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Abstract—Detection of seizures using smart cameras has 
potential benefits since it does not require contact with the 
patient and can be easily deployed. Timely seizure alerts are 
crucial to prevent potential complications from seizures such 
as secondary injuries, and to initiate treatment to stop a 
seizure.  In our small, preliminary study, we demonstrated 
that camera-based patient-specific seizure detection can 
provide reliable detection of convulsive seizures and in some 
cases, even outperform the EEG-based seizure detector. We 
therefore see a need for the development of user-friendly, 
trainable, smart camera system which can be easily re-
trained for each patient by a caregiver or at home by a 
family member.  

Keywords—seizure detection, deep learning, smart camera, 
motion analysis. 

I. INTRODUCTION 

Epilepsy affects 1-2% of the total population. Anti-
epileptic drugs have shown some effectiveness in treating 
the disorder, however nearly 30% of people with epilepsy 
suffer from seizures that are refractory to medication, or 
surgery does not offer sufficient seizure control [1, 2]. 
People suffering from intractable epilepsy have increased 
rates of morbidity and are more susceptible to sudden 
unexpected death in epilepsy (SUDEP) [3]. Thus, there is 
an urgent need for a seizure monitoring device that can 
immediately alert caregivers (and/or emergency medical 
personnel) when a person is having a seizure and at risk 
for SUDEP, which often happens after Generalized 
Tonic-Clonic Seizures (GTCS). GTCS is characterized by 
both stiffness and jerky motions and is the most common 
type seen in patients with epilepsy. GTCS is considered a 
medical emergency. If it lasts more than five minutes then 
it can be life-threatening for the patient. Alerting about 
GTCS events may have a protective effect in preventing 
SUDEP. Many SUDEPs occur during sleep when a 
person is not supervised [4]. To reduce the risk of injury 
or death, doctors frequently recommend that caregivers 
constantly monitor patients, resulting in a significant loss 
of independence. There  is  also the  need  for  a  highly  
specific  and sensitive  device  with  the  ability  to  
continuously monitor and automatically  detect  seizures  
and  provide  seizure  alerts for  the  prevention of  seizure 
induced complications.   

Typically, EEG-based systems are used to detect 
seizures in clinical settings but they are not currently 
suitable for continuous use in home settings. EEG-based 
seizure detection is well-studied and achieved impressive 
sensitivity and specificity [5-10]. However, trained EEG 
technicians are needed for reliable EEG acquisition. In an 
attempt to reduce caregiver burden and improve patient 
outcomes, researchers have developed several non-EEG 

based wearable devices and motion detection sensors to 
detect seizures. Seizure alarms on the market use signals 
from sources such as EKG, limb acceleration/movement, 
motion sensors, EMG sensors, audio/video combinations 
and even multimodal sensor array platforms [11-18]. 
Most of these seizure detectors require sensors to be worn 
by patients. This can cause discomfort and some patients 
may not tolerate wearable sensors.  

Cameras with artificial intelligence (AI) capabilities, 
sometimes called “smart cameras”, offer the promise of 
increased automation. Smart camera-based seizure 
detection is a non-contact, inexpensive and easy 
deployable method. Advantages of camera-based methods 
include contactless monitoring, ease of use, and the ability 
to watch in real-time or play back an event for review. 
Camera-based seizure detection has been extensively 
researched for more than a decade [19-22]. Early research 
has been mainly focused on extracting features based on 
patient’s motion analysis in video recordings in order to 
develop automated seizure detectors [23]. However, the 
performance of feature-based methods is determined by 
the quality of the selected parameters, and finding the 
good features is always a challenge. This problem can be 
solved by using deep learning neural networks (DLNNs). 
Compared to traditional machine learning, deep learning 
can provide improved accuracy and better utilization of 
data with less required domain expertise. Deep learning 
techniques have emerged as a powerful strategy for 
learning feature representations directly from data and 
have led to remarkable breakthroughs in the field of 
generic object recognition [24-27].  

Convolutional neural networks (CNNs) have 
previously been applied to seizure detection using single 
frame-based and video sequence approaches [20].  
Combination of infrared and depth image based CNNs 
was used in [28] to identify unnatural postures of patients 
during convulsive seizures. Video sequences have also 
been used for motion analysis in epileptic patients [29, 
30]. Deep learning-based techniques are therefore a 
promising approach for detecting GTCS from video 
recordings. However performance of these methods as 
generic seizure detectors was low in comparison to the 
EEG-based seizure detectors. Currently available seizure 
detection devices report over 90%, or even 100% 
sensitivity for GTCS detection but the specificity or the 
false positive rate still needs to be improved. 

 Patient-by-patient variability of seizure 
manifestations makes development of reliable, generic 
seizure detectors difficult. To improve the reliability and 
performance of seizure detection, patient-specific  
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 Fig. 1. Input video frames from the camera are sent to the pre-trained 
DLNN and to the Motion analysis module. Event detection module 
combines the information from these two modules and declares a seizure 
detection if the thresholds are met. 

approaches have been employed [7, 9, 31]. Patient-
specific systems have better performance due to the rather 
consistent intra-patient seizure onset patterns. The 
disadvantage of a patient-specific approach is the fact that 
the detector has limited data to perform training and 
validation. In order to overcome those difficulties, we 
propose a smart-camera-based, patient-specific approach 
to detect seizures with usage of transfer learning and data 
augmentation techniques. 

II. METHODS 

The conceptual diagram of the components and data 
flow for the proposed seizure detector (SzD) is shown in 
Fig. 1. There are three modules: DLNN, Motion analysis 
and Event detection. The pre-trained DLNN classifies 
each input video frame as seizure or non-seizure and 
passes the certainty of recognition (CR) of seizure to the 
Event detection module. Motion analysis module works in 
parallel; it computes the average optical flow and assigns 
the “amount of motion” to each video frame. The main 
purpose of the Event detection module is to declare the 
seizure event when the CR exceeds the predetermined 
threshold. To remove the CR fluctuations, it runs moving 
average over K frames. It also uses the motion 
information to reject the frames with low motion values. 
The thresholds to reject the false positive frames and to 
declare a seizure event are patient-specific and determined 
during the training phase. 

A. Seizure detection approach 

Video can naturally be decomposed into image and 
motion components. The image component carries 
information about scenes and objects depicted in the 
video. The temporal part, in the form of motion across the 
frames, conveys the movement of the objects. Our 
proposed seizure detection approach, SzD, is based on a 
frame-based classification using AlexNet, pre-trained 
convolutional DLNN [24] and motion analysis using the 
classical Horn-Schunck algorithm to estimate the average  

The DLNN is individually trained to remember the 
specific seizure manifestations for each patient. Two of 
the DLNN output nodes have been devoted to recognize 
the seizure and non-seizure activity.  

The moving average interval and the CR threshold to 
declare the seizure detection have been determined 
individually for each patient using training seizure and 

non-seizure video segments. The CR thresholds were in 
the range 0.65-0.9, and K, the number of frames to 
average, was in the range of 10-15. 

Seizure video segments were labeled by two expert 
scorers. Non-seizure video clips have been collected from 
seizure-free recording of the same patient and represent a 
variety of patient activities such eating, reading books or 
watching TV, sleeping, interaction with caregivers and 
family members.   

B. Training with small dataset 

Our approach to seizure detection is patient-specific 
when detection algorithms are trained using data from the 
first seizure. While we can collect enough examples of 
non-seizure activity using seizure-free recordings, the 
seizure video recording length is from 15 seconds to 1-2 
minutes.  Also, even seizure manifestations are usually 
similar for the same patients, other conditions such as 
lighting, background and camera position in the room can 
be changed.  

Re-training a large DLNN such as AlexNet with only 
few training samples of a patient’s seizure activity can 
lead to overfitting and does not guarantee good 
performance if the patient is observed under different 
lighting conditions or has a different video background. 

Learning to classify new categories based on a small 
number of examples is a long-standing challenge in 
modern computer vision [33]. There are several 
approaches to few-shot training such as semi-supervised 
approaches using additional unlabeled data, fine tuning 
from pre-trained models, rendering synthetic examples 
and augmenting the training examples. The capability of 
recognizing objects in challenging environments is a key 
component for many computer vision and robotics tasks. 
Many methods have been proposed to address a particular 
recognition challenge, such as occlusion [34], variation in 
aspect ratio or changes of viewpoint [35]. 

Our proposed solution consists of a combination of 
transfer learning technique and training data augmentation 
with automatically generated surrogate seizure samples.  

The main idea of the transfer learning is to use a CNN 
model trained on a large image dataset and transfer its 
knowledge to a new smaller dataset. One obvious 
advantage is that a model can learn more efficiently since 
it starts with a pre-initialized weight matrix. CNNs used 
in computer vision tasks for transfer learning are usually 
trained on the large image datasets such as ImageNet for a 
couple of weeks using very powerful GPUs. By using 
transfer learning, it is possible to train the DLNN using 
much less data and in much less time. It has been shown 
that intermediate representations learned from ImageNet 
also provided substantial gains over hand-engineered 
features when transferred to other tasks [36, 37]. 

Synthetic data has been widely used in the training of 
DLNN for various tasks, including object detection, pose 
estimation, robotic control, autonomous driving, etc., and 
proved to be a useful source for data augmentation. 
Mixing real and synthetic data to improve object 
recognition detection performance have shown usefulness 
when real data is limited. A successful example can be 
found in the person image analysis method that uses the 
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image dataset with synthetic human models for various 
uses such as person pose estimation [38]. 

The surrogate sample is defined as the original video 
frame or image acquired by a video camera pointed at the 
object of interest but modified using various image 
processing and computer vision techniques. For example, 
we can detect the patient in the frame and rotate for a 
range of angles. We can resize the patient, detect edges, 
apply different color mapping, and move the patient 
position in the frame to simulate different percentages of 
occlusion. This can be accomplished automatically using 
the OpenCV software framework [39].  

We developed algorithms and software to augment the 
small training dataset by automatically generating 
surrogate training samples. Using just a short video clip 
(15-20 seconds) of the patient’s seizure, it is possible to 
generate hundreds or even thousands of training samples. 
It is also a good technique to make the model invariant to 
changes in size, translation, viewpoint, illumination etc.  

Overfitting was also handled by limiting the number 
of layers of the DLNN, in conjunction with the use of 
techniques such as dropouts and regularization [40].  

III. RESULTS 

In our small, preliminary study, we used the 
MATLAB implementation of AlexNet and 
opticalFlowHS object for estimating optical flow using 
the Horn-Schunck method. AlexNet is trained on more 
than one million images and can classify images into 1000 
object categories.  As a result, the model has learned rich 
feature representations for a wide range of objects. For 
transfer learning, we used a new classification layer with 
only two classes (seizure and non-seizure). We used a 
learning rate equal to 0.0001 and 0.5 dropout, other 
parameters were MATLAB defaults. The number of 
training samples for each patient was in the range of 600-
700; about half of them were surrogates. Input video 
frames have been resized to 227x227 to fit the AlexNet’s 
input layer. 

A. Video-EEG Database 

The patient/seizure database consisted of 12 epilepsy 
patients hospitalized for long-term EEG monitoring as 
part of pre-surgical evaluation of seizure pattern and 
localization. Patients ranged from 7–65 years and the 
database contained 6 females and 6 males. Total of 42 
seizures (27 daytime and 15 nighttime) were included. 
Videos were recorded with 640x480 resolution using a 
Sony camera with low light capability. All patient 
recordings were anonymized at the original recording 
sites prior to inclusion in the patient/seizure database. 
Studies included in the validation study were specified to 
meet the following criteria: 

• Minimum of two seizures, 
• Convulsive seizures such as GTCS,  
• Continuous video-EEG recording with 

minimum 24 hours.  

All seizures in the patient/seizure database were 
reviewed by at least two scorers to identify seizure onset 
time(s), specifically:  EEG onset (EO) and 
clinical/behavioral onset time (CO).  EO is defined as the 
earliest evidence of ictal EEG change that proceeds 

 
Fig.2. Example of ROC curve for our seizure detection algorithm and 
comparison with Random detector. 

inexorably to the seizure.  CO is defined as the earliest 
indication of seizure as manifested by EEG or non-EEG 
activity in the video-EEG recording. The scorers were 
blinded to the results of the system's performance. 

The performance of the seizure detection was 
evaluated by comparing the detections with this human 
scoring, using EO (as agreed upon by at least two scorers) 
as the primary measure of seizure onset time. All tests 
were conducted on long continuous video recordings of 
the same patients. For example, if the patient had first 
seizure during Day 1, then this seizure and other non-
seizure video recordings during this day were used for the 
algorithm training. Testing was done for Day 2 or Day 3 
(if available).  Data used for the algorithm training and 
optimization have been excluded when evaluating the 
performance of the seizure detection algorithm. 

B. Performance evaluation 

The performance of the seizure detection was 
evaluated using standard measures such as sensitivity, 
false positive rate and Receiver Operating Curve (ROC). 
The sensitivity is defined as follows:   

Sensitivity=TP/(TP+FN) *100% 

where the TP is the number of true positives, i.e., the 
seizure detector correctly identifies a video segment as it 
was labeled by the expert. The FP is the number of false 
positives or incorrect seizure detections; and the FN is the 
number of false negatives or the number of undetected 
(missed by seizure detector) seizure segments which were 
labeled by the expert. False positive rate is reported as the 
number of false seizure detections per hour. 

The evaluation of a seizure detection algorithm 
involves numerous caveats that need to be considered and 
the superiority of a seizure detection algorithm over the 
random detector must be established [41]. The 
performance of seizure detection was analyzed using 
ROC graphs. The ROC of a detector measures its 
performance as a trade-off between specificity or false 
positive rate and sensitivity. ROC curves provide a means 
to compare individual models and select the optimal 
threshold among all possible test thresholds.  For 
comparison, a random seizure detector was used as well. 
The random detector we used generated detections 
following a Gaussian process in time without using any 
information from video or EEG. The example of the ROC 
graph is shown in Fig. 2.  
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Each point on the curve corresponds to a different 
threshold. The Y-axis of this graph represents the 
sensitivity of seizure detection (true positive rate) and the 
X-axis corresponds to 1 – specificity (false positive rate) 
at that specific threshold value. The points at the bottom 
left corner of the ROC represent performance for 
thresholds at which there are no false positives, and none 
of the seizures can be detected. The top right corner 
represents thresholds at which all seizures can be 
detected, but all non-seizure video segments are false 
positives as well. We can quantify how quickly the ROC 
curve rises to the upper left hand corner by measuring the 
area under the curve (AUC). If the area is equal to 1, we 
have an ideal detector, because it achieves both 100% 
sensitivity and 100% specificity. If the area is 0.5 (as it is 
for the random detector), then we have a test which has 
effectively 50% sensitivity and 50% specificity. This is a 
system that detects a seizure at random, i.e. its 
performance is no better than flipping a coin.   

The ROC for our seizure detection algorithm was very 
steep and shows good separation between seizure and 

non-seizure classes. The AUC values were patient 
specific and were lied within 0.82-0.98.  

C. Comparison with EEG-based seizure detection  

For comparison purposes, we also used the 
commercial, EEG-based seizure detection program 
SzAC™ (Grass-Telefactor SzAC™ seizure and spike 
detector [5]). We have also optimized the SzAC™ seizure 
detection parameters using training EEG data for each 
patient. The seizure detection results are shown in Table I 
below. 

The results show a highly promising ability of the 
proposed methods to detect the epileptic seizures as 
anomalies deviating from the normal patient activity.  The 
average sensitivity was 98%, false positive rate 0.05/h and 
detection delay from -13 sec to + 28 sec with respect to 
EEG onset. EEG-based SzAC™ had a similar sensitivity 
but much worse false positive rate of 0.27/h.  

 Detection delays for seizure detection are presented 
with respect to EO. Negative numbers mean the detection 
has occurred before EO and positive numbers mean the 
detection was declared after EO. 

  TABLE I. PATIENT-BY-PATIENT SEIZURE DETECTION RESULTS 

 
Patient #  

 
Hours/Seizures 

 
Sensitivity, % 

 
False positives per hour 

    

 
Detection Delay Time, s 

    

SzAC     SzD SzAC   SzD SzAC   SzD 

Patient 1 24/2 100 100 0.3 0.08 2, 2 -10, -13 
Patient 2  48/2 100 100 0.8 0.04 1, 13 20, 22 
Patient 3  48/2 100 100 0.2 0.05 7, 11 11, 10 
Patient 4 30/4 100 100 0.1 0.1 2, 2, 1, 2 -4, -3, 5, 3 
Patient 5  72/5 100 83 0.4 0.06 1, 2, 5, 4, 3 16, 14, 18, 15, 18 
Patient 6 48/3 100 100 0.05 0.08 15, 12, 10 21, 22, 28 
Patient 7 96/3 100 100 0.2 0.02 5, 2, 10 -11, -9, -9 
Patient 8 24/2 100 100 0.2 0.01 2, 2 4, 2 
Patient 9 24/2 100 100 0.07 0.02 6, 9 22, 26 
Patient 10 24/1 100 100 0.5 0.05 11 19 
Patient 11 24/2 50 100 0.02 0.04 2, 4 -2, -8 
Patient 12 24/2 100 100 0.4 0.06 6, 8 15, 17 

 

 
Fig. 3. Patient#1 video-EEG recording for the first testing seizure. 

Large motion vectors are displayed in video in yellow color during the 
start of the GTCS. The SzD detection (vertical green line) has been 
declared 10 sec earlier than EEG onset (Te, red line) and 12.5 sec earlier 
than EEG-based detector (SzAC™, blue line). 

 
Fig. 4. The upper graph shows seizure detection summary for 

Patient#4.The middle graph displays the averaged output of the DLNN 
(certainty of seizure recognition) and the bottom graph is the output of 
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the Event detection module which combines the motion analysis and 
DLNN outputs.  

The results for Patient#1 (see Fig. 3), #4 (see Fig. 4), 
#7 and #11 are especially interesting since the testing 
seizures were detected before the EEG onset and earlier 
than the EEG-based seizure detector. Fig. 4 demonstrates 
the effect of combining the motion analysis and the 
DLNN frame classification. The seizure output of the 
DLNN had many spurious peaks or false positives (the 
middle graph). Simply setting the threshold for the mean 
optical flow has eliminated many false classifications (the 
bottom graph). As we see from Fig. 3, the motion vectors 
were very large during the GTSC and this information has 
been incorporated into the decision making logic. The 
thresholds were patient-specific and have been 
determined using training data for each patient. To 
validate these results, we intend to use this same 
approach, but with a much larger number of 
patients/seizures. 

 
IV. IMPLEMENTATION ON EMBEDDED PLATFORM 

Benefits of in-camera seizure detection are the real-
time, automated decision-making, and data privacy. With 
in-camera seizure detection, video is processed internally 
and only seizure alerts are transmitted.  Implementing 
smart-camera based seizure detection on the embedded 
platform requires efficient hardware acceleration, high 
computational performance, and low power consumption.  

These goals can be achieved using embedded systems 
optimized for computer vision and AI tasks such as 
NVIDIA Jetson family platform [42]. We selected the 
NVIDIA Jetson Nano as the embedded platform for our 
camera-based seizure detection. Jetson Nano is a single 
board computer powered by NVIDIA GPU with 4 GB of 
memory which allows real-time image processing and 
DLNN inference.  Implementing real-time deep learning 
inference and fast transfer learning on the edge (in-
camera) is possible with usage of GPU accelerated 
image/video processing building blocks such as the 
NVIDIA CUDA framework, Transfer Learning Kit, 
TensorFlow and TensorRT software libraries [43,44].  

We did preliminary experiments to evaluate the 
performance of re-training AlexNet on the NVIDIA 
Jetson Nano system. Our tests showed that it can  run the 
inference engine in real-time and it takes about 15-20 
minutes to re-train the AlexNet with two extra output 
nodes for seizure and non-seizure classes.  The 
performance in terms of inference time for Jetson Nano 
using various DLNN models and frameworks has also 
been presented and compared with other embedded 
systems in this work [45]. 

 
V. CONCLUSION 

We have demonstrated that using a relatively simple 
approach such as combination of image-based pre-trained 
CNN and patient-specific motion estimation yielded good 
results in comparison with commercial EEG-based 
seizure detection. We should note that the proposed smart 
camera-based seizure detection algorithm is limited to 
detect convulsive seizures such as GTCS and it is not 
intended to be the replacement of the EEG-based seizure 
detectors. However, it can be used at home as a 

continuous seizure monitoring and alert system to prevent 
seizure induced complications, including SUDEP. It also 
can be used as a replacement of the standard video camera 
used in long-term video-EEG monitoring in epilepsy 
centers. Smart cameras can complement the EEG-based 
seizure detection providing reliable, patient-specific 
detection of GTCS.  

We have also proposed the real-time implementation 
of seizure detector and in-camera training with usage of 
GPU accelerated image/video processing building blocks 
from NVIDIA Jetson Nano platform. 

 

VI. FUTURE WORK 

We are planning to use the same approach for our 
larger validation study with more patients/seizures. The 
algorithms will also be evaluated under different lighting 
conditions, camera angles, and surroundings. We are also 
planning to use other DLNN architectures and techniques 
specifically designed for human action recognition and 
video sequence classification. It will include the 
Recurrent Neural Network and its variant, Long Short-
Term Memory network as well as 3D CNN [46]. These 
DLNN architectures belong to the most successful 
machine learning approaches when it comes to video 
sequence modeling. 

One of the future tasks is to add the capability to 
customize the smart camera for other applications with 
user-friendly software interface. Most advanced patient 
monitoring cameras use video analytics to detect a single 
specific, pre-programmed event. The customization of 
smart cameras is either not possible or is difficult for a 
non-specialist and requires extensive knowledge of 
various software development tools and even some 
programming skills. This problem can be overcome with 
development of the user-friendly desktop application 
software or mobile app which enables easy, suitable for 
non-specialists, re-training of the smart camera. 
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