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CINVESTAV-IPN

Mexico City, Mexico

Xiaoou Li
Departamento de Computación

CINVESTAV-IPN
Mexico City, 0736, Mexico

Brisbane Ovilla-Martinez
Departamento de Computación

CINVESTAV-IPN
Mexico City, 0736, Mexico

Wen Yu
Departamento de Control Automático
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Abstract—In this paper, the robot PID control is compensated
by the reinforcement learning. The controller adjustment is
proposed by the stability analysis. The reinforcement learning
can compensate the dynamics of the robot. This method avoids
the problems due to big integral gain of classical PID control.
The experimental results show the effectiveness of the proposed
controller.

Index Terms—PID control,reinforcement learning, robust con-
trol

I. INTRODUCTION

In recent years, the area of machine learning has attracted
the attention of many researchers who have contributed to
great progress. Machine learning is a set of algorithms or
computational methods to ensure that a computer system
is able to improve its performance as it interacts with the
environment.

In the field of artificial intelligence, computer systems that
display intelligent behaviors are studied. One of the most
fruitful research areas in machine learning is reinforcement
learning. Reinforcement learning focuses on optimal control
and robotics applications [1]. Reinforcement learning aims to
maximize reward when in state x and apply action u. Robot
states can be considered continuous or discrete. Furthermore,
the actions chosen are seen as the torques applied to the motor
that result in a change of state [3]. The control policy within
the literature can be found as the actions that are sent to the
motor to generate a change of state. The idea here is to receive
both the positions and the speeds and apply an input torque
to the motor to produce a change in the output [2]. Therefore,
finding a policy that maximizes the sum of the long-term
rewards is the main goal of reinforcement learning.

Reinforcement learning can be found to solve different
problems in the literature such as robotics, optimal control,
multi-agent systems, game theory, etc. In general, the studies
focus on the knowledge of optimal solutions, and not on
learning or approximation methods.

In reinforcement learning, the central idea is that an agent
learns to achieve a goal through their interaction with the
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environment. This problem is usually handled by Markov
Decision Processes (MDP). The control of the robot within
the Markov decision process can be seen as the knowledge
of transitions and rewards that only depend solely on the
current state. Therefore, a Markov state contains all the
information related to dynamics, so once the current state
is known, the history of the transitions that led the agent
to that position is irrelevant. Reinforcement learning can be
found in deterministic or stochastic form. In a deterministic
decision problem, the execution of a certain action uk, in a
certain state xk, always brings the agent to the same state
xk+1. In contrast, in a stochastic environment, each transition
is associated with a probability distribution over the state space
X , that is, the agent can end up in different states in two
different executions of the same action uk, at xk. The MDP
can also be considered small or large, where it refers to the
size of the state and the spaces of action. Finally, they can
be analyzed continuously or in the form of episodes, where
in an episodic task the simulation of the interaction between
the agent and the environment are divided into episodes. Each
episode begins in an initial state and ends in a special state
called the terminal state.

Q-Learning is a very popular control algorithm in rein-
forcement learning that uses temporal difference off-policy,
where it directly approximates the optimal state action value
function, regardless of the policy followed. If all actions for
all state-action pairs are updated an infinite number of times,
with a decreasing value of α, then the Q-Learning algorithm
converges to Q with probability 1. Two important aspects can
be found in reinforcement learning: One would be the tabular
representation and the second the discretization of the state
space. Also within these aspects some problems appear, such
as: approximations based on domain knowledge, discretization
of the state space, approximation of functions.

Recently, artificial intelligence algorithms have been used
to solve problems in robotics and classical control. One of
them is the neural networks that are used to estimate dynamic
parameters of the robot model or parameters in the control
loop. The Q-Learning algorithm has also been used to find
the adjustment of the control loop gains or as a compensator
for robot dynamics. Finally, the Q-Learning algorithm belongs
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to artificial intelligence and has an active and important
participation in machine learning.

II. REINFORCEMENT LEARNING IN THE FORM OF SLIDING
MODE

The goal in reinforcement learning is not only to maximize
the immediate reward, but also the long-term reward which is
represented as

Vk = q̃k+1 + γq̃k+2 + γ2k+3q̃k+3 + · · · =
T∑

l=k+1

γl−1q̃l (1)

where the vector q̃ = q − qd ∈ Rn is the control error, the
vector qd ∈ Rn is the desired reference, T represents the final
time, γ is a parameter, 0 ≤ γ ≤ 1.

The control objective can be formally defined as follows:
given the desired reference qd ∈ Rn constant for all t ≥ 0,
the problem is to design a law of control

τk = π (q̃k, qk) (2)

such that qk → qd ∈ Rn, π is the control policy.
In order to include control action to the value function (1),

we introduce Q-function Qπ(qk, τk) that represents the action
τk in the state qk following the policy π,

Qπ(qk, τk) = E

[ ∞∑
l=0

γlRk+l+1 | qk = x, τk = u

]
(3)

We define π∗ as the optimal policy such that

V ∗(qk) = max
πk

V πk(qk) or Q∗(qk, τk) = max
πk

Qπk(qk, τk)

(4)
where Q∗ is the optimal action-value function .

From Bellman principle, the value function V (x) and Q-
function Qπ(qk, τk) have the recursive properties [4]

V π(qk) =
∑
τk

π(τk | qk)

=
∑
qk

p(qk | qk, τk) [r(qk, τk, qk) + γV π(qk)]

Qπ(qk, τk) =
∑
qk

p(qk | qk, τk) [R(qk | qk, τk) + γV π(qk)]

(5)
So the optimal value functions can be expressed recursively
as

Q∗(qk, τk) = E[Rk+1 + γV ∗(qk) | qk = x, τk = u]. (6)

This means
Q∗(qk, τk) = E [Rk+1 + γmaxτk Q

∗(qk, τk) | qk = x, τk = u]

=
∑
qk

p(qk | qk, τk) [r(qk, τk, qk) + γV ∗(qk)]

=
∑
qk

p(qk | qk, τk)
[
r(qk, τk, qk) + γmax∗τk Q

∗(qk, τk)
]

(7)
We use the following temporal differences learning to estimate
the Q-function

Q(k+1)(qk, τk) = Q(k)(qk, τk)
+α

[
R(k) + γmaxτk Q

(k)(qk, τk)−Q(k)(qk, τk)
] (8)

where qk, τk are the state and action in time step k, α is the
learning rate, 0 < α ≤ 1, γ is the discount factor.

The robot control (2) becomes

τk = β argmax
τk

[
Q(k+1)(qk, τk)

]
(9)

β is a constant (β > 0).
The reinforcement learning controller (9) can be formed into

the following form

τk = β(−sign(q̃k) + Γk) (10)

where Γk is the difference between the sliding mode control
sign(q̃k) and the reinforcement learning control (9).
Γk is decided by the Q-value function Q(k), which is

calculated by the Q-learning (8). The algorithm of the Q-
learning using sliding mode form is as follows.

Q− learning algorithm for one control
Initialize Q(k)(q̃si , τrj ) random
Repeat in each task

Initialize q̃si
Repeat in each episode

Action τrj from q̃si , τk = −sign(q̃k)
Control law from Q(k),

τr = β argmaxΓk
Q(k+1)(q̃si , τrj )

Action τrj to the robot
Update Q(k)(q̃si , τrj ) with the observed data qk:
Q(k+1)(q̃si , τrj )← Q(k)(q̃si , τrj )

+ α

[
V (k) + γmaxτr Q

(k)(q̃si+1
, τrj+1

)
−Q(k)(q̃si+1 , τrj )

]
Until q̃si be a terminal state

Until the task is finished

III. PID CONTROL WITH REINFORCEMENT LEARNING
COMPENSATION

The reinforcement learning control (10) has big chattering.
Now we use the classical PID control. The reinforcement
learning control (10) is applied as an compensator of the PID
control.

The PID control with the reinforcement learning compen-
sation is

τ = Kpq̃ +Kd
˙̃q +Ki

∫ t

0

q̃(ψ)dψ + ur (11)

where the design matrices Kp,Kd,Ki ∈ Rn×n called respec-
tively proportional, derivative and integral gains, are positive
and symmetric definite matrices.
ur is the continuous time version of (10),

ur = β

[
−sign( d

dt
q̃)

]
+ Γ)

In the case of the regulation q̇d = 0, d
dt q̃ = −q̇

ur = β [sign(q̇) + Γ]

We use a new additional state variable ξ, and defined ξ̇ = Kiq̃,
so the PID control is

τ = Kpq̃ −Kdq̇ + ξ + β [sign(q̇) + Γ]

ξ̇ = Kiq̃
(12)
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The dynamics of a rigid serial n−link manipulator can be
defined as [12].

M (q)
··
q + C(q,

·
q)

·
q + F (

·
q) +G (q) = τ (13)

here q ∈ ℜn represents the position of links,
·
q ∈ ℜn represents

the velocity of links, M(q) ∈ ℜn×n the inertial matrix,
C(q,

·
q) ∈ ℜn×n represents the centripetal and Coriolis force

matrix, G(q) ∈ ℜn is the vector of gravity, F ∈ ℜn×n is
a positive definite diagonal matrix of friction terms (friction
viscous ), τ ∈ ℜn is the input control vector.

The closed-loop system is

M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q)
= Kpq̃ −Kdq̇ + ξ + β [sign(q̇) + Γ]

In state space

d

dt

 ξ
q̃
q̇

 =


Kiq̃
−q̇

M(q)−1

[
Kpq̃ −Kdq̇ + ξ + β [sign(q̇) + Γ]
−C(q, q̇)q̇ − F (q̇)−G(q)

]


(14)
The equilibrium can be transferred to the origin by the
following change of variable ξ̃ = ξ − G(qd). Note that the
above equation is autonomous and its only equilibrium is the

origin
[
ξ̃T , q̃T , q̇T

]T
= 0 ∈ R3n. The following theorem gives

the stability analysis of the PID control with reinforcement
learning compensation.

Theorem 1: Consider robot dynamic (13) controlled by the
PID+RL control (12), the closed loop system (14) is semi
globally asymptotically stable at the equilibrium:

x =
[
ξT −G(qd), q̃T , q̇T

]T
= 0 ∈ R3n

with the following conditions gains:

λmin(Kp) ≥ 3
2kg

λmin(Kd) ≥ η + λmax(M)

λmax(Ki) ≤ η λmin(Kp)
3λmax(M)

λmin(β) ≥ Γ + λmax(Bf1)

(15)

where η =
√

1
3λmin(Kp)λmin(M), kg satisfy the Lipschitz

condition.
Proof 1: See Appendix.
Theorem 1 tells us how to select the gains of PID control in

(11), and how to select the gain of the reinforcement learning
compensator (10).

IV. EXPERIMENTAL RESULTS

This section shows experimental work on a 2-DOF manip-
ulator robot. The manipulator robot is similar as the forearm
that had a certain symmetry with the human arm. Figure
1 shows the manipulator robot from an isometric view in
its initial condition, where both the arm and the forearm
are extended and resting in their stable equilibrium position.
Figure ?? shows both the arm and forearm are extended at
different angles from zero. The work space comprises a circle
with a diameter of approximately 1 meter. Table 1 shows the

Fig. 1. 2 DOF manipulator robot arm

robot manipulator parameters. The desired final conditions are
qd1 = π/4, qd2 = π/4.

Table 1. 2 DOF Robot Manipulator Parameters.
Parameters Description Value

m1 Arm Mass 0.2393 kg
l1 Arm Length 0.240 m
lc1 Center of mass Arm 0.0684 m
I1 Arm Inertia 0.002547kgm2

b1 Viscous shoulder friction 0.0017 Nm
rad/s

q1 Arm Position q1 rad
m2 Forearm mass 0.1541 kg
l2 Forearm Length 0.200 m
lc2 Center of Mass Forearm 0.0574 m
I2 Forearm Inertia 0.001153kgm2

b2 Elbow viscous friction 0.0013 Nm
rad/s

q2 Forearm position q2 rad
Theorem 1 gives sufficient conditions for the minimal values

of PID gains. From the parameters in Table 1 and (15),
λmin(Kp) ≥ 3

2kg , λmin(Kp) ≥ 0.9156, when the links are
extended qd1 = π/2 and qd2 = 0. We select kg = 0.6104,
λmin (Kd) ≥ η + λmax(M), the eigenvalues of M(q) are
λ1 = 0.0178, and λ2 = 0.0011, λmax(M) = 0.0178.

Because η =
√

1
3λmin(Kp)λmin(M), λmin(Kp) = 0.9156,

λmin(M) = 0.0011, thus λmin (Kd) ≥ 0.0183 + 0.0178 =
0.0361. So

Kp =

[
1 0
0 0.9156

]
,Ki =

[
0.3 0
0 0.3

]
,Kd =

[
0.2 0
0 0.1

]
The gain matrix of Q-learning is

β =

[
0.4 0
0 0.05

]
The objective of PID+RL control is make the transient

performance faster and less overshoot based on human-like
learning algorithm. The initial conditions of the positions and
velocities are zero. The desired joint positions are qd1 =
π/2[rad] and qd2 = π/2[rad]. The initial state error and the
velocity are

[
q̃1 q̃2 q̇1 q̇2

]
=

[
π/4 π/4 0 0

]
.

The whole control system is shown in Figure 2. The results
of the control law are shown in Figure 3. We can see that the
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Fig. 2. The PID+QL control
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Fig. 3. Comparison between different control schemes

PID+RL control has better performance compared to the other
controllers. The reinforcement learning uses 1000 episodes,
and each episode has 1000 iterations. The learning time is
about 120 seconds.

It is worth mentioning that the tuning of the gains is
obtained directly from Theorem 1, and the minimum value
of the eigenvalues is used. So the gain of the learning had
active participation compensating the dynamics of the robot.
The other controllers, such as the PID control, need more time
to convergence the desired reference, approximately 10 − 15
seconds.

To reduce the convergence time, we can only increase the
proportional and derived gains. But the transient performances
become bad. On the other hand, PD+RL and PID+RL do not
need big PD gains. The academic criterion widely used in the
robotic scientific community, to measure the performance of
a control algorithm, are the integral of absolute error (IAE):
AE =

∫∞
0
| q̃(t) | dt, and the integral of time for absolute

error (ITAE): ITAE =
∫∞
0
t | q̃(t) | dt. The comparison

results are shown in Table 2.

Table 2. Performance Index
IAE q1 ITAE q1 IAE q2 ITAE q2

PD 1.0066 1.4293 0.3378 0.4060
PID 0.7588 0.9459 0.2070 0.1735

PID+RL 0.1855 0.0367 0.0979 0.0188
PD+RL 0.2864 0.2115 0.1088 0.0216

V. CONCLUSION

In order to solve the problem of robot PID control, such
as bad transient performance and long convergence time,
this paper combine the PID control with the reinforcement
learning. The explicit tuning methods for the PID control and
the reinforcement learning compensator are proposed. Stability
analysis with Lyapunov method is given. The experimental
results show the validation of the PID+RL control.

VI. APPENDIX

Proof 2 (Proof of Theorem 1): To study the stability of the
origin of the state, we use the following candidate Lyapunov
function

V (ξ̃, q̃, q̇) = 1
2 q̇

TM(q)q̇ + 1
2 q̃

TKpq̃ + U(qd − q)− ku+
+q̃TG(qd) + q̃T ξ̃ + 3

2G(qd)
TK−1

p G(qd) +
α
2 ξ̃

TK−1
i ξ̃+

−αq̇TM(q)q̃ + α
2 q̃

T (Kd +Bf1) q̃ + αK−1
i

∫ t

0
Φ(q̇)dξ

where U(qd − q) denotes the potential energy of the robot,
ku = minq {U(qd − q)} , that is added so that V (0) = 0, and
α is a positive constant that satisfies well-defined conditions
for the candidate Lyapunov function to be positive definite. It
will be shown that the Lyapunov candidate function is defined
positive, V (ξ̃, q̃, q̇) ≥ 0. We divide the Lyapunov function into
four parts V (ξ̃, q̃, q̇) =

∑4
i=1 V (ξ̃, q̃, q̇)i :

V (ξ̃, q̃, q̇)1 = 1
6 q̃

TKpq̃ + q̃TG(qd) +
3
2G(qd)

TK−1
p G(qd)

V (ξ̃, q̃, q̇)2 = 1
6 q̃

TKpq̃ + q̃T ξ̃ + α
2 ξ̃

TK−1
i ξ̃

V (ξ̃, q̃, q̇)3 = 1
6 q̃

TKpq̃ − αq̇TM(q)q̃ + 1
2 q̇

TM(q)q̇

V (ξ̃, q̃, q̇)4 = U(qd − q)− ku + α
2 q̃

T (Kd +Bf1) q̃

+αK−1
i

∫ t

0
Φ(q̇)dξ̃

.

The first term V (ξ̃, q̃, q̇)1, we can easily see that if Kp > 0,
then V (ξ̃, q̃, q̇)1 is positive semi-definite.

V (ξ̃, q̃, q̇)1 =
1

2

[
q̃

G(qd)

] [
1
3Kp I
I 3K−1

p

] [
q̃

G(qd)

]
≥ 0.

The second term V (ξ̃, q̃, q̇)2, we obtain the first condition of
α for the function to be positive definite.

V (ξ̃, q̃, q̇)2 =
1

2

[
q̃

ξ̃

] [
1
3Kp I
I αK−1

i

] [
q̃

ξ̃

]
,

Using Sylvester’s criterion, to prove that the matrix is positive
definite, the determinant must be positive, so we have:

V (ξ̃, q̃, q̇)2 =
1

2

[
q̃

ξ̃

] [
1
3λmin(Kp) 1

1 αλmin(K
−1
i )

] [
q̃

ξ̃

]
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If
1
3λmin(Kp)αλmin(K

−1
i )− 1 ≥ 0

α
3 λmin(Kp)λmin(K

−1
i ) ≥ 1

α ≥ 3
λmin(Kp)λmin(K

−1
i )

then V (ξ̃, q̃, q̇)2 is positive definite. The third term V (ξ̃, q̃, q̇)3,
using Sylvester’s criterion again

V (ξ̃, q̃, q̇)3 =
1

2

[
q̃
q̇

] [
1
3λmin(Kp) −αλmax(M)
−αλmax(M) λmin(M)

] [
q̃
q̇

]
If 1

3λmin(Kp)λmin(M) − α2λmax(M)2 ≥ 0,
1
3λmin(Kp)λmin(M) ≥ α2λmax(M)2,

1
3λmin(Kp)λmin(M)

λmax(M)2 ≥

α2, and
√

1
3λmin(Kp)λmin(M)

λmax(M) ≥ α, then V (ξ̃, q̃, q̇)3 is
positive definite. It is easy to see that V (ξ̃, q̃, q̇)4 ≥ 0. So
V (ξ̃, q̃, q̇) ≥ 0. The condition for α is√

1
3λmin(Kp)λmin(M)

λmax(M)
≥ α ≥ 3

λmin(Kp)λmin(K
−1
i )

, (16)

We see that if Kp is big enough or Ki small enough, then
V (ξ̃, q̃, q̇) is semi-globally positive defined. The derivative in
time of V (ξ̃, q̃, q̇) along the closed loop system, and using

d

dt

∫ t

0

Φ(q̇)dξ̃ =
∂
∫ t

0
Φ(q̇)dξ̃

∂ξ̃

∂ξ̃

∂t
=

˙̃
ξTΦ(q̇)

We have

V̇ (ξ̃, q̃, q̇) = q̇TM(q)q̈ + 1
2 q̇

T Ṁ(q)q̇ + q̃TKp
˙̃q + q̇G(q)

+ ˙̃qTG(qd) + ˙̃qT ξ̃ + q̃T
˙̃
ξ + αξ̃TK−1

i
˙̃
ξ − α ˙̃qTM(q)q̇

−αq̃T Ṁ(q)q̇ − αq̃TM(q)q̈ + αq̃T (Kd +Bf1) ˙̃q

+α
˙̃
ξTK−1

i Φ(q̇)

Using the anti-symmetry property 1
2 q̇

T Ṁ(q)q̇− q̇TC(q, q̇)q̇ =
0, M(q̇) = C(q, q̇) + C(q, q̇)T , we have the following:

V̇ (ξ̃, q̃, q̇) = −q̇T [Kd − αM(q)] q̇ − q̃T [αKp −Ki]q̃
−αq̃TC(q, q̇)T q̇
−αq̃T [G(qd)−G(q)] + q̇T [β(−sign(q̇) + Γ)− F (q̇)]

Now the upper-bounds on the Lyapunov function is

−q̇T [Kd − αM(q)] q̇ ≤ −
[
λmin(Kd)− αλmax(M)

]
∥q̇∥22

−q̃T [αKp −Ki] q̃ ≤ −
[
αλmin(Kp)− λmax(Ki)

]
∥q̃∥22

We use the properties ∥C(x, y)z∥ ≤ kC1 ∥y∥ ∥z∥ and
∥G(qd)−G(q)∥ ≤ kg ∥x− y∥,

−αq̃TC(q, q̇)T q̇ ≤ αkC1 ∥q̃∥2 ∥q̇∥
2
2

−αq̃T [G(qd)−G(q)] ≤ αkg ∥q̃∥22
Using q̇T sign(q̇) = ∥q̇∥ ,

−q̇Tβsign(q̇) ≤ −λmin(β) ∥q̇∥ , q̇TΓ ≤ Γ ∥q̇∥
−q̇TF (q̇) ≤ λmax(Bf1) ∥q̇∥

After taking the upper bounds of the Lyapunov function,

V̇ (ξ̃, q̃, q̇) ≤ − [λmin(Kd)− αλmax(M)] ∥q̇∥22
− [αλmin(Kp)− λmax(Ki)] ∥q̃∥22
αkC1 ∥q̃∥2 ∥q̇∥

2
2 + αkg ∥q̃∥22 − λmin(β) ∥q̇∥1

+Γ ∥q̇∥1 + λmax(Bf1) ∥q̇∥1

,

The time derivative V̇ is

V̇ (ξ̃, q̃, q̇) ≤ − [λmin(Kd)− αλmax(M)− αkC1 ∥q̃∥2] ∥q̇∥
2
2

− [αλmin(Kp)− λmax(Ki)− αkg] ∥q̃∥22
− [λmin(β)− Γ− λmax(Bf1)] ∥q̇∥1

If we choose the upper bound of the position error as ∥q̃∥2

∥q̃∥2 ≤
λmax(M)

αkC1
,

Taking the first term of V̇ (ξ̃, q̃, q̇), the following relation is
obtained

λmin(Kd)− αλmax(M)− αkC1 ∥q̃∥2 > 0

Because ∥q̃∥2 ≤
λmax(M)
αkC1

and α =

√
1
3λmin(Kp)λmin(M)

λmax(M) ,

λmin(Kd)− αλmax(M)− αkC1
λmax(M)
αkC1

≥ 0,

λmin(Kd) ≥ η + λmax(M)

where η =
√

1
3λmin(Kp)λmin(M). Now we take the second

term of V̇ (ξ̃, q̃, q̇), and using α = 3
λmin(Kp)λmin(K

−1
i )

, so
αλmin(Kp)−λmax(Ki)−αkg ≥ 0, αλmin(Kp) ≥ λmax(Ki)+
αkg, then

λmin(Kp) ≥
3

2
kg

The minimum value for Ki√
1
3λmin(Kp)λmin(M(q))

λmax(M)
≥ α ≥ 3

λmin(Kp)λmin(K
−1
i )

Because λmin(K
−1
i ) = 1

λmax(Ki)

η
λmin(Kp)

3λmax(M)
≥ λmax(Ki)

Therefore, Kp,Kd Ki and β need (15), and then

V̇ (ξ̃, q̃, q̇) ≤ 0

So ξ̃, q̃, q̇ ∈ L∞ and
∞∫
t

(
λmin (A) ∥ξ̃∥2 + λmin (A) ∥q̃∥2 + λmin (A) ∥q̇∥2

)
dτ

≤ V − V∞ <∞

Thus, ξ̃t ∈ L2 ∩ L∞ and d
dt ξ̃ ∈ L∞, are also for q̃ and q̇. By

the Barbalat’s lemma, we can conclude that

lim
t→∞

ξ̃ = 0, lim
t→∞

q̃ = 0, lim
t→∞

q̇ = 0 (17)
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