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Abstract—Machine learning models can make accurate pre-
dictions but trust in the models depends on being able to under-
stand why those predictions were made. Unfortunately, machine
learning models are black boxes making interpretation difficult.
Previously we used an evolutionary algorithm to evolve triplets of
neural network players for instances of the Generalized Divide-
the-Dollar, which is an economic bargaining game. The players
produced fair bids with high bid totals, which is a desirable
outcome, but no attempt was made to understand why the players
performed so well. In this paper, we interpret the behavior of
those neural networks using SHapley Additive exPlanations (or
SHAP). Surprisingly, the neural network players exhibited both
altruistic and exploitative behavior. Both a global and a local
interpretation analysis is presented. The experiments conducted
in this work demonstrate a simple method for understanding
players’ strategies in multi-player games.

Index Terms—explainable AI, machine learning, model inter-
pretation

I. INTRODUCTION

Machine learning (ML) algorithms often operate as black-
box function-approximators. They receive inputs and render
output predictions, while often there remain questions about
how their function approximation abilities work. Explainable
AI (abbreviated XAI) is a set of methods that attempt to get
some answers.

The vast majority of XAI studies have focused on explaining
the behaviours of data-driven models, e.g. [1]–[3]. Despite the
increasing interest in goal-driven agents, studies addressing
the explainability issues are still sparse in this area. A recent
review showed that there is a scarcity of XAI studies in multi-
agent systems [4]. One of the aims of this paper is to contribute
a technique for using XAI to interpret agent behaviors in a
multi-agent system.

Greenwood and Ashlock [5] used an evolutionary algorithm
to evolve neural network (NN) players for a 3-player game. In
this paper, we use XAI methods to advance our understanding
of the predictions made by these NN players.

Bargaining situations arise whenever two or more people
must agree for mutual benefit over some economic transaction.

Nash [6] created a nonzero-sum two-person game to study
bargaining. Divide the dollar is a simplified version of Nash’s
game. Each round two players simultaneously bid on how
much of $1 they are willing to accept. The players get a payoff
equal to their bid if the bid total does not exceed $1; otherwise
the players get a zero payoff. In a generalized divide the dollar
(GDD) game, the $1 is split by n > 2 players1.

Greenwood and Ashlock [5] had used a Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) algorithm to evolve
NN players for a 3-player GDD game [5]. The input features
were the bids of a player’s opponents in the previous two
rounds. The NN regression output was a player’s bid. Three
NNs were evolved that were effective and yet exhibited “fair”
bidding—i.e., the bid total was at or near $1, but the bids
were roughly equal so no player was exploited. Although the
NNs performed well, they remain to be black boxes, falling
short of explanations on how they bid or how they produced
a particular prediction.

In the ML field interpretability has received considerable
attention although precise definitions are still lacking. In a
broad sense it involves extracting relevant knowledge from a
ML model either contained in the data used for training or
learned by the model. In this work we focused on post hoc
interpretability [7] where a practitioner analyzes a previously
trained model to gain insight into the learned relationships.
There are two categories of post hoc interpretability:

• Global interpretability: which input features were most
important, over an entire training/test set, in determining
the model’s outputs.

• Local interpretability: given a single input or a sub-
space of input features, which input features were most
important in producing the observed output.

Some ML models, such as linear regression models or tree-
based models (e.g., random forest), are interpretable while

1The bids become very small in a GDD game if a dollar is split by too
many players. Therefore, with n > 3 players the amount split is increased to
$n/2. Otherwise the rules remain unchanged.
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more complex, black box models such as NNs are not. We
need a model-agnostic interpretation method that does not
require any knowledge about the underlying model. One
approach is to construct an explainer model, such as a decision
tree, that shadows and approximates the complex model’s pre-
dictions (at least for a single input data point x) [8]. The black
box model may not be interpretable, but the explainer model
is. If the explainer model’s prediction is a good approximation,
then interpreting it approximates a good interpretation of the
black box model it shadows.

The basic advantage in shadowing a model with another
is to gain the benefits of both. A neural network are non-
linear approximators, offering smooth approximation in areas
of non-linear behaviours, which results in more accurate
predictions. The shadower model, such as a decision tree,
may need to grow infinitely large to reach the same level
of smooth approximation. Instead, we can place parsimony
pressures on the shadower, sacrificing some accuracy to gain
on comprehensibility and compactness of the model.

SHAP values can then be extracted from the explainer
model to indicate which features play prominent roles in a
model’s decision making. Efficient methods exist to extract
SHAP values from an explainer model. These SHAP values,
which were derived from the game theoretical optimal Shapley
values, will produce the interpretation.

The ML model in our work are NNs representing players for
a 3-player GDD game. XGBoost [9], a popular ML algorithm,
was used for an explainer/shadower model. Both global and
local interpretations of the model were conducted.

II. BACKGROUND

Fig. 1: The coordinated subspace for a 3-player GDD game.
The subsidy region is the hemisphere protruding from the 2-
simplex face.

A. GDD game

Divide-the-dollar was originally created as a 2-player game.
Each round, both players would simultaneously submit a bid
stating what fraction of a dollar they were willing to accept.
If the bid total was a dollar or less the players would get their
bid as a payoff. However, if the bid total was over a dollar
both players got nothing.

GDD extends the basic divide the dollar game in two ways.
First, it is now an N -player game with N > 2. Second, a
small subsidy is available. This subsidy allows players to still
get a non-zero payoff even if the bid total goes over one dollar.
However, the subsidy is available if and only if the bids are
“fair” (i.e. near uniform). That is, no player receives a payoff
substantially higher than another player. For example, in a 3-
player game with bids of {0.61, 0.20, 0.22} the bid total is
$1.03 but one player would receive a much higher payoff.
Suppose the bids were {0.33, 0.35, 0.35}. Again the bid total
is $1.03, but the payoffs are roughly the same. The subsidy
would only be available in the second case.

Bid totals are called coordinated if the players receive a
non-zero payoff and are called uncoordinated otherwise. For
an N -player game, one can think of each bid as a coordinate
of a point in RN . Associated with each point is a number equal
to the sum of its coordinates—i.e., the bid total. Fig. 1 shows
a subspace in R3. The slanted isosceles triangle is a 2-simplex
where all bids total to exactly one dollar. The coordinated bid
subspace is the 2-simplex and all points in the pyramid beneath
it.

A hemisphere is shown protruding from the 2-simplex.
This hemisphere and its interior represent the subsidy region.
Notice, it is centered on the 2-simplex at the strictly-uniform
bids [1/3 1/3 1/3]; thus, only fair bid sets are able to use
a subsidy. For N > 3, the subsidy region is a hypersphere
centered at the point

[
1
N

1
N . . . 1

N

]
.

Fig. 2: The NN architecture for GDD players. See text for
notation description.
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Fig. 3: The 3-player GDD framework.

B. The NN player architecture

Fig. 2 shows the architecture of a NN player. At every step
t each NN receives 6 input features. Three features are the
bids of its two opponents O1 and O2 at time step t − 1 plus
a C two-valued input indicating whether the bid total at that
time step was coordinated or non-coordinated; with C=0.5 if
bids are coordinated or 0.0 if non-coordinated bids. Another
3 similar set of features are provided for time step t− 2.

Fig. 3 shows the configuration of a 3-player GDD game.
Players are represented by a NN with prior bids made by its
opponents in previous rounds as feature inputs. Let bi be the
current bid of the i-th NN player in an N -player game. Each
bi is a coordinate of a point in RN . The smart aggregator block
outputs

∑
i bi if this point is on or beneath the simplex surface

or inside the subsidy hypersphere. Otherwise it outputs 0.
For convenience, a special notation was used to label the

feature inputs to the NNs. NN2 and NN3 are the 2 opponents
of NN1. Consider the following feature vector input to NN1:{

Ot−2
1 Ot−2

2 Ct−2 Ot−1
1 Ot−1

2 Ct−1
}

=

{O22 O32 C2 O21 O31 C1}

O22 stands for the NN2 bid at time t − 2. It is the Ot−2
1

input in Fig. 1. O32 is the NN3 bid at time t− 2; it is input
Ot−2

2 . C2 is the Ct−2 input. Table I lists the input features for
each NN.

C. SHAP

Consider a game where at the end of each round a payoff is
distributed among the players. How much of the payoff should
each player receive? A fair distribution would be based on a

TABLE I: Feature inputs for NN players

Neural Network Input Feature Set

NN1 O22, O32, C2
O21, O31, C1

NN2 O12, O32, C2
O11, O31, C1

NN3 O12, O22, C2
O11, O21, C1

player’s contribution, but often there are coalitions of players
which makes individual contributions not so obvious. Lloyd
Shapley [10] answered the question optimally by introducing
what are called Shapley values. These values specify each
player’s contribution to a game outcome over all possible
player coalitions. In mathematical terms, they are the average
marginal contribution over all possible player coalitions.

Unfortunately computing exact Shapley values using (II-C)
is impractical for more than a handful of features because the
complexity rises exponentially with the number of features.
Lundberg and Lee [11] introduced a method called SHapley
Additive exPlanations (or SHAP) to interpret ML black box
models through Shapley values. Games now become ML
models, players now become input features and characteristic
functions now become model predictions.

SHAP belongs to the family of additive feature attribution
models. These models explain more complex models (such as
NNs) using a linear combination of binary variables.

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (1)

where z′ ∈ {0, 1}M and M is the number of features. ϕi is
the effect feature i has on the ML model’s prediction.

More specifically, let x ∈ RM be an input feature vector to
a ML model. Often a simplified feature vector x′ ∈ {0, 1}M
is constructed for x that has x′

j equal to 0 if the j-th feature is
missing and 1 if present. Thus, coalitions (subsets of features
from x) are represented by M -bit binary strings. A sample
coalition vector x for input to the ML model is then created
via a mapping function hx(x

′). For example, let x = [x1x2x3]
and x′ = [111]. Then hx(x

′) = [x1x2x3] whereas x′ = [110]
would produce hx(x

′) = [x1 x2 −] which is missing the third
feature.

Let z′ ⊆ x′. Then z′ represents a coalition of features in
x′. Let fx(z

′) be the output of the ML model for a feature
coalition that includes feature i and fx(z

′/i) the model output
for a coalition that excludes feature i. Then the SHAP value
ϕi for feature i is

ϕi =
∑
z′⊆x′

|z′|! (M − |z′| − 1)!

M !
[fx (z

′)− fx (z
′/i)] (2)

where |z′| is the number of 1’s in the vector z′ and M is
the number of features. Equation (2) sums over all possible
coalitions of feature vector x (x′).

A sample coalition vector may have one or more features
missing. A ML model, however, cannot make predictions with
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missing features. There are several ways of handling missing
features. One simple method is to compute the expected value
for each feature in the database. These expected values can be
used as substitutes for missing features. Alternatively a random
observation can be chosen from the database and its features
used as substitutes.

SHAP computations are available in an open-source library
that efficiently computes Shapley values in ML domains. It
contains algorithms to find exact Shapley values for tree
ensemble models (TreeSHAP), and approximate Shapley val-
ues for deep learning models (DeepSHAP). Kernel SHAP is
model-agnostic because it can approximate Shapley values for
any type of model. SHAP routines are available in several
programming languages including python, R and MATLAB.
Further details can be found in [12], [13].

III. METHODS

The goal is to explain why NN players make particular bids.
Fig. 4 shows the SHAP framework used for model explanation.
The ML model is first fit to a database. Then observations from
the database and the model are fed to SHAP, which computes
ϕi for each feature i. Equation (??) provides the explanation.

Unfortunately we could not just substitute a player’s NN
for the ML model due to the absence of a database (sample).
NNs are normally trained with a database, but in this case,
they were designed through a cooperative, co-evolutionary
process and evolved through interactions among individuals
in the population. A CMA-ES algorithm evolved the NN
synaptic weights and fitness was determined via a series of
15 round tournaments against other NN players. Highly fit
NNs offer fair—i.e., roughly uniform—bids with bid totals
near the surplus amount. A set of three, highly fit NN players
were successfully evolved (see [5] for details) and SHAP is
used to interpret their behavior.

A process similar to creating global surrogate models was
used to build the needed database for SHAP analysis. An
observation was constructed by applying random inputs to a
NN player and recording the prediction (a bid). The baseline
bid for the three players was [1/3 1/3 1/3] because this
represents a fair bid set. Random noise was then added to
the baseline to get feature vectors. For example, referring to
Fig. 2,

Ot−1
1 = 1/3 +N (0, σ) (3)

where N (0, σ) is a normally distributed random variable with
zero mean and standard deviation σ. In this work σ = 0.025
is used. Other features are computed similarly. The C1 and
C2 values are set since all NN outputs at t− 1 and t− 2 are
known. This process was repeated to build a database with
2000 observations.

There are three NNs which means twelve Ot−j
i values are

needed per observation. However, that does not mean (3) is
applied twelve times. Consider NN1. Ot−1

1 and Ot−2
1 are the

previous bids of NN3. But those feature values are also inputs
to NN2. Random feature reuse reduces the application of (3)
to six times per observation.

Some metrics, such as RMSE, measure model prediction
accuracy. Conversely, R2 measures database fit; the closer to
1.0, the better the fit. In the ML community R2 is frequently
used to compare different regression models on the same
database. It is calculated as follows:

R2 = 1 −
∑

(ypred − ymean)
2∑

(yactual − ymean)
2 (4)

Notice it is possible to have a negative R2 value if the model
is very poorly fit to the data.

The ML model shown in Fig. 4 is XGBoost. Effectively
it is a global surrogate model. The XGBoost model had an
R2 = 0.996 value indicating it approximates the NN model
quite well. Thus, any assumptions made about the XGBoost
model holds for the NN model. Put another way, SHAP values
can interpret ML models. It is impossible to extract SHAP
values for a NN model, but SHAP values can be extracted
for an XGBoost model. If the two models behave similarly,
then interpreting the XGBoost model will also interpret the
NN model.

IV. RESULTS

In this section both local and global interpretations of the
NNs players are presented. XGBoost, a gradient boosting
algorithm, is used as the shadower/explainer of the NNs
players that needs to be interpreted. TreeSHAP can efficiently
extract the SHAP values from boosted tree models such as
XGBoost. One thousand trees were involved with a tree depth
of 5 and a learning rate of η = 0.02. The maximum available
subsidy was $0.05. Three feature vectors are chosen for local
interpretation: one for a coordinated bid with a bid total less
than or equal to $1, a subsidized bid, and an uncoordinated
bid. Decision plots are used to show the results.

In decision plots the input features are listed from top
to bottom in order of importance—i.e., the top feature had
the greatest impact on the model’s prediction. A vertical line
shows the baseline value. This is the output of a model with
no input features; it is the average model prediction in the
training set. The raw feature value is shown in parenthesis.
SHAP is an additive attribution method so adding a feature
increases or decreases the prediction relative to the baseline
value. A segmented line shows how each SHAP value impacts
the prediction. The final prediction is where this segmented
line intersects the number line at the top of the plot. Blue
lines indicate a final prediction lower than the baseline and
red lines higher than the baseline.

Decision plots add SHAP values from the smallest to the
largest value. In each case initially all three NNs behave simi-
larly but differences appear as features are added. Coordinated
bids tend to be smaller bids although, as shown in Fig. 5, NN3
exploited the smaller bids of the two opponents. Fig. 6 shows
an uncoordinated bid total. All three bids were high which
indicates all three players were equally responsible for the
high bid total. In this case all players received no payoff. The
subsidized case, shown in Fig. 7 is quite interesting. All three
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Fig. 4: The SHAP framework.

players had high bids, which is necessary to take advantage
of a subsidy, but two players substantially reduced their bids
when the third player consistently submitted high bids. This
suggests altruistic behavior; getting some payoff is better than
getting no payoff.

It is interesting to see the interaction between players.
Players try to get coordinated bid totals because otherwise
there is no payoff. Consequently, opponent bids above the
baseline in previous rounds tend to drive current bids lower.
But low opponent bids in previous rounds can produce just
the opposite effect in opponents. There are two ways of
looking at this behavior. Players that reduce their bids because
previously opponents bid high suggests altruism. Conversely,
players that increase their bids because opponents previously
bid low indicates exploitative behavior.

Referring to Fig. 5, all three NNs made predictions below
the baseline value. NN1 considered opponent bids in the
previous round as important, and, since those bids are high,
its final prediction is low. For NN2 the large bid from NN3
in the previous round drove the prediction lower but the
below baseline NN1 bid drove it higher. The NN3 output bid
consistently moved lower except the low bid from NN1 in the
previous round drove it to a higher final prediction.

Low opponent bids in previous rounds tends to increase the
bid in the current round. Fig. 6 shows an uncoordinated bid
decision plot. At this data point, all three NNs saw low op-
ponent bids in previous rounds and consequently, significantly
increased their bid. Such behavior increases the likelihood of
uncoordinated bid totals.

Decision plots for a subsidized bid total are shown in Fig. 7.
NN1 dramatically increased its bid because the input features
indicated the other opponent bids were low in the previous two
rounds and the bid totals were coordinated. NN2 and NN3 had
similar behavior. Both would have had a high bid if it were
not for the very high NN1 bid in the previous round. Indeed,
O11 was the most influential feature for both NNs.

A global interpretation is depicted in Fig. 8. The beeswarm
plot shows all three NNs see the opponent’s bids in the
previous round (t − 1) have the most influence on current
predictions; a kind of a tit-for-tat strategy.

The global interpretation shown in Fig. 8 is interesting.
All plots indicate bids from the previous round had the most

influence on current bid predictions. Notice the red portion is
to the left for all Oij bid inputs but to the right on all Cj
inputs. High opponent bids lead to lower current bids which
promotes altruistic behavior. Conversely, coordinated bids in
the previous rounds tend to increase the current bid. This could
explain the exploitative behavior.

The beeswarm plots also indicate feature importance glob-
ally. The top-to-down ordering indicates which features, on
average, affected the NN bids the most. Opponent bids in
round t − 2 had the least affect on a NN player’s bid and
that was true for all three NNs.

V. FINAL REMARKS

SHAP values provide an effective method for interpreting
the NN bids. But this suggests another use that has not been
investigated before.

Finally, an evolutionary algorithm was used to design three
NNs modeling GDD game players that offered fair bids with
high bid totals. The global interpretation shows opponent bids
in round t − 2 have the least affect on a player’s bid. The
evolutionary process used the full 18 feature input set. It
would be interesting to see if this evolutionary algorithm can
find three players, with the desirable behavior, while using a
reduced feature input set that did not include the t− 2 round
opponent bids.
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(a) NN1 (b) NN2 (c) NN3

Fig. 5: Decision plots for a coordinated bid total.

(a) NN1 (b) NN2 (c) NN3

Fig. 6: Decision plots for an uncoordinated bid total.

(a) NN1 (b) NN2 (c) NN3

Fig. 7: Decision plot for a subsidized bid total.

(a) NN1 (b) NN2 (c) NN3

Fig. 8: Beeswarm plots showing global interpretation of the three NNs.
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