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Deep learning and explainable artificial intelligence for improving
specificity and detecting metabolic patterns in newborn screening
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Abstract— In medical applications, artificial intelligence (AI)
methods have achieved considerable progress in various areas
and also in newborn screening programs. In particular, inter-
pretable AI methods have been applied in newborn screening
aiming to increase analytical specificity and predictive power
of screening results. In this study, we apply ensemble and
deep learning methods in newborn screening for isovaleric
aciduria (IVA) on a data set containing more than 2 million
newborns. We show that these methods can reduce the number
of newborns falsely classified with IVA by 100% with Extreme
Gradient Boosting (XGBoost), by 78.94% with Random Forest
(RF), and by 78.94% with Feed Forward Neural Networks
(FFNN) compared to currently applied newborn screening
methods. Furthermore, we show how explainable AI (XAI)
methods can be used to interpret these black-box classifica-
tion results and further apply them for potential biomarker
discovery. The XAI methods reveal that besides the biomarker
isovaleryl carnitine (C5), the birth year and the amino acid
tryptophan (Trp) are influential in reducing the false positive
rate. By this, we show that ensemble and deep learning could
be highly beneficial in newborn screening and could have a
major impact on newborns and their families, as it reduces
false positive screening results and guides new directions for
future research in this field.

I. INTRODUCTION

In the medical domain, ensemble and deep learning meth-
ods have been successfully applied in various areas [1], [2]
and especially in disease prediction tasks such as diabetes
prediction [3] and prediction of colorectal cancer among
patients [4]. Newborn screening programs act worldwide
to identify pre-symptomatic newborns suffering from severe
rare metabolic diseases by analyzing different metabolite
concentrations in the newborns’ blood samples [5]. Due to
the low prevalence of screened diseases, these results have to
be highly accurate, aiming at high sensitivity and specificity,
to reliably identify all newborns with a disease and reduce the
number of false positives. Identification by newborn screen-
ing allows early, ideally presymptomatic start of treatment
of affected newborns. Isovaleric aciduria (IVA) is an organic
aciduria that is included in newborn screening disease panels.
In its severest form, affected individuals present with life-
threatening (neonatal) metabolic compensations [6]. In 2005,
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IVA became a target disease in German regular newborn
screening which enabled earlier specialized treatment and,
thus, reduced neonatal mortality of affected individuals [7].
However, the newborn screening for IVA is hampered by an
increasing number of false positives due to the increasing
use of pivmecillinam, an antibiotic used in urinary tract
infections in pregnant women [8].

Recently, different machine learning (ML) methods have
been applied to newborn screening data to improve the
classification accuracy by reducing false positive rates and
identifying so far unknown metabolic patterns by relying on
complex feature combinations instead of predefined single
cut-off values [9]. However, deep learning methods such
as neural networks (NN) and extreme gradient boosting
(XGBoost) which are often the best-performing methods
for classification, have only rarely been used [10]. Their
high complexity and corresponding lack of interpretability
often prevent their usage in newborn screening. Hence, new
computational approaches to improve newborn screening
and interpret black-box deep learning models are needed to
reduce the newborns’ and families’ burden of false positives
including over-treatment, and gain insights into biomarker
patterns.

II. RELATED WORK

Several ML methods have been applied in newborn screen-
ing, as a recent systematic literature review shows [10].
Among the previously applied ML methods, logistic re-
gression (LR) and support vector machine showed good
performance for newborn screening classification in sin-
gle and comparative studies [10]. Specially for the new-
born screening conditions phenylketonuria [11], [12], [13],
methylmalonic aciduria [11], [14], [9] and medium-chain
acyl-CoA dehydrogenase deficiency [11], [15], [16] various
studies showed improved classification results. A recent
study on ML for IVA developed a new method based on
LR and linear discriminant analysis (LDA) which reduced
the false positive rate by nearly 70% and did not investigate
the application of ensemble or deep learning techniques
for IVA [17]. Until now, Feed Forward Neural Networks
(FFNN) [18], [11], boosting methods [14], and Random
Forest (RF) [19], [9] are only used in some comparative
studies for other newborn screening conditions. In addition,
pattern recognition techniques are applied in newborn screen-
ing to detect patterns within the metabolite concentrations.
For instance, built-in decision functions [18], [20], [15], [19]
and discriminatory thresholds [18], [11] were used to identify
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important biomarkers from the ML classification. For non-
interpretable ML methods, model agnostic approaches such
as mean decrease accuracy were applied to identify the con-
tribution of individual biomarkers to the overall classification
result [21], [9]. Recently, eXplainable Artificial Intelligence
(XAI) techniques have been applied to provide human-
understandable interpretations of deep learning algorithms in
the medical domain [22]. For instance, SHapley Additive ex-
Planations (SHAP) was used for melanoma detection in skin
imaging [23], or the SurvLIME was developed for explaining
machine learning survival models [24]. However, also in
newborn screening, XAl techniques seem to be a promising
approach as they could enable a better understanding of
the underlying biochemical mechanisms and support the
application of deep learning techniques for disease diagnosis.

Our Contribution Here, we show the application of
ensemble and deep learning methods to help to improve
newborn screening for IVA and how XAI techniques can be
utilized to improve interpretability for clinicians and reveal
influential biomarkers to guide future research directions in
this field.

III. MATERIAL AND METHODS

This section presents the medical data sets, experimental
setup, ensemble, and deep learning methods, and details
on applying XAI methods for interpretability and pattern
recognition.

A. Data sets

The applied anonymized data set in this study was re-
trieved from the NBS laboratory at Heidelberg University
Hospital (UKHD), where about 20% of all newborns born
in Germany are screened [25]. The UKHD data protection
officer checked that the anonymized set of NBS variables
is in accordance with the European General data protection
regulation (GDPR). The whole data set contained NBS
profiles of 2,237,142 newborns born between 2002 and
2021 containing 53 numerical and categorical features. These
included 48 metabolite concentrations and five additional
variables such as sex, birth weight, age at blood sample, age
at sample arrival, and gestational age for each newborn. The
confirmed diagnosis was set as the target variable. The ex-
tracted data set was cleaned by removing missing values and
not interpretable entries, to ensure high data quality. After
consultation with clinical experts, the following ranges were
defined to exclude NBS profiles with implausible values:
Birth weight: 1000 — 6000 g; gestational age: 32 — 42 weeks,
age at sampling: 36 — 120 hours, age at sample arrival: 0 —20
days and metabolite concentrations: 0 — 50,000pmol/1 [17].
These data cleaning steps resulted in a highly imbalanced
data set, which we name “full data set” in this study, with
2,106,090 NBS profiles, including only 28 confirmed IVA
cases. Additionally, we extracted a subset of the full data
set, which we name “diagnosis subset” containing the 28
confirmed IVA cases and all 103 healthy newborns with
initial IVA positive screening results, i.e., identified as false
positives. Hence, an ML classification on the diagnosis

subset can simulate the scenario, where the algorithm is
only applied after the traditional newborn screening to reduce
false positive screening results further. In order to be able to
compare our results to the traditional newborn screening we
do not apply sampling algorithms [11], [14] or reduced data
sets to overcome data imbalance [15] since these change the
sick-to-control ratio within the data sets.

B. Experimental setup

The experimental setup describes how algorithms were
developed and optimized. All experiments were performed
on an Nvidia GeForce RTX 3090 Ti with the deep learning
platform Torch, deep learning backend Torch-gpu, Cuda
version 12.0, and CuDNN version 11.7. as well as the Python
library scikit-learn [26]. Both data sets are subject to data
imbalance, where the true positives are in the minority. To
overcome this data imbalance, we used a grid search on
the model parameters of the methods to find the optimal
hyperparameters. The minority class weight parameter w
can be used to penalize a miss-classification of a true positive
in the cross entropy loss function. The data sets are randomly
split 65-15-20 into training, validation, and test set, using a
stratified splitting method to ensure an appropriate proportion
of IVA samples in each data set. The models are then
evaluated on the number of false positives (FP) and false
negatives (FN) in each data set as well as the mean sensitivity
S, and specificity S, from ten times repeated 5-fold cross-
validation (CV),
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with true negatives (TN), and true positives (TP).
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C. Ensemble and deep learning models

The sub-field of ensemble and deep learning models
describes complex algorithms that learn from large amounts
of data and can make well-founded decisions. In this study,
we focus on FFNN, XGBoost, and RF which achieved
good results for classification on tabular data [27]. FFNNs
try to mimic the signaling processes in the human brain
and exclusively pass information forward through multilayer
perceptrons and were applied in this study, as the newborn
screening profiles are independent of each other [18], [11].
The grid search for hyperparameter optimization of the
FFNNs resulted in two different architectures for the two
data sets, Table I. It shows that especially the class weight
parameters differ between the two architectures, as the data

TABLE I
OVERVIEW OF HYPERPARAMETERS FOR FFNN ARCHITECTURES FOR
DIAGNOSIS SUBSET AND FULL DATA SET WITH FOUR LAYERS EACH.

DIAGNOSIS SUBSET FULL DATA
Class weight wy 0.64 0.520833
Class weight wy 2.34 37608.75
Neurons [100,53,6,2] [256,128,64,2]
Optimizer SGD RSMEprop
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imbalance is much larger in the full data set than in the
diagnosis subset. RF is an ensemble method combining
several randomly initialized decision trees to one powerful
classifier [9]. A grid search determined 50 estimators, a
maximal tree depth of 4 and class weights wg = 1 and
wi = 10 as optimal hyperparameters for the diagnosis subset.
Whereas for the full data set, 61 estimators, a maximal tree
depth of 3, as well as wg = 1 and w; = 50,000, were optimal.
XGBoost is a gradient-boosting library for reducing bias and
variance where each weak learner tries to correct the model
predictions of its predecessors [28]. We used the gbtree
booster and optimized the numbers of estimators, tree depth,
and scale positive weight to account for the imbalanced data.
For both data sets, 16 estimators and a tree depth of 3
features were optimal, and a scaled weight wy = 1 for the
diagnosis subset and wy; = 6 for the full data set were the
best hyperparameters.

D. XAI methods for interpretability

Highly complex ML methods such as ensemble learners
or NNs are not inherently interpretable, which leads to
the unavoidable trade-off between the accuracy and inter-
pretability of a model’s output. Hence, simpler explanation
models are desired to achieve accurate results and an intuitive
understanding of the complex classifiers output [29]. We used
the SHAP values [29] to quantify the interactions between
features that lead to a prediction by fairly distributing the
payout among the features. These values can then be inter-
preted as which features were most influential for a certain
classification outcome.

E. Pattern recognition with LIME

Another commonly applied XAI method is the Local Inter-
pretable Model-agnostic Explanations (LIME) that explains
the predictions of any classifier by learning an interpretable
model locally around the prediction [30]. It can be applied
to tabular data, such as newborn screening data, where the
prediction explanation is given as importance scores for
each feature. By this, we can gain insights into the model’s
decision-making process for classifying one newborn. We
employed LIME using a novel configuration to interpret the
classification model and gain insights into the underlying
metabolic patterns evident in the concentrations of metabo-
lites. Specifically, we applied a cumulative approach using
LIME to analyze the group of true positive predictions, as
identifying similarities among these individuals enables us to
gain insights into metabolic patterns within newborns with
confirmed IVA. For every newborn i from a group of n
newborns, we obtained a LIME score [;; for every feature j.
We analyzed this with two cumulative LIME scores, which
add the positive L;r and negative contributions L separately
for every feature j,

L}»L = Zl,’j,
i

L; = Zl,’j,
i

i= {iZ 1,...,n|l,~j > 0},

i= {i: 1,...7}’l|l,'j < O}

Here, a high L;r score indicates that feature j makes a
positive disease prediction more likely, whereas a low Ly
indicates the opposite.

IV. RESULTS

In this section, we present the results of the ensemble and
deep learning classification for newborn screening for IVA,
as well as the XAI results and the patterns identified by the
LIME-based pattern recognition scheme.

A. Ensemble and deep learning classification

Based on the presented experimental setup, we trained
and optimized the classification methods to improve new-
born screening for IVA on both data sets and show the
classification results in Table II. On the diagnosis subset,
the FFNN, RF, and XGBoost classification enable a huge
reduction of false positives on the training, validation, and
test set compared to 103 false positives in traditional newborn
screening. XGBoost reduces the false positive rate of the
test set by 100%, FFNN by 89.47%, and RF by 78.94%,
Table II. All three methods wrongly classify at least one
newborn with IVA as insusceptible, whereas the traditional
newborn screening has a sensitivity of 100%. The cross-
validation results for the ensemble learners show high mean
sensitivity 94.49% for XGB and 92.89% for RF as well
as high mean specificity 97.38% for XGB and 92.65% for
RFE. However, the FFNN shows less reliable results in cross-
validation, decreasing the mean sensitivity to 43.36% and
specificity to 71.24%, Table II.

On the full data set containing more than 2 million
newborns, all three methods decrease the number of false
positives, XGBoost decreasing the false positive rate of the
test set by 94.44%, FFNN by 77.78%, and RF by 100%.
This results in an increase of the specificity from 99.995%
in traditional newborn screening to 99.999% with XGBoost,
FFNN, and RF classification, Table II. However, on the
full data set, all methods show an increased number of
false negative predictions, Table II. Similar to the results
on the diagnosis subset, the ensemble methods demonstrate
higher mean sensitivity, 93.73% for XGB and 79.46% for
RF compared to the FFNN, 65.36%. Overall, the ensemble
methods XGBoost and RF obtain good classification results
more reliably than FFNN, and on both data sets, XGBoost

TABLE I
CLASSIFICATION RESULTS ON TRAINING, VALIDATION, AND TEST SET.

Method | Train Validation CV [ Test

| FN FP | FN FP | S.(%) S,(%) | FN FP
DIAGNOSIS SUBSET
Traditional 0 72 0 12 100 0 0 19
XGBoost 0 0 1 3 94491 97.382 1 0
FFNN 0 0 1 3 43.357  71.237 1 2
RF 0 3 2 0 92.885 92.648 1 4
FULL DATA SET
Traditional | 0 67 0 18 100 99.995 | 0 18
XGBoost 0 0 1 1 93.727 99.999 | 2 1
FFNN 2 7 1 0 65.357 99.999 | 2 4
RF 0 3 4 1 79.455 99.999 | 4 0

1568



DIAGNOSIS SUBSET

(a) Newborns with suspected IVA
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SHAP values for the diagnosis subset (a), (b) and the full data set (c)-(e) for the groups of healthy newborns, newborns with suspected IVA, and

newborns with confirmed IVA presenting the five highest features. The data points are color-coded depending on the feature value, where blue data points are
low feature values, and red data points are high feature values. Abbreviations: C14:1 - tetradecenoylcarnitine, C140OH - 3-OH-tetradecanoylcarnitine, C18:2
- octadecadienoylcarnitin, C8 - octanoylcarnitine, C8:1 - octenoylcarnitine, C5 - isovalerylcarnitine, MeGlut - 3-methylglutarylcarnitine, Trp - tryptophan,

Year - birth year.

improves the mean sensitivity and specificity more than RF,
therefore XGBoost’s decision-making will be examined in
the following sections.

B. Interpretation of XGBoost classification with SHAP

As newborn screening is a highly sensitive, population-
based preventive program, the interpretation and explainabil-
ity of ensemble and deep learning classification procedures
are important to optimize the specificity and predictive power
of screening results. We applied a SHAP tree explainer
method on XGBoost trained on the two data sets, full data
and diagnosis subset. We divided the data sets into the groups
of healthy newborns, newborns with suspected IVA, and
newborns with confirmed IVA to gain insights into the dif-
ferences and similarities of these groups, Fig. 1. Traditional
newborn screening only considers the primary marker C5 for
IVA, whereas the ensemble model considers all metabolite
concentrations. For the diagnosis subset, feature C5 only
has the second highest influence, whereas the impact of
tryptophan (Trp) is the most important. In Fig. 1 (a), a
lower amount of Trp coincides with a positive impact on the
model output, meaning a higher likeliness to be classified
as newborn with IVA and a higher amount of Trp relates
to a negative impact on the model output and, hence, more
likely to be classified as a healthy newborn. Furthermore, low
feature values of C5 impact the model’s output in a negative
direction and make a healthy classification more likely, which
coincides with a high value of C5 being a primary marker
for IVA. Fig. 1 (c) shows that the XGBoost classifier on
the full data set accounts for C5 being the primary marker
for IVA as the value of this group strongly influences the

model to classify the newborn as normal. Whereas for
the group of suspected positive newborns and newborns
with confirmed IVA, we see a pattern for newborns with
higher C5 values influencing a positive disease prediction.
Furthermore, the feature birth year is strongly negatively
correlated with higher SHAP values, which coincides with
the birth year being highly correlated with the increasing use
of pivmecillinam since 2016 [8], leading to an increase in
false-positive screening results. Interestingly, Trp is one of
the top influential features for newborns with suspected and
confirmed IVA but not for healthy newborns. Moreover, M3-
methylglutarylcarnitine (MeGlut) is influential for all three
groups of the full data set.

C. Pattern recognition with LIME

Besides trying to interpret the ML models using XAI, we
aim at gaining insight into underlying metabolic patterns.
In Fig. 2 (a), the LIME score for an individual newborn
with IVA, which was correctly classified by the XGB model
trained on the full data set, is shown. For this patient, C5 and
birth year are the most influential features for the correct pre-
diction of IVA. To further understand the classifications and
interpret the XGBoost prediction, we provide the cumulative
LIME score for interpreting the data subgroups. Hence, we
investigate the five metabolites j with the most significant
difference between negative and positive cumulative LIME
scores L and L;-r for all newborns with IVA that XGBoost
correctly classified, Fig. 2 (b), (c). Similar to the SHAP
evaluation in the diagnosis subset, the metabolite Trp shows
a high cumulative positive LIME score of 18.39 and no
cumulative negative LIME score, which marks this feature
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Fig. 2. LIME scores for an individual newborn (a) for ten highest features
and cumulative LIME scores for a group of correctly classified newborns
with IVA in the diagnosis subset (b) and the full data set (c) divided into
positive and negative LIME scores for five highest features. Abbreviations:
17p - 17-hydroxyprogesterone, C14:1 - tetradecenoylcarnitine, C140OH -
3-OH-tetradecanoylcarnitine, C160H - 3-OH-hexadecanoylcarnitine, C18:2
- octadecadienoylcarnitin, C3 - propionylcarnitine, C5 - isovalerylcar-
nitine, C8 - octanoylcarnitine, C8:1 - octenoylcarnitine, MeGlut - 3-
methylglutarylcarnitine, Phe - phenylalanine, SSW - gestational age, Trp
- tryptophan, TSH - thyroid-stimulating hormone, Year - birth year.

as highly influential for the correct classification as newborn
with confirmed IVA, Fig. 2 (b). All other metabolites show
far lower cumulative LIME scores. For the full data set,
both the metabolite C5 (7.36) and the feature birth year
(6.7) show high cumulative positive LIME scores and zero
negative LIME score, while all other features have smaller
values, Fig. 2 (c).

V. SUMMARY AND DISCUSSION

Newborn screening programs are essential for identifying
newborns with treatable rare diseases worldwide. In this
study, we show that ensemble and deep learning methods can
be applied to improve the specificity of newborn screening
for IVA, which is hampered in Germany by an increasing
number of false positive screening results [8]. In particular,
on the diagnosis subset, which simulates applying ML as
an additional step after the traditional newborn screening,
the number of newborns falsely classified as newborns with
IVA on the test set can be reduced by 100% with XGBoost,
89.47% with FFNN and 78.94% with RF, Table II. How-
ever, when evaluating the cross-validation results, XGBoost
proved to be the more robust method obtaining S, =93.727%
sensitivity and S, = 99.999% specificity on the full data set
compared to a sensitivity of 100% and specificity of 99.995%
with traditional newborn screening and sensitivity of 100%
and specificity of 99.998% with LR [17]. As these methods
are not inherently interpretable, we apply XAI techniques
SHAP and LIME on XGBoost to interpret the results and

identify underlying biochemical patterns. The evaluation of
the SHAP values confirmed biological knowledge, such as
highlighting C5, the known primary marker of standard
newborn screening for IVA, as a significant feature for the
full data set [6], [7]. Also, birth year was identified as
an influential feature, which is explained by the increasing
number of false positives in recent years due to the use
of pivmecillinam as an antibiotic in pregnant women since
its authorization in Germany in 2016 [8]. Furthermore, the
cumulative LIME evaluation identified the amino acid Trp
as an influencing feature for the diagnosis subset, especially
for the correct classification of former false positives and
hence, for improving the specificity. However, a biochemical
explanation for this revelation is difficult and should be
investigated by clinical experts and evaluated on further IVA
data sets in future studies. These results could be a direction
for further medical research on IVA.

Besides improving specificity, sensitivity is an important
measure in newborn screening. However, although XGBoost
achieved high sensitivity values, it did not obtain 100%
sensitivity in cross-validation such as traditional screening
and classical ML [17], which could be due to the low number
of IVA cases in the data set. Hence, more IVA data from dif-
ferent newborn screening centers should be included in future
studies to ensure higher positive sample sizes and validate the
identified patterns. Furthermore, newborn screening for other
rare diseases could also benefit from an application of ML to
improve specificity, as data is collected for decades for most
conditions. Overall, the reduction of false-positive newborn
screening results has several positive effects as human and
material resources could be reduced, hard- and software costs
are low, and newborn screening laboratories would have less
effort to reporting and tracking the confirmatory diagnostics.
Therefore, this approach should be evaluated in daily practice
in parallel to traditional newborn screening to assess the
possible cost-effectiveness. Besides the performance, the
interpretability of ML methods becomes an important topic,
as it is unclear how black-box methods can be applied in the
clinical context and how these methods may be controlled
and accepted by patients and society [31]. A more frequent
application of XAI methods for newborn screening could
enhance the understanding and interpretability of ensemble
and deep learning methods, leading to a higher acceptance
of these.

In summary, our study demonstrates that the utilization
of ensemble and deep learning techniques leads to increased
specificity in IVA classification within the presented frame-
work. Moreover, the outcomes obtained through XAl provide
promising insights into result interpretation, offering novel
prospects for future investigations in newborn screening
research.
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