.76 0.74 0.17
5L-2T-Freeze 0.80 0.75 0.29
5L-2T-UNFreeze 0.81 0.75 0.28
5L-1T-UNFreeze 0.80 0.71 0.27
7L-2T-Freeze 0.76 0.81 0.19

Table 2 presents performance results of the models on the
MMHS data. With respect to the AUC metric, resampling
the data with SMOTE marginally improved the performance
of LR, while the performance of RF deteriorated. The perfor-
mance of RUSBoost, which creates a balanced training set
by undersampling rather than generating synthetic examples,
was significantly better than all baseline models including
SMOTEBoost. On the other hand, all the DTL models except
7L-2T-Freeze outperformed the other comparator methods.
The 5L-2T-UNFreeze showed the best AUC performance.

However, the 7L-2T-Freeze model was the most sensitive
model in detecting malignant cases.

Fig.3: Performance of models on the UCI Mammographic
mass data with simulated imbalanced training data

distribution
Figure 3 presents performance results of the models on
the UCI Mammographic Mass data. As expected, the per-
formance of the models deteriorated as the proportion of
minority classes in the data decreased (or increased in IR).
The AUC values in the figure represents the performance
of the models on the original dataset (IR = 1.2). The
2L-1ADDFreeze DTL model showed slightly better perfor-
mance compared to other methods, and remained dominant
throughout the different simulated levels of IRs. Finally,
the 2L-1ADDFreeze and 2L-1ADD-UNFreeze DTL models
significantly outperformed all the other models for the very
severe imbalanced (IR = 26.8) case. Based on the comparison
results, it can be concluded that the DTL is an efficient
methodology for standard classification tasks with balanced
or imbalanced structured healthcare data.

D. Discussion

Breast cancer poses a substantial burden on global and US
morbidity and mortality rates. Timely detection of high-grade
malignant breast cancers plays a pivotal role in enhancing
survival rates and patient outcomes. Nevertheless, the ac-
curate differentiation between malignant and benign lesions
using digital mammography, the primary screening modality
for breast cancer, is hindered by the limited representation
of cases in the overall population. Conventional approaches
for predicting rare events lack the required accuracy. By
leveraging transfer learning, significant advancements can be
made in early breast cancer detection. Specifically, the study
shows how transfer learning can facilitate the prediction of
breast cancer occurrence in a general screening cohort using
features learned from differentiating between malignant and
benign or recurrent and non-recurrent cancers in publicly
available datasets (WDBC and WPBC).

V. CASE STUDY 2

A. Data

1) Source Data:
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a) Diabetes datasets: To generalize our transfer learn-
ing models on structured datasets, we utilized a dataset
encompassing 10 years (1999-2008) of clinical care for
diabetes patients from 130 US hospitals and integrated de-
livery networks, sourced from the University of California
Irvine. The dataset met specific criteria, including being an
inpatient encounter, a diabetic encounter, having a length
of stay between 1 and 14 days, including laboratory tests
and medication administration. The target variable for our
binary classification problem was readmission, categorized
as ’< 30’ (readmitted within 30 days) or ’> 30’ (readmitted
after 30 days), which we defined as ’yes’ and ’no’ respec-
tively. With over 49 features capturing patient and hospital
outcomes, the dataset comprised 100,000 instances.

2) Target Data:
a) Pima Indians Diabetes Dataset: The dataset used

in this study was sourced from the UCI machine learning
repository. The dataset contained 768 cases of Pima Indian
diabetes and included various features such as the number of
times pregnant, plasma glucose concentration 2 hours in an
oral glucose tolerance test, diastolic blood pressure (mm Hg),
triceps skinfold thickness (mm), 2-hour serum insulin (mu
U/ml), body mass index (weight(kg)/(height(m))2), diabetes
pedigree function, and age (years). A total of 768 cases were
available in the Pima Indians diabetes dataset.

B. Method

1) Proposed Deep Transfer Learning for Diabetes: In this
study, we investigate two types of transfer learning - feature-
based and network-based. For feature-based transfer learning,
we develop autoencoder-decoders for the Diabetes readmis-
sion and Pima Indian diabetes datasets. The bottleneck layers
of these models are saved for transfer to the target model for
classification. We also create a 5-layered deep neural network
based on the Pima Indian diabetes dataset for classification.
Additionally, we employ network-based transfer learning on
the Breast cancer dataset, aiming to transfer knowledge from
a structured source domain to a target domain with less data.
We use backpropagation, batch normalization, and freeze
initial layers for retraining, saving the model only when
accuracy improves.

C. Results

a) KL divergence between source and target features
in Diabetes dataset: For our study, we aimed to evaluate
the difference between two datasets using KL divergence,
which is a widely accepted measure of distance between
two distributions. However, calculating the KL divergence
was challenging due to differences in the dimensions of the
source and target datasets. To address this issue, we used
Principal Component Analysis (PCA) to remove redundancy
and simplify the high-dimensional data while preserving
trends and patterns. We then extracted Principle Components
(PCs) and encoded features on both datasets to compare the
KL divergence between PCs and encoded features of source
and target data. This allowed us to investigate the potential for
reducing the KL divergence between source and target data.

While autoencoders may have nonlinear encoder/decoders,
we opted for PCA as a simpler alternative. Then we compared
KL divergence between PCs of source and target data, and
encoded features of source and target data using a method as
explained below:

Let KLbefore denote the KL-divergence before encoding,
and KLafter denote the KL-divergence after encoding. Con-
sider the following hypothesis:

H0 : KLafter = KLbefore.
H1 : KLafter < KLbefore.

To test our hypothesis that implementing the autoencoder-
decoder could reduce the KL-divergence between source
and target and enable proper domain adaptation for transfer
learning, we randomly selected 200 samples from source
and target principal components and calculated the KL-
divergence. Based on the empirical distributions, we con-
ducted a two-sample test and found that the p-value was
nearly 0, indicating that autoencoder-decoder reduced the
KL-divergence between source and target. We then applied
the feature-based transfer learning method to this data and
chose δ to be DKL(xs, xt)/8, which confirmed the similarity
between the source and target datasets and made transfer
learning possible. The corresponding ACC on diabetes source
model was 0.91(0.03).

Fig.4:Two-sample KL-divergence testing.

b) The performance of classifiers on Diabetes dataset:

1) Performance of Source DNN on Source Data: The
ACC and cross entropy loss function were utilized to se-
lect the optimal model parameters during the training and
validation stages of predicting diabetes on the source data.
The corresponding ACC for the diabetes source model was
0.91(0.03).

Initially, we trained the baseline models on the target datasets.
Next, we trained the DTL models - 6L-2T-Freeze, 7L-2T-
Freeze, 6L-2T-UNFreeze, and 7L-2T-UNFreeze - equally,
as described earlier, to classify breast cancer on the Pima
Indians Diabetes dataset. Finally, we trained the feature-based
DTL model. Figure5,A displays the model loss for target data
before transfer learning, as training epochs progress. Figure5,
B showcases the model loss after transfer learning, as training
epochs of the target DNN in predicting diabetes on target data
continue.
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Fig.5 A.BeforeTransfer, B.AfterTransfer

Prior to transfer, the training loss reduces rapidly throughout
training epochs, whereas the validation loss initially drops
rapidly to 0.45, stabilizes around 0.41 with significant vari-
ation, and then slowly starts to increase around 60 epochs.
However, following the transfer, both training and validation
loss decrease gradually to 0.40 with less variation throughout
the training epochs. The losses level off at 0.38 before slowly
beginning to increase.

TABLE III
PERFORMANCE OF MODELS ON DIABETES DATASET

Classifiers AUC Sens Acc F1 AUC-cv Sens-cv Acc-cv F1-cv
Logistic-regression 0.72 0.78 0.77 0.77 0.70 0.77 0.75 0.76

Random-Forest 0.91 0.93 0.93 0.93 0.67 0.73 0.74 0.73
XGBoost 0.97 0.98 0.97 0.98 0.71 0.75 0.77 0.74
DNN-5L 0.78 0.70 0.82 0.72 0.75 0.68 0.79 0.71
DNN-6L 0.80 0.74 0.83 0.75 0.79 0.72 0.81 0.73

DTL-5L-Feature 0.86 0.79 0.88 0.82 0.85 0.80 0.86 0.81
6L-2T-Freeze 0.82 0.77 0.83 0.76 0.81 0.76 0.83 0.75

6L-2T-UNFreeze 0.82 0.79 0.85 0.77 0.82 0.75 0.85 0.75
7L-2T-Freeze 0.80 0.75 0.82 0.75 0.80 0.73 0.82 0.74

7L-2T-UNFreeze 0.82 0.78 0.85 0.77 0.80 0.72 0.82 0.74

2) Performance of DTL and Baseline Models: Results
indicate that the use of a source model on the diabetes
readmission dataset improved target data accuracy to 0.85
via DTL-5L-Feature. Table 3 displays model performance
results, with the feature-based DTL model with 5L outper-
forming all other classification models. Additionally, the 6L-
2T-UNfreeze DTL model outperforms baseline classification
models.

D. Discussion

The paper highlights the significance of diabetes as a
widespread disease with serious health complications that
could be avoided through early detection. Despite the ex-
tensive research on this topic, the prevalence of diabetes
continues to increase, which indicates the need for innovative
approaches in predicting and managing this disease. The
authors demonstrate that transfer learning on structured data
is an effective learning technique that can provide accurate
classification when labeled datasets in healthcare are not
readily available. They illustrate this approach through a case
study on diabetes prediction by transferring features learned
from differentiating between diabetic and non-diabetic pa-
tients. The unsupervised representation-learning phase of the
autoencoder is shown to capture some of the essential items
that explain the relationship between input and output, which
is useful for predicting different classes from the target
dataset.

The study’s limitations are highlighted, and they are similar
to those of Case Study 1. Overall, the study provides insights
into how transfer learning can be leveraged in healthcare to
address challenges in predicting and managing diseases like
diabetes.

VI. CONCLUSION

Healthcare faces significant challenges in dealing with
limited labeled data and imbalanced datasets, demanding
urgent attention. Unlike traditional machine learning methods
that require manual feature selection and encoding, deep
learning allows models to automatically learn relevant fea-
tures from the data. This study emphasizes the importance of
transfer learning, which bridges the gap between source and
target domains by leveraging invariant feature representations
learned from the source. By applying transfer learning in
healthcare, specifically for imbalanced and small labeled
datasets, we achieve improved classification performance,
as demonstrated in breast cancer and diabetes prediction
tasks. Our approach outperforms other machine learning
algorithms and provides valuable insights for researchers and
professionals in the field, offering state-of-the-art knowledge
and guidelines for developing and applying transfer learning
in structured healthcare data. The software code for the DTL
model implemented in this study can be downloaded from
GitHub 1.
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