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Abstract—Type-2 fuzzy systems have a great adoption in
different branches of engineering, due to the fact that this type
of fuzzy systems are very well suited to tasks related to nonlinear
systems. Data driven models like neural networks and fuzzy
systems have some disadvantages, such as the high and uncertain
dimensions and complex learning process. In this paper, we show
the advantages of type-2 fuzzy systems over type-1 fuzzy systems
in modeling nonlinear systems. We combine Type-2 Takagi-
Sugeno fuzzy model with the popular deep learning model, LSTM
(long-short term memory), to overcome the disadvantages fuzzy
model and neural network model. We propose a fast and stable
learning algorithm for this model. Comparisons with others
similar black-box and grey-box models are made, in order to
show the advantages of the type-2 fuzzy LSTM neural networks.

Index Terms—deep learning, LSTM, type-2 fuzzy systems,
modeling

I. INTRODUCTION

In recent years, intelligent systems have been widely recog-
nized, mainly artificial neural networks (NNs), fuzzy systems
(FSs) and the combination of both known as fuzzy neural
networks (FNNs). These intelligent systems have proven to
be very useful in tasks such as control and identification of
systems in various areas of engineering. This is supported by a
large body of work, as can be seen in [1]–[3]. A deep learning
model, named long-short term memory (LSTM), has been
developed [4]–[6]. It has a recurrent structure and is based on
information management through gates, these gates measure
the suitability of the data they receive as input data, the stored
data by the LSTM and the data generated by the LSTM
as result. LSTM networks overcome many disadvantages of
RNNs and they converge relatively faster [7]–[10].

FSs and FNNs have had a really extensive development,
since their structure is interpreted as a set of ”IF-THEN” rules
that are easy to understand. Their theory has arrived at the
distinction of two main types of FSs, type-1 FSs (T1FSs)
and type-2 FSs (T2FSs). T2FSs are considered extensions
of the T1FSs, because the membership value of a type-2
fuzzy set is a type-1 fuzzy number. The membership functions
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(MFs) of T1FSs are well determined, while the MFs of
T2FSs are fuzzy; there are infinitely type-1 MFs (T1MFs)
contained in the uncertainty footprint characteristic of type-
2 MFs (T2MFs). T2FSs have proven to be better at handling
data with uncertainties and noise, as evidenced by the work
discussed below. The structure of a FNN, which is known as a
self-evolving interval type-2 fuzzy neural network (ST2FNN),
is shown in [11]. The ST2FNN is constructed as a Takagi-
Sugeno-Kang (TSK) FS with an adaptive structure, where
the part of the antecedents in the fuzzy rules is defined with
T2MFs. In addition, the ST2FNN was used in the modeling of
nonlinear systems, adaptive noise cancelation and prediction
of chaotic signals, obtaining good results. A study presented
in [12] discusses the concept of type-2 fuzzy inference system
(FIS) using type-2 fuzzy sets and FNN based refinement. A
category of type-2 FNNs was developed based on type-2 fuzzy
set constructions with these fuzzy sets forming a collection of
IF-THEN rules.

Similar to the previous one, the functional-link based inter-
val type-2 compensatory fuzzy neural network is described in
[13]. It consists of six layers, which combines the compen-
satory fuzzy reasoning method, and the consequent part com-
bines the proposed functional link NN with interval weights.
For the identification of time-varying nonlinear systems, a
mutually recurrent interval type-2 neural fuzzy system was
proposed in [14]. This FS uses type-2 fuzzy sets to enhance
noise tolerance in the identification process. The IF part of
each fuzzy rule is defined using interval type-2 fuzzy sets,
and the THEN part is of the TSK type with interval weights.
To train T2FSs, a methodology based on sliding modes was
proposed in [15]. With this methodology, the parameters of a
type-2 FNN of the TSK form are adjusted, guaranteeing that
this process will be done in a fast and robust way compared
to other algorithms used in the learning of this type of IS.

An easy-to-interpret type-2 FNN was made in [16]. This net-
work, known as self-organizing interval type-2 fuzzy-neural-
network (ST2FNN), adjusts during its learning the size of its
structure as well as the parameters specific to this process.
In [17], a type-2 interval neural network based on long-short
memory term is proposed. By means of the interval type-
2 intuitionist set, the hesitation of reasoning is described
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and involved to determine the fuzzy rules in the inference
system, so the choice of fuzzy rules not only considers the
membership value but also the degree of non-membership.
Meanwhile, a type-2 FIS using genetic programming for time
series forecasting applications was developed in [18]. This
FS, called GPFIS-Forecast+, has been shown to be effective
in noisy applications. To overcome the difficulties in data
collection, the type-2 fuzzy time series forecasting model
(T2FTS) was proposed in [19]. The T2FTS was used to exploit
more information in time series forecasting. The concepts of
sliding window method (SWM) and fuzzy rule-based systems
(FRBS) were incorporated in the T2FTS to obtain forecast
values.

Accurate forecasting of renewable electricity generation
(REG) is essential in energy planning. In [20], the adaptive
neuro-fuzzy inference system (ANFIS) with fuzzy c-means
and T2MFs, and the NN of long-short term memory (LSTM),
were applied to perform short-term day-ahead REG forecasts.
Following the same theme, a nonlinear consequent part recur-
rent type-2 recurrent fuzzy system (NCPRT2FS) for modeling
renewable energy systems is presented in [21]. The FNN
is used for identifying and predicting the behavior of an
experimental array of solar cells and a wind turbine. Also,
optimization techniques were used, such as pruning of the
fuzzy rules and initial tuning of the MFs. A complex problem
such as the COVID-19 pandemic is characterized by high
levels of uncertainty in its behavior. A deep interval type-2
fuzzy LSTM model for the prediction of COVID-19 incidence,
including new cases, recovery cases and mortality rate in short
and long time series is presented in [22]. This IS was evaluated
on real data sets produced by the WHO on major high-risk
countries.

The application of type-2 fuzzy neural networks (T2FNNs)
is reviewed in [23]. Different T2FNNs that have been used
for system identification are discussed, their disadvantages and
advantages are described, as well as their effectiveness in dif-
ferent applications. The previous works show the advantages
of using T2FSs over T1FSs, as well as the value of the former
in the estimation of nonlinear models. Motivated by the above,
in this paper we modified the FNN shown in [24] and [25] to
boost its performance. The FNN is based on a T1FS for the
estimation of nonlinear systems, obtaining favorable results
with it, so adapting its structure to a T2FS will improve its
performance. In the Fig. 1, we show a Gaussian T2MF with
uncertain standard deviation, which is upper bounded by a
T1MF (UMF) and lower bounded by another T1MF (LMF)
and the gray area is the footprint of uncertainty (FOU). The
T2FSs cope with the uncertainties of a system from the fuzzy
rules that define it. Unlike the T1MFs present in the T1FSs, the
T2MFs of the T2FSs are themselves fuzzy because they are
defined in their respective FOU. There are an infinite T1MFs
in a FOU, which is why T2FSs have the ability to work with
data that have uncertainties and noise in a more efficient way.

We combine the FNN structure known as a type-2
Takagi-Sugeno fuzzy neural network with long-short memory
term cells, and propose a new model Type-2 fuzzy LSTM

(T2LSTM) and a training algorithm for it. Then, we com-
pare it with the type-1 Takagi-Sugeno fuzzy neural network
with long-short memory term cells (T1LSTM). T1LSTM and
T2LSTM were tested in the identification and control of
nonlinear systems, in order to observe the advantages of the
T2FS implementation.

II. T2LSTM STRUCTURE

The T2LSTM is obtained from the NARMA model of a
nonlinear system:

y (k) = φ [Ur (k)] (1)
Ur (k) = [(k − 1) , · · · , y (k − ny) , u (k) , · · ·

· · · , u (k − nu)]
T
= [ur1 · · ·urm ]

T

where y(k) is the variable of interest of the system under
study (output signal), φ (·) is an unknown nonlinear difference
equation, Ur (k) is the state vector with u (k) and y (k) with
the former as the input signal for the system; ny indicates the
number of the delayed output signal, nu indicates the number
of the delayed input signal, and m indicates the number of
elements urm in Ur (k).

To model (1), we used fuzzy IF-THEN rules. For the p-th
rule it has:

Rp : IF ur1 (k) IS A1p & ur2 (k) IS A2p & · · ·
· · · & urm (k) IS Ajp, THEN hp (k) = ϱp (k)

(2)

where hp (k) is an estimation to the function ϱp(k) that
represents the consequent part of each fuzzy rule. The sets
Ajp, with j = 1 . . . κ, are the fuzzy sets for the fuzzification
(using κ fuzzy sets) of each urm in (2).

The T2MFs associated with each Ajp are of the form shown
in Fig. 1 and are described as follows, first the UMF associate
to each Ajp:

µAjp,urm
(k) = exp

(
− (urm (k)− ςjp)

2

2νjp

)
(3)

and the LMF:

µ
Ajp,urm

(k) = exp

(
− (urm (k)− ςjp)

2

2νjp

)
(4)

in these Gaussian functions, the center is ςjp ∈ R and the
widths are νjp, νjp ∈ R+. For the estimation of (1), the
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Fig. 1: Type-2 Gaussian MF, bounded by UMF and LMF, with
uncertain standard deviation.
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contribution of each input element to the premise part of a
fuzzy rule in (2) is obtained by the T-norm:

zp (k) =

κ∏
j=1

µAjp,urm
(k)

zp (k) =

κ∏
j=1

µ
Ajp,urm

(k)

assuming j = m.
The vectorial representation of the value of each element of

(3) and (4) in each fuzzy set is:

ζj = exp

[
(Ur (k)− χj)

2 ⊗
(
−1

2
Υj

)]
(5)

ζ
j
= exp

[
(Ur (k)− χj)

2 ⊗
(
−1

2
Υj

)]
(6)

with χj ,ΥjΥj ∈ Rm as the center and width vectors for
ζj , ζj ∈ Rm, respectively.

The vectors ζj , ζj represent the value of each element of
urm(k) in a fuzzy set Aj , and ⊗ is the operator for the
element to element product in vectors. This representation will
be useful for the adjustment of the parameters of the FNN.

The estimation of (1) is obtained by the defuzzification of
the FS (2) with p rules:

ŷ (k) =

∑p
n=1 znhn(k)∑p

n=1 zn
+ (1− β)

∑p
n=1 znhn(k)∑p

n=1 zn

=

p∑
n=1

ẑnhn (k) + (1− β)

p∑
n=1

ẑnhn (k) (7)

where:

ẑp = zp/ (z1 + z2 + · · ·+ zn)

ẑp = zp/ (z1 + z2 + · · ·+ zn)

In (7), the premise part can be represented in a vectorial
way as ZF , ZF ∈ Rp, where all the elements of this new
vector are the organized multiplications as was explained in
(3) and (4). Also, each element of ZF and ZF is normalized.
Acording with the theory of T2FSs, the design parameter, β,
weights the sharing of the lower and the upper firing levels of
each fired rule, this parameter can be a constant and in this
paper we take β = 0.5.

For multiple estimations, the elements of ZF and ZF can
be organized in such a way that the premise parts repeats for
every estimation, hence the consequent parts are the only ones
that are different for several estimation in a same system.

The hn(k) elements in (7) are calculate by LSTM cells. The
cells that we used in the T2LSTM have several parts, which

are describe as follows:

F (k) = σ
(
W fUr (k) + V fH (k − 1)

)
(8)

I (k) = σ
(
W iUr (k) + V iH (k − 1)

)
(9)

S (k) = ψ (W sUr (k) + V sH (k − 1)) (10)
C (k) = F (k)⊗ C (k − 1) + I (k)⊗ S (k) (11)
O (k) = σ (W oUr (k) + V oH (k − 1)) (12)
H (k) = O (k)⊗ ψ (C (k)) (13)

where F (k), I (k), S (k), C (k), O (k) and H (k) ∈ Rp are
the fitness of the internal state, the fitness of the internal input,
the internal input, the internal state, the fitness of the output,
and he output of the cells, respectively. The synaptic weights
are: W f , W i, W s and W o ∈ Rp×m; V f , V i, V s and V o ∈
Rp×p as diagonal matrices or V f , V i, V s and V o ∈ Rp as
vectors, according to the need. The functions σ(·) and ψ(·)
are the sigmoid and hyperbolic tangent functions, respectively,
Ur (k) ∈ Rm is the input in (1).

From (7), the output of the FS is

ŷ (k) =
[
ZF + (1− β)ZF

]
H (k) (14)

where H(k) = [h1 (k) · · ·hp (k)]T corresponds to the conse-
quent parts and ZF , ZF ∈ Rn are the elements of the premise
parts of the rules described by (2).

The cells, as well as the number of rules, are defined as
p = κm in the case of one estimation; for several estimations
it has p = l(κm) where l is the number of estimations, thus
ŷ ∈ Rl, as was described for (7). The complete structure of
the T2LSTM is contained in (5)-(14).

By applying the function approximation theories of FSs, (1)
can be represented as:

y (k) =
[
ZF (W ∗) + · · ·

· · ·+ (1− β)ZF (W ∗)]H (W ∗) + µ (k) (15)

where W ∗ corresponds to the unknown weights which can
minimize the unmodeled dynamic µ (k).

We assume that (1) is bounded-input and bounded-output
(BIBO) stable, i.e., y(k) and Ur(k) in (1) are bounded. By
the bound of the membership functions (3) and (4), µ (k) in
(15) is bounded.

Remark 1: It can be noted that the main difference between
the T2LSTM and the T1LSTM lies in (14), since the latter
equation is defined for a T1LSTM as follows:

ŷ (k) = ZFH (k)

for the T1FS, the premise part of the fuzzy rules, ZF , is
simpler than in the T2FS case. This largely due to the use of
T2MFs instead of T1MFs, which as explained above, offers
higher robustness. But on the other hand, it increases the
computational complexity as shown later in the paper.

III. TRAINING OF THE T2LSTM

To train the FNN we employed a variation of the back
propagation through time (BPTT) algorithm, this training can
be used online and offline. We utilized a narrow “window” of
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data to apply the BPTT, which considers the values generated
by the FNN in the current iteration and its immediately
preceding iteration, values generated by the FNN in older
iterations are forgotten. The algorithm is defined by:

W (k + 1) =W (k) + ηW∆W (k) + αW∆W (k − 1) (16)

where W is any synaptic parameter array of the FNN, ∆W is
the weight adjustment, ηW ∈ (0, 1] is the learning rate, αW ∈
(0, 1] is the momentum term for the training, and ηW > αW .

In (16), ηW determines the amount that each weight
changes, while αW helps to stabilize the modification con-
sidering the past weight adjustment.

Also, for the training is necessary to consider the modeling
error between (15) and (14):

e (k) = ŷ (k)− y (k) (17)

and:
ξ (k) = 1

2e
T (k) e (k)

E (k) = 1
N

∑N
k=1 ξ (k)

(18)

where ξ (k) is the instant error energy, E (k) is the total energy
during the whole processes, and N is the total number of
iterations.

The objective of the T2LSTM always will be minW (k) ξ (k).
Then, the adjustment of each element of ∆W is defined as
follows:

∆wij (k) =
∂ξ (k)

∂wij (k)
(19)

The modification (19) can be obtained by the application of
the the chain rule and the signal flow of the FNN and it can
be organized into an array like in (16). By the considerations
made before, the adjustment of the parameters of the FNN
described in (5)-(14) can be easy to obtain.

For example, if it is considered a FNN with m = 1, l = 1
and κ > 1, the gradient (19) for each element of W i in the
consequent part is:

∆wi
p =

∂ξ (k)

∂e (k)
· ∂e (k)
∂ŷ (k)

· ∂ŷ (k)
∂hp (k)

· ∂hp (k)
∂ε1

· · ·

· · · · ∂ε1
∂cp (k)

· ∂cp
∂ip (k)

· ∂ip (k)
∂wi

p (k)

with ε1 = ψ (cp (k)). This in a vectorial form:

∆W i (k) = (σ̇(W iUr (k) + V iH (k − 1))⊗Di)Ur (k)

Di = S (k)⊗ ψ̇ (C (k))⊗
(
Z

T

F + · · ·
· · ·+ (1 + β)ZT

F

)
e (k)⊗O (k)

On the other hand, for the premise part, the fit of each
element of χj in (5) and (6) is:

∆χj =
∂ξ (k)

∂e (k)
· ∂e (k)
∂ŷ (k)

· ∂ŷ (k)
∂zFj

· ∂zFj

∂ζj (k)
·
∂ζj (k)

∂χj

+
∂ξ (k)

∂e (k)
· ∂e (k)
∂ŷ (k)

· ∂ŷ (k)
∂zFj

·
∂zFj

∂ζ
j
(k)

·
∂ζ

j
(k)

∂χj
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Fig. 2: Nonlinear system identification with tne FNNs: (a)
T1TSFNNLSTMC, (b) T2TSFNNLSTMC, (c) Performance
comparison.

and in a vectorial form:

∆χj = (Ur (k)− χj)⊗Υj ⊗Dχ ⊗ e (k)H (k) + · · ·
· · ·+ 1

1+β (Ur (k)− χj)⊗Υj ⊗Dχ ⊗ e (k)H (k)

Dχ = exp
[
(Ur (k)− χj)

2 ⊗
(
− 1

2Υj

)]
Dχ = exp

[
(Ur (k)− χj)

2 ⊗
(
− 1

2Υj

)]

Similar calculations can be done for the adjustment of the
other parameters of the FNN.

IV. COMPARISONS

We employed two exercises to compare the new T2LSTM
with a similar T1LSTM, taking into account the remark 1. We
talk about the performance of the T2FS, the exercises exhibit
the advantages of the T2FS over the T1FS. Both exercises were
handled as applications in real time under the same conditions
for the algorithms.
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A. System identification

The first exercise consist on a model generation for a
nonlinear system, which is defined as:

y(k + 1) = 0.72y(k) + 0.025y(k − 1)u(k − 1)+

+ 0.01u2(k − 2) + 0.2u(k − 3) (20)

u(k) =



sin

(
πk

25

)
, k ≤ 250

1, 250 < k ≤ 500
−1, 500 < k ≤ 750

0.3 sin

(
πk

25

)
+ 0.1 sin

(
πk

32

)
+

+0.6 sin

(
πk

10

)
, 750 < k

with y (0) = 0, u (0) = 0, and a sampling time of T = 1s.
So, (20) was solved for 1, 200s and the system was sampled,

creating the vector y(k) with k = 1, . . . , 1, 201. We took the
values of y(k) to define Ur(k) = [y(k − 4), y(−8)]T , which
was used to make the ŷ(k) estimate. We employed the first
601 iterations to train the FNNs, meanwhile the rest data were
used for testing the algorithms.

We set p = 9 fuzzy rules for the FNNs (m = 2, κ = 3,
l = 1). Here, the modeling error E (k) at the end of each
phase is defined as in (18) and it represents the performance
of the algorithms, a low value indicates a better performance.
We used (17) for the training of the FNNs because is the error
that we want to minimize.

The comparison results are shown in the Table I and the
Fig.2, the latter has three parts: (a) shows the system output
and the output of the T1LSTM, (b) shows the system output
and the output of the T2LSTM, and (c) shows a performance
comparison between the T1LSTM and the T2LSTM.

It can be seen that both FNNs have similar behavior,
however, the T2LSTM learned the system dynamics faster
compared to the T1LSTM, which is why the former has a
smaller modeling error or better performance during the whole
process.

TABLE I: Performance of the FNNs during the identification
(×10−2)

System Training Testing
T1TSFNNLSTMC 4.80 3.78
T2TSFNNLSTMC 1.19 1.62

B. System control

For the second exercise we chose the control of a nonlinear
system, which is defined as:

y((k + 1)T ) =
a(kT )y(kT )

1 + y2(kT )
+ θ(kT ) + u(kT ) (21)

y(0) = 0, u(kT ) = r(kT )− ŷ(kT )

a(k) =

 1, kT ≤ 250

sin

(
kT

10

)
, 250 < kT
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Fig. 3: Nonlinear system control with tne FNNs: (a)
T1TSFNNLSTMC, (b) T2TSFNNLSTMC, (c) Performance
comparison.

So, the task consists of generating a model ŷ(kT ) that
compensates the system such that the output of the system
y(kT ) is equal to the reference r(kT ). This reference is
defined as follows:

r(kT ) =



0.5 sin
(
2πkT
60

)
, kT ≤ 200

0.5, 200 < kT ≤ 220
−0.5, 220 < kT ≤ 240
0.5, 240 < kT ≤ 260
−0.5, 260 < kT ≤ 280
0.5, 280 < kT ≤ 300

0.4 sin
(
2πkT
20

)
, kT > 300

(22)

Similar to the past exercise, (21) was solved for 500s and
the system was sampled considering a sample period of time
T = 0.1s, obtaining k = 1, . . . , 5, 001. The input vector for
the FNNs was defined as Ur(k) = [ec(k− 1)T, ec(k− 5)T ]T ,
where:

ec(kT ) = r(kT )− y(kT ) (23)

To simulate perturbations in (21), random values in the
range of [−0.1, 0.1] were added at 320 < kT ≤ 380 to the
process and these perturbations were represented by θ(k) in
(21).
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We established p = 9 fuzzy rules for the FNNs (m = 2,
κ = 3, l = 1). The control error (23) is defined as in (18)
and it represents the performance of the algorithms, a low
value indicates a better performance. Also, we use (23) for
the training of the FNNs because is the error that we want to
minimize.

We work the system in the following way: we train the
algorithms to compensate (21) with (23) during 100s, ob-
taining 1, 001 iterations for the training process, a testing is
made immediately after the training with the same input signal
during 400s (4,001 more iterations).

In the Table II are shown the control errors, according to
(18), obtained for several events during the whole process.
The Fig. 3 has three parts: (a) shows the system output and
the output of the T1LSTM, (b) shows the system output and
the output of the T2LSTM, and (c) shows a performance
comparison between the T1LSTM and the T2LSTM.

It can be seen that both FNNs have similar behavior, buth
the T2LSTM compensate the system faster than the T1LSTM,
which is why the former has a better performance during the
whole process. In addition, the T2LSTM allows (21) to have
better tracking of (22), since this FS offer more robust results.

TABLE II: Performance of the FNNs during the control
(×10−2)

Event T1TSFNNLSTMC T2TSFNNLSTMC
End of training 1.11 0.27
Change in a(k) 0.75 0.34

Start of θ(k) 0.68 0.36
End of θ(k) 0.65 0.36

End of the process 0.54 0.31

As shown in the figures and tables above, the new T2LSTM
offers very good results for the identification and control of
nonlinear systems. In addition, it is more robust and adaptable
than the previous T1LSTM.

V. CONCLUSIONS

In this paper, we use the advantages of type-2 fuzzy
system and LSTM neural networks to design a novel model
for nonlinear system modeling. The main advantage is this
model can reduce the modeling error compared with the other
fuzzy neural networks. However, the cost of the computa-
tional complexity of the algorithm is more than the others.
This disadvantage can be reduced by current computational
technology, which allows the easy application of this model.
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