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Abstract—This paper presents the design of an intelligent
controller for uncertain discrete-time nonlinear systems. The
proposed controller is resilient to external unknown disturbances
as well as state and input uncertainties, even though the model
of the system is considered unknown. An intelligent controller
is designed for an unknown discrete-time nonlinear system, this
controller is model-free and it is based on sensor measurements
and therefore including unknown system dynamics, actuator
nonlinearities, measurement errors, noise, uncertainties, external
disturbances and other phenomena associated to real-world
applications. Then, using the neural model, a backstepping
controller is designed to ensure a resilient performance. Finally,
real-time results are included to demonstrate the effectiveness of
the proposed approach using a three-phase induction motor.

Index Terms—Uncertain discrete-time nonlinear system, Intel-
ligent control, Neural control, Resilience, Experimental results,
Induction motor

I. INTRODUCTION

The term ”Intelligent Control” is often used lightly and
inaccurately to gain recognition or publicity. Intelligent con-
trol is essentially the convergence of two well-established
disciplines, control theory and artificial intelligence. Control
theory is a well-known methodology that is characterized by
a strict mathematical approach that has a long and fascinat-
ing history [1]. On the other hand, artificial intelligence is
considered a relatively young discipline that has proven to be
an excellent technique that deals with real-world problems in
an unconventional way, imitating the characteristics of bio-
logical intelligence. By combining the previously mentioned
methodologies intelligent control is produced which, according
to [2], can be defined as a control technique that imitates
a human who has the experience to generate an appropriate
control action to a particular system. In contrast, conventional
control algorithms match observed or measured information
with a control knowledge-base to generate the control action
(controller output or control input to the system).

The authors, thank the support of CONAHCYT Mexico, through Projects
FOP16-2021-01-319619 and FOP16-2021-01-319608.

By definition, intelligent control requires at least one artifi-
cial intelligence technique to be incorporated in the controller
design. One of the most well-known intelligent controllers is
the neural control which utilizes artificial neural networks to
solve complex control problems. Direct and indirect neural
control are the two main types of methodologies used in
intelligent control design as described in [3]. In direct neural
control, as its name implies, the artificial neural network
implements the system controller directly in order to solve
a regulation or reference tracking problem. Whereas Indirect
neural control uses the artificial neural network to design a
mathematical model for the system and subsequently uses
that model to design an intelligent controller based on any
preferred control algorithm. Both approaches have advantages
and disadvantages depending on the application [3] and both
can be designed based on measured data in a model-free
approach.

Therefore, in this paper, we propose the use of a direct
neural controller for a type of discrete-time nonlinear systems
with a data-based model-free approach resilient to input and
state uncertainties in the presence of sensor errors, external
disturbances, noise, actuator nonlinearities and unknown dy-
namics. It is important to note that the controller described in
this paper is designed with a backstepping technique.

The main contributions of this work can be summarized as
follows:

1) A resilient controller for discrete-time unknown nonlin-
ear systems with a data-based model-free approach that
does not need a previously known mathematical model
or an explicit estimator design of the system.

2) A biologically-inspired direct neural network control
algorithm with a simple design and low computational
complexity that directly implements the control law.

3) A real-time implementation using a rotatory induction
motor test bench with output trajectory tracking profiles
designed to stress the motor performance.

The rest of this paper is organized as follows: Section 2,
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includes the controller design methodology. Section 3, presents
the application of the proposed scheme to a three-phase induc-
tion motor. Section 4, includes the real-time implementation
for a three-phase induction motor. Section 5 presents the
conclusions.

II. CONTROLLER DESIGN

Consider a discrete-time nonlinear system in the general
form:

X (k + 1) = F (X (k) , u (k)) (1)

it is possible to describe the system with input and state
variable uncertainties as:

X (k) = χ (k) + ∆x (k)

u (k) = υ (k) + ∆u (k)

where ∆x (k) and ∆u (k) represent state and input uncertain-
ties, respectively, which are considered unknown and bounded.
It is important to consider that the controller is designed using
the neural backsteppig technique.

The mathematical model of nonlinear systems can be writ-
ten in, or transformed into, a special state-form named block
strict feedback form [5], as follows:

xi (k + 1) = f i
(
xi (k)

)
+ gi

(
xi (k)

)
xi+1 (k) + di (k)

xr (k + 1) = fr (X (k)) + gr (X (k))u (k) + dr (k)

y (k) = x1 (k) (2)

where X (k) =
[
x1⊤ (k) , · · · , xr⊤ (k)

]⊤
represents the sys-

tem state, xi (k) =
[
x1⊤, x2⊤, · · · , xi⊤

]⊤
, xi ∈ ℜni (i =

1, 2, · · · , r−1), r ≥ 2, r is the block number, u (k) ∈ ℜm are
the system inputs, y (k) ∈ ℜm is the system output, di ∈ ℜni

is the disturbance vector. Moreover, a constant di exists such
that ∥di (k)∥ ≤ di , for 0 < k <∞.

System (2) can be considered as a one-step ahead predictor,
which can then be transformed into an equivalent maximum r-
step ahead predictor, which can predict the future state values
x1 (k + r) , x2 (k + r − 1) , · · · , xr (k + 1) , it is then possible
to avoid the causality contradiction if the controller is designed
based on this r-step ahead predictor by backstepping [6], [8].
Next, the system (2) can be rewritten as

x1 (k + r) = F 1 (k) +G1 (k)x2 (k + r − 1)

+ d1 (k + r)

...
xr−1 (k + 2) = F r−1 (k) +Gr−1 (k)xr (k + 1)

+ dr−1 (k + 2)

xr (k + 1) = fr (k) + gr (k)u (k) + dr (k)

y (k) = x1 (k) (3)

Now, the control objective is to design u (k) to drive the
system output y (k) to track a desired reference signal yd (k) .
When, (3) is defined, the well-known backstepping technique

can be applied [5]. For system (3) , it is possible to define the
desired virtual controls

(
αj∗ (k) , j = 1, · · · , r − 1

)
and the

ideal practical control (u∗ (k)) as follows:

α1∗ (k) ≜ x2 (k) = φ1
(
x1 (k) , yd (k + r)

)
α2∗ (k) ≜ x3 (k) = φ2

(
x2 (k) , α1∗ (k)

)
...

αr−1∗ (k) ≜ xr (k) = φr−1
(
xr−1 (k) , αr−2∗ (k)

)
u∗ (k) = φr

(
X (k) , αr−1∗ (k)

)
y (k) = x1 (k) (4)

where φj (1 ≤ j ≤ r) are smooth nonlinear functions. Then,
the desired virtual controls αj∗ (k) and the ideal control u∗ (k)
will force the output y (k) to follow the desired signal yd (k)
when the exact system model is known and does not present
unknown disturbances nor uncertainties. It is important to note
that the previous conditions are considered ideal conditions
which cannot be met in real-world applications, hence, neural
networks will be used to approximate both, desired virtual
controls and desired practical controls, when these ideal con-
ditions are not satisfied.

A. Neural backstepping controller

Consider a HONN described by:

ϕ (w, z) = w⊤S (z)

S (z) =
[
s⊤1 (z) , s⊤2 (z) , · · · , s⊤m (z)

]
(5)

si (z) =

[ ∏
j∈I1

[s (zj)]
dj(i1) · · ·

∏
j∈Im

[s (zj)]
dj(im)

]⊤
i = 1, 2, · · · , L

where z = [z1, z2, · · · , zq]⊤ ∈ Ωz ⊂ ℜq are positive integers,
q denotes the input vector dimension, L denotes the number of
HONN weights, ϕ ∈ ℜm, {I1, I2, · · · , IL} is a collection of
non-ordered subsets of {1, 2, · · · , q} , S (z) ∈ ℜL×m, dj (ij)
are non-negative integers, w ∈ ℜL is a vector which contains
HONN weights, and s (zj) is chosen as an hyperbolic tangent
function:

s (zj) =
ezj − e−zj

ezj + e−zj
(6)

Figure 1 depicts the modelling scheme proposed in this
paper, it is important to note that the neural network models
the entire system, including: state uncertainties, input uncer-
tainties, unmodelled dynamics, external disturbances, sensor
errors, noise, actuator limitations, among others and they are
represented by x and u, affected, respectively, by ∆x and ∆u

which represent state and input uncertainties that, as in (1),
are considered unknown and bounded.

For a desired function υ∗ (z) ∈ ℜm, the existence of
weight vectors w∗

j and w∗
r is assumed such that virtual and

practical controllers can be approximated by ideal HONNs on
a compact set Ωz ⊂ ℜq

αj∗ (k) = w∗⊤
j Sj (zj) + ϵz (7)

υ∗ (z) = w∗⊤
r Sr (zr) + ϵz (8)
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Fig. 1. Direct neural control scheme for unknown discrete-time nonlinear systems.

where j = 1, · · · , r − 1, r is the number of blocks as in
(2) and ϵz ∈ ℜm is the HONN approximation error vector,
considered bounded [9]; note that ∥ϵz∥ can be reduced by
increasing the number of the adjustable weights. The ideal
weight vector w∗ is an artificial quantity required only for
analytical purposes [7], [10], which is considered unknown
and constant w∗

l , whose estimate is wl ∈ ℜL. Hence, it is
possible to define:

w̃l (k) = wl (k)− w∗
l (9)

as the estimation error, with l = 1, · · · , r.
The training goal is to find the optimal weight values which

minimize the prediction error. The modified Extended Kalman
Filter (EKF) algorithm is defined by:

wl (k + 1) = wl (k) + ηlKl (k) el (k) (10)
Kl (k) = Pl (k)Hl (k)Ml (k)

Ml (k) =
[
Rl (k) +H

⊤

l (k)Pl (k)Hl (k)
]−1

Pl (k + 1) = Pl (k)−Kl (k)H
⊺ (k)Pl (k) +Ql (k)

where Pl ∈ ℜLl×Ll is the prediction error associated covari-
ance matrix, wl ∈ ℜLl is the weight (state) vector, Ll is the
respective number of neural network weights, r is the number
of blocks, Kl ∈ ℜLl is the Kalman gain vector, Ql ∈ ℜLl×Ll

is the state noise associated covariance matrix, Rl ∈ ℜ is the

measurement noise associated covariance, and Hl is defined
as:

Hl (k) =

[
∂ν̂l (k)

∂wl (k)

]
(11)

where ν̂l (k) ∈ ℜnl is the HONN function approximation.
Usually, Pi and Qi are initialized as diagonal matrices, with
entries Pi (0) and Qi (0), respectively.

Now, the backstepping controller (4) is approximated by
a HONN, without the causality contradiction [6]. Let us
approximate the virtual controls and practical control by the
following HONN (j = 1, · · · , r − 1):

αj (k) = wj⊤Sj (zj (k))

υ (k) = wr⊤Sr (zr (k)) (12)

with

z1 (k) =
[
x1 (k) , yd (k + r)

]⊤
(13)

zj (k) =
[
xj (k) , αj−1 (k)

]⊤
(14)

zr (k) =
[
X (k) , αr−1 (k)

]⊤
(15)
(16)

with j = 1, · · · , r − 1, where wj ∈ ℜLj are the estimates of
ideal constant weights wl∗ (l = 1, · · · , r) and Sl ∈ ℜLl×nl .
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The HONN (12) is trained with an EKF (10), with

e1 (k) = yd (k)− y (k)

e2 (k) = x2 (k)− α1 (k)

...
er (k) = xr (k)− αr−1 (k) (17)

The previous statement implies that the proposed controller
allows us to obtain bounded errors for output trajectory track-
ing and weights estimation. The norm of the bounded error
for output trajectory tracking depends on the uncertainties
and disturbances affecting the system and its measurements.
For the weight estimations bounded errors, the bound of the
weights estimation depends on the inability of the neural
network to accurately approximate the dynamics of the system
with the available information [3]. It is well known that the
previously mentioned error can be minimized with an infinite
number of connections [10].

It is important to note, that this controller is model-free and
the control law is defined by a HONN trained with measured
data, therefore such measurements contain uncertainties and
noise. In a similar way, the control applied to the system is
not necessarily equal to the one calculated by the algorithm,
and therefore suffers from uncertainties, noise and actuator
inaccuracies, all these phenomena are to be compensated
online by the controller for accurate trajectory tracking of the
system.

III. APPLICATION TO A THREE-PHASE INDUCTION MOTOR

This work focuses on controlling rotor speed and flux
magnitude for trajectory tracking of time-varying reference
signals, this type of control is of significance for different
applications, especially for mechatronic and transportation
systems [4], [11]–[16]. Mathematical models are a central
tool to design modern control techniques, however, an ac-
curate model for complex systems is not always available.
Therefore, this work proposes a discrete-time resilient neural
controller for a three-phase induction motor using a HONN
trained with an extended Kalman filter to compute the control
law. The controller solves the trajectory tracking problem for
time-varying signals with input and state uncertainties under
unknown external disturbances, and under the assumption that
the induction motor model is unknown. The neural controller
is designed using the neural backstepping technique previously
described.

It is well known that electromechanical systems can be
written in the BSFF (3) [11]–[14], with r = 2, then. Then,
it is possible to design a neural controller (12) trained with an
EKF-based algorithm (10). The following state variables are
defined

x1 (k) =

[
ω (k)
Ψ (k)

]
; x2 (k) =

[
iα (k)
iβ (k)

]
u (k) =

[
uα (k)
uβ (k)

]
; yd (k) =

[
ωd (k)
Ψd (k)

]
y (k) = x1 (k) (18)

where Ψ(k) = ψα2

(k)+ψβ2

(k) is the rotor flux magnitude,
and ωd (k) and Ψd (k) are the reference signals. The control
objective is to drive the output y (k) to follow the time-varying
reference signal yd (k). Using (18), the induction motor can
be described in two blocks in the BSFF:

x1 (k + 1) = f1
(
x1 (k)

)
+ g1

(
x1 (k)

)
x2 (k) + d1 (k)

x2 (k + 1) = f2
(
x2 (k)

)
+ g2

(
x2 (k)

)
u (k)

where f1
(
x1 (k)

)
, g1 (x1 (k)), f2 (x2 (k)) and g2 (x2 (k)) are

considered unknown for this application, and d1 (k) is the
unknown bounded disturbance applied as external load torque.
Now we use the HONN to approximate the desired virtual
controls and the ideal practical controls described as:

α1∗ (k) ≜ x2 (k) = φ1
(
x1 (k) , yd (k + 2)

)
υ∗ (k) = φ2

(
x1 (k) , x2 (k) , α1∗ (k)

)
y (k) = x1 (k) (19)

Then, the HONN proposed for this application is designed as
follows:

α1 (k) = w
⊤

1 S1

(
z1 (k)

)
υ (k) = w

⊤

2 S2

(
z2 (k)

)
(20)

with

z1 (k) =
[
x1 (k) , yd (k + 2)

]⊤
(21)

z2 (k) =
[
x1 (k) , x2 (k) , α1 (k)

]⊤
(22)

HONN weights are updated using the EKF as follows:

wi (k + 1) = wi (k) + ηiKi (k) ei (k) (23)
Ki (k) = Pi (k)Hi (k)Mi (k)

Mi (k) =
[
Ri (k) +H

⊤

i (k)Pi (k)Hi (k)
]−1

Pi (k + 1) = Pi (k)−Ki (k)H
⊤

i (k)Pi (k) +Qi (k)

with i = 1, 2 and

e1 (k) = yd (k)− y (k)

e2 (k) = x2 (k)− α1 (k)

The training is performed online, using a series-parallel
configuration. All the HONN state variables are initialized
randomly and associated covariances matrices are initial-
ized as diagonal ones with nonzero elements selected as:
P1 (0) = P2 (0) = 10000; Q1 (0) = Q2 (0) = 5000 and
R1 (0) = R2 (0) = 10000 .

1610



EXTERNAL POWER 

SUPPLY

IGBT MODULE

AUTOTRANSFORMER

DSPACE 1104 

BOARD CONECTOR

THREE PHASE 

INDUCTION MOTOR

CURRENT 

SENSORS
TTL -CMOS

CONVERTER

ENCODER

COMPUTER WITH 

DSPACE SOFTWARE 

AND DSPACE 1104 

BOARD

Fig. 2. Three-phase induction motor test bench.

IV. REAL-TIME IMPLEMENTATION

The experiments are performed using an induction motor
test bench that includes a PC for supervision; a pulse-width
modulated (PWM) three-phase IGBT inverter module as the
power stage; a dSPACE DS1104 board (dSPACE is a regis-
tered trademark of dSPACE GmbH, Germany) that allows the
applications designed in this work for data acquisition and
control to be downloaded directly from Simulink (Matlab and
Simulink are registered trademarks of MathWorks Inc., USA);
and a three-phase induction motor as the plant to be controlled
with the following characteristics: 220 V, 60 Hz, 0.19 kW,
1660 rpm, and 1.3 A [12]. The picture of the test bench is
shown in Figure 2 and which shows the entire test bench
used for experiments. The motor is controlled by the neural
scheme explained in Section 2 with an unknown load torque as
disturbance, as well as input uncertainties, state uncertainties
and noise.

Figure 3 presents the trajectory tracking for a time-varying
speed reference signal, it is important to note that during
8.4s ≤ t ≤ 8.9s a heavy load variation is applied that stops
the rotor movement, however, the disturbance is compensated
immediately resulting in a fast recovery of the trajectory
tracking performance of the system which shows the resilience
capability of the proposed controller. In Figure 6 the norm
of online NN weights evolution is presented. Finally, Figure
7 shows the rotor speed trajectory tracking for a trapezoidal
rotor speed trapezoidal profile. This profile is of importance
because it is designed online. This is similar to a user defining
a required speed for a desired task in real-time.

V. CONCLUSIONS

This work presents a direct neural controller for unknown
discrete-time nonlinear systems with input and state uncertain-
ties. The proposed controller has been experimentally tested
with a three-phase induction motor to show that the trajectory
tracking errors are small enough for time-varying reference
signals. Despite all this, the proposed neural control scheme
exhibits an excellent real-time performance with a sample
time equal to 0.5ms. As seen from the results, the tracking
of the reference signal is effectively achieved even though a
sinusoidal and trapezoidal waveform represents a difficult task
for induction motors.
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