
Explainable Artificial Intelligence for Improving a Session-Based
Malware Traffic Classification with Deep Learning

Stefan Machmeier1, Maximilian Hoecker1 and Vincent Heuveline1

Abstract— In network security, applying deep learning meth-
ods to detect network traffic anomalies has achieved great
results with various network traffic representations. A possible
representation is the transformation of raw network com-
munication to images to extract valuable information from
the unmanageable amount of network traffic by applying
representation learning. However, since deep learning models
can result in black boxes for users, it is interesting to understand
what valuable information is learned from network communi-
cation converted into images. This paper elaborates on that
question using explainable artificial intelligence (XAI) methods
to identify network packets that most influence the prediction
and verify that packets in a malware communication containing
malicious payloads have high influence on the prediction. We
inspect the Grad-CAM and visualize the Integrated Gradients
of Xception and VGG-19 model and investigate the attention
heat maps of our Vision Transformer (ViT) model. In addi-
tion, we present a novel transformation of sessions to a new
image representation to expand the informativeness of network
communication. For multiclass classification, our best model
Xception achieves an accuracy of 97.95%, whereas, for binary
classification, Xception and VGG-19 achieve well above 99.50%.
Our ViT model achieves a significantly lower performance with
95.86% for multiclass and 99.36% for binary classification. In
particular, computing centers could benefit by examining their
inbound and outbound traffic to detect malicious behaviors
ahead of time.

I. INTRODUCTION

Security operators deal with network traffic alerts daily,
while adversarial actors try to bypass their counterparts,
leaving minor traces. Automatically processing network ac-
tivities could aid operators in unveiling malicious behaviors
in the unmanageable amount of packets; however, it is a
thin line between flooding them with false-positive alerts
and not detecting security threats. Therefore, previous studies
proposed representation learning methods to learn features
from raw traffic data and classify them for malware detection
[1]–[7], traffic identification [5], [6], [8], and traffic catego-
rization [8]. One emerging approach is converting network
traffic to images of various sizes, lengths, and dimensions.
Recent studies have provided preliminary insights and shown
good classification performance using deep learning, where
researchers converted each packet into an image and used
it as an input feature to train their models [1]–[6], [8].
Thus, new deep learning approaches could help security
operation centers (SOCs) to detect malicious actors and
minimize potential harm when systems are affected. Unlike

*This work was not supported by any organization
1Engineering Mathematics and Computing Lab,

Heidelberg University, 69120 Heidelberg, Germany
<firstname.lastname>@uni-heidelberg.de

inspecting each packet individually like common deep packet
inspection (DPI) does, the field of machine learning in net-
work traffic classification is capable of processing complete
network communication without limitations such as limited
expressiveness of format rules [6]. For specific attacks such
as Christmas tree attacks [9], DPI tools such as nDPI [10] can
reliably detect such packets. One crucial aspect is labeling
network traffic with tools of unknown reliability [11]. For
instance, traffic classification solutions that propose high
classification results using a private ground truth labeled with
techniques of unknown reliability are challenging to compare
and validate. Hence, an image representation of raw network
traffic could help to overcome these obstacles. The question
remains: What does a model learn from raw traffic data? For
instance, classification tasks on the CIFAR-10 data set differ
from images of network packets. For CIFAR-10 images,
a human eye can see clear borders and separate objects
from each other, whereas looking closely at raw traffic data
converted to an image, a human eye cannot comprehend the
traffic behind it. Therefore, it is interesting to interpret trained
models to see if they can comprehend the traffic in the image.

In this study, we apply explainable artificial intelligence
(XAI) methods to understand deep learning models for net-
work traffic classification and verify that malicious packets
within a session correspond to the prediction. We investigate
the Integrated Gradients [12], and visualize the Grad-CAM
[13] of VGG-19 and Xception to see the area that most
influences the prediction. For the Vision Transformer (ViT)
model, we visualize the attention heat maps to identify
packets with high attention weights that affect the model’s
outcome [14], [15]. In addition, we propose a novel method
to classify malicious network traffic by converting network
session traffic into images.

II. RELATED WORK

Applying deep learning to network traffic detection and
classification is a widely used approach [1]. In 2005, Kim
and Reddy [2], [3] generated images of network traffic to
enable a real-time analysis to detect network anomalies like
Denial of Services (DoS) or Worms spreading throughout a
network. The authors retrieved the normalized packet counts
in the address domain and converted them to pixel intensity.
All four bytes of the IP address were converted into a
(16 × 16) square for the source and destination address.
They investigated the impact of sampling rate and retained
discrete cosine transform (DCT) coefficients for detecting
and identifying malicious network behavior [2], [3].

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 850

Wang et al. [4] gave the first insights into convolutional
neural network (CNN) performances by classifying malware
traffic with raw traffic data. They created a data set that con-
tains network traffic of ten malware and ten benign classes,
where the malware traffic is provided by the Stratosphere
Lab at Czech Technical University in 2016 [16]. The benign
traffic was created using a network traffic simulation. They
suggested using a session representation and splitting traffic
into discrete units, where each unit serves as one data point
to be classified by the CNN [4]. To assure same input size,
the authors trimmed each flow to 728 bytes with an image
dimension of (28× 28) pixel.

Lim et al. [5], [6] suggested using only payload data of
network traffic. The authors hypothesized that header data
could bias the model and hinder generalization if the data set
was from controlled environments. Instead of cutting flows
directly to a specific size, they cut each packet to a specific
size and then use a fixed number N of the first packets of
each flow to ensure an equal image size when flows are
used as input data. They applied deep neural networks to
the problem and achieved the best results using the largest
packet size and the highest number of packets in a flow.

Based on this image representation, Xu et al. [8] classified
Android malware and presented Falcon, a framework to
detect and categorize malware. The authors used the Android
Malware CICMal2017 data set [17], trimmed each flow to
the same length of 728 bytes, and represented them in a
2D grayscale image. Unlike Lim et al. [5], [6], they used
a bi-directional Long Short-Term Memory (LSTM) model
for feature extraction. They passed them to a classifier to
detect or categorize the flow. The authors evaluated various
classifiers and claimed that Random Forest (RF) yields the
best performance.

Cao et al. [1] proposed a new traffic feature representation
method in which each session is transformed into a unified
image where all headers, all source, and destination payload
form one channel in the image, respectively. In order to
achieve a unified representation, they used a Markov tran-
sition matrix. To cope with data imbalance, the authors used
the feature images to train a Generative Adversarial Network
(GAN) model with a sample filter only to add generated
samples close to the distribution of the real samples. The
authors trained their model on different Malware Capture
Facility data sets [16] and yielded a detection accuracy of
up to 99%. For imbalanced classes, they improved up to 6%
in classification accuracy.

Interpreting deep learning models for malware classifica-
tion based on bi-directional network communication, also
referred to as a session, transformed into an image was not
investigated until now. Therefore, we apply XAI methods
to understand the influence of packets of our new image
representation for network sessions on the model’s outcome.

III. METHODOLOGY

A sequence of packets at an observation point summarizes
to a flow with the condition that each packet is sent from
a particular source IP address to a particular destination IP

Port
80

IP
192.168.176.133

Port
2563

IP
192.168.176.124

Flow

Port
80

IP
192.168.176.133

Port
2563

IP
192.168.176.124

Session
(b)

(a)

Fig. 1. Comparison of the 5-tuple definition of a flow (a) and session (b).
As depicted, a flow contains only unidirectional traffic, whereas a session
is a bidirectional flow.

address without a statically bound transport connection [18]–
[21]. The 5-tuple consisting of source IP address, destination
IP address, source port, destination port, and transport pro-
tocol defines the network frame [21], [22]. A set of raw
packets P = {p1, p2, . . . , pn} at an observation point is
defined by the 5-tuple xi, byte size bi ∈ [0,∞], and the
transmission time ti ∈ [0,∞] bounded by the maximum
packet transmission time, where pi = {xi, bi, ti} defines
a packet [8], [21], [22]. All traced packets P = {p1 =
{x1, b1, t1}, . . . , pn = {xn, bn, tn}} define a set of flows due
to established connections, and thus a flow f = {x, b, dt, t}
is a subset of raw packets P with f ⊆ P , where packets
are order by time t1 < t2 < · · · < tn, with flow duration
dt = tn − t1, and starting transmission t = t1 [4], [21]. A
session is a bi-directional flow including packets with the
same IP addresses and ports for either source or destination
[22]. Fig. 1 depicts the 5-tuple definition.

A. Packet Transformation

Unlike Machmeier et al. [21], we transform network
session into images with a fixed size. Each packet pi of a
network trace with P = {p1, p2, . . . , pn} packets has a byte
stream of bi = {bi1, bi2, . . . , bid} bytes that is transformed into
an image patch ti ∈ RH×W×C , where (H,W) is the height
and width of the image patch, ui = {bi1, bi2, . . . , biH×W }
is the total number of bytes that are converted to an image
representation, C is the number of image channels, and d is
the total byte length [23]. As the length of packets varies, we
have to add 0x00 bytes until the condition H×W > d is sat-
isfied, whereas for d > H×W , we cut off packets to match
the condition. In order to obtain a quadratic representation an
image patch satisfies (H,W) ∈ N and H = W . A grayscale
pixel value in the image patch represents a byte with 8
bits [21]. Next, we arrange all patches t = {t1, t2, . . . , tB}
into the final image resolution x ∈ RH×L×W×L×C , where
(H,W) is the resolution of each image patch, L is the
number of columns and rows of the final image, C is
the number of channels. Like each image patch, the final
image resolution satisfies the condition (H,W,L) ∈ N and
H = W . Fig. 2 depicts the transformation process. After
transforming each packet’s byte stream to an array of pixel
values, we append each array to the maximum column. If the
number of image patches is less than B < L × L, we add
empty packets p = {0x001, 0x002, 0x00H×W } and convert

851

...

...

...

Packet

...

...

Bytes

0 0 0 0

W

H

Integer

Filling

Image

Fig. 2. Overview of the transformation process of network traces. Each
packet’s byte stream is transformed into an image patch and tiled along the
final image. If the packet contains less than the minimum number of bytes,
we pad it with black pixels. The same principle applies to the final image
to enforce a quadratic representation.

them to image patches until the remaining space is filled.
This pads the remaining parts of the final image with black
pixels. Note that this is only necessary if a session contains
less than (H ×W) packets. Similar to previous studies, we
randomize all IP and MAC addresses in our data sets to
remove bias during training [4]–[6], [21]. For reproducible
images, our network conversion is publicly available1 [21].

B. Data set

We use the USTC-TFC2016 data set created and used
by Wang et al. [4]. It consists of ten benign classes and
ten malware classes. Benign refers to normal non-malicious
network traffic. The majority of the malware classes use
botnets. As we look into the network traces, we see that
malicious classes contain UDP traffic used for peer-to-peer
bot communication, whereas TCP is used for tunneling. The
HTTP protocol on the application layer is primarily used to
fetch suspicious data from servers outside of the network.
It is important to mention that we filtered ARP, DHCP, and
DHCPv6 packets of both classes to remove packets that occur
in the local network of the test environment and are thus
not relevant for benign and malware behavior. Since most
network traces have large PCAP files with many sessions, we
split all data into our predefined 5-tuple sessions. Next, we
create our data set with final image size (128× 128), where
(8× 8) packets have a dimension of (16× 16) = 256 bytes.
The minimum session size is two packets; hence, we filter
any session with less than two packets, losing the FaceTime
class due to unidirectional UDP traffic. We use a 70/20/10
random split of our data set for the train, validation, and test
set. In order to deal with the imbalance of data, we add class
weights to the loss function to penalize wrong predictions of
minority classes [24].

1https://github.com/stefanDeveloper/heiFIP

C. Deep Learning Models

We rely on the well-established models VGG-19 [25] and
Xception [26]. In addition, due to our new image represen-
tation consisting of patches tiled into quadratic images, we
investigate the performance of a ViT [23] model for binary
and multiclass classification. All models have an input size
of (128×128×1). The patch size of our ViT model overlays
the packet size of (16× 16) with 6 layers and 4 heads with
a projection dimension of 64.

D. Explainable AI for Interpretability

Aiding the prediction with a visual explanation helps users
to make deep learning models more transparent and ex-
plainable. The Gradient-weighted Class Activation Mapping
(Grad-CAM) [13] utilizes the gradient to produce a coarse
localization map on the last convolutional layer that high-
lights the important regions of an image for the prediction.
The highlighted areas indicate a high score for classes. An
advantage to previous approaches, such as CAM [27], is the
application to various CNN models such as Xception, and
VGG-19.

Integrated Gradients [12] attribute the prediction to its
input features by adding the two fundamental axioms Im-
plementation Invariance and Sensitivity. Sensitivity refers to
the influence of an input feature on the prediction. If an
input feature changes the outcome of a classification, the
attribution should not be equal to 0. The fundamental of
Implementation Invariance means that the attribution of input
features should not depend on the design and structure of the
network. Attributing input features based on their influence
on the classification outcome helps users understand their
model.

Inspecting the attention weights of ViT models helps users
to gain insights into the prediction [14], [15]. The attention
weights are computed using a self-attention mechanism,
where all tokens of each image patch are appended to
get a weighted sum of their representation. Visualizing the
attention weights in a heat map shows the input feature with
the highest influence on the prediction.

E. XAI for Malware Traffic Classification

Applying DL approaches to detect malicious activities
in networks has been incorporated in Intrusion Detection
Systems (IDSs) to automate the process of finding intrusions
[28]. Zebin et al. [29] use SHapley Additive exPlanations
(SHAP) to display the influence of features of the model’s
classification, whereas Andresini et al. [30] apply Grad-
CAM as post-hoc explanations to inspect DNS over HTTPS
attacks on flow features. Malware detection of executable
files draws similarities to our approach. Iadarola et al.
[31] use images of malware executables to detect malicious
program executions of Android applications. They use Grad-
CAM for explanation to disclose malicious programs. In
contrast, the proposed framework MalConv exploits weights
and gradients of the architecture to understand what the
model learns from raw bytes [28]. For a detailed survey on
XAI for traffic classification, we refer to Capuano et al. [28],

852

TABLE I
MULTICLASS CLASSIFICATION ON THE TEST SET PER CLASS.

Traffic Class Names VGG-19 Xception ViT
F1 Rec Pr F1 Rec Pr F1 Rec Pr

BitTorrent 99.87 99.87 99.87 99.80 100 100 95.29 100 91.01
FTP 99.89 99.97 99.89 100 99.99 100 99.61 99.75 99.47
Gmail 97.95 97.66 98.24 99.65 99.88 99.42 91.81 89.02 94.78
MySQL 99.97 99.94 99.99 99.95 100 99.90 98.15 100 96.37
Outlook 98.86 98.39 99.32 99.13 98.93 99.33 96.14 98.39 93.98
Skype 98.57 98.98 98.85 99.55 99.36 99.74 98.92 99.49 98.36
SMB 92.33 99.47 86.15 94.67 99.82 90.02 79.36 100 65.78
Weibo 99.95 99.90 100 99.89 99.77 100 99.58 99.17 100
WorldOfWarcraft 99.81 99.62 100 99.75 99.62 99.87 99.68 99.37 100
Cridex 100 100 100 100 100 100 99.99 99.97 100
Geodo 99.45 99.29 99.62 99.59 99.64 99.54 97.84 98.01 97.66
Htbot 94.45 95.27 93.64 97.72 97.95 97.49 91.34 94.79 88.12
Miuref 99.51 99.40 99.62 99.47 99.40 99.55 96.15 93.70 98.74
Neris 87.26 96.95 79.34 88.23 96.02 81.61 86.11 94.44 79.13
Nsis-ay 97.13 97.38 96.88 96.81 97.91 95.73 89.36 98.95 81.47
Shifu 98.57 97.58 99.58 98.96 98.15 99.79 90.49 82.69 99.91
Tinba 99.68 99.87 99.49 99.94 99.87 100 99.87 99.87 99.87
Virut 92.85 87.75 98.57 93.41 89.26 97.96 91.78 86.69 97.50
Zeus 99.59 99.57 99.61 99.90 99.95 99.86 99.73 99.71 99.76

Accuracy 97.63 97.95 95.86
Macro Avg. F1 97.69 98.23 94.80

however, we are the first to apply XAI methods on network
communication converted to images.

IV. RESULTS

We use an Nvidia GeForce RTX 3090 Ti and four Nvidia
A 100 Tensor Core GPUs for training with the deep learning
platform Torch, deep learning backend Torch-gpu, Cuda
version 12.0, and CuDNN version 11.7. We perform random
search for hyperparameter optimization that results in 0.0001
for the learning rate, cross-entropy for our loss function, a
batch size of 256, and stochastic gradient descent (SGD) as
the optimizer for all models.

A. Multiclass Classification

For multiclass classification, our data set consists of 19
classes, with nine benign and ten malware classes. The
imbalance of classes leads back to the requirement of at least
two packets per session. VGG-19 and Xception converge
at similar performances, whereas our ViT model results
in significantly lower accuracy, F1, recall, and precision
scores for all classes, Table I. Xception achieves a maximum
accuracy of 97.95% with a macro average F1 score of
98.23%. The average accuracy for our VGG-19 and ViT
models is lower, with values ranging between 95.86% and
97.69%. We observe high misclassifications for the malware
classes Neris and Virut on all three models, while for all
other classes, we notice few misclassifications. For Neris, the
F1 score ranges between 86.11% to 88.23%, whereas Virut
achieves a minimum F1 score of 91.78%. Inspecting the
network traces of Virut and Neris shows that both malware
classes request similar HTTP resources to fetch scripts for
execution, request the same DNS servers, and contain mail-
and ad-related traffic. Comparing the network traffic reflects
our assumption that Neris and Virut are similar in behavior.

B. Binary Classification

The binary classification on our test set shows overall good
classification performance for the Xception model with an
accuracy of 99.92% and macro average F1 score of 99.92%,
Table II. The VGG-19 and ViT model achieve a similar

TABLE II
BINARY CLASSIFICATION ON THE TEST SET.

Traffic Class Names VGG-19 Xception ViT
F1 Rec Pr F1 Rec Pr F1 Rec Pr

Benign 99.72 99.88 99.56 99.92 99.98 99.86 99.72 100 99.44
Malware 99.67 99.47 99.86 99.91 99.84 99.98 99.66 99.33 100

Accuracy 99.69 99.92 99.69
Macro Avg. F1 99.69 99.92 99.69

accuracy of 99.69%, whereas VGG-19 yields a slightly better
F1 score for benign and malware classes. Xception achieves
overall the best results with the highest accuracy and F1
score. We notice only a few misclassifications on benign and
malware classes that could lead back to common network
traffic, such as normal TCP handshakes.

C. Grad-CAM

We randomly choose a malware sample from the Virut
and Htbot class and compute the Grad-CAM of VGG-19 and
Xception to visualize the important packets of the session,
Fig. 3. Both sessions consist of more than 64 packets, fetch a
malware executable, and communicate with its C&C server
outside of the network to receive the next commands. For
the Htbot sample in Fig. 3(a) and Fig. 3(c), the highlighted
areas in red of the heat map indicates that the subset of
packets pj = {p21, . . . , p23, p28 . . . , p30, p35, . . . , p37} are
of interest for the prediction. While inspecting the packets
of the session, we can see that most of the highlighted
packets (p21 - p23, p28 - p30) are suspicious HTTP POST
requests to an IP address outside of the network whereas
p35 - p37 are non-suspicious TCP connections. Nonetheless,
both models correctly predicted the Htbot class as either
malware or Htbot itself. This indicates strong relation be-
tween the content of packets transformed to the new byte
representation and the actual model. For the Virut sample in
Fig. 3(b) and Fig. 3(d), the highlighted areas in red show
an offset of important packets between the two models.
For Xception, we notice a similar subset of packets pj =
{p20, p21, p27 . . . , p30, p36, p37}, whereas for VGG-19 the
subset of packets pj = {p25, p26, p33 . . . , p34, p41, p43} is
shifted. However, we notice that all highlighted packets of
the two models are requests to fetch data from servers outside
of the network, indicating a malicious activity, thus, having
a higher influence on the prediction. Hence, using the Grad-
CAM to aid the explainability of a deep learning model
gives promising results in the context of network sessions
transformed into images.

D. Integrated Gradients

Fig. 4 shows the Integrated Gradients for the same mal-
ware samples of Virut and Htbot as in section IV-C for mul-
ticlass classification. For the Htbot sample in Fig. 4(a) and
Fig. 4(c), we notice a difference of input feature attribution
that influence the prediction of the model. For Xception,
the area is greater and includes more packets, whereas, for
VGG-19, only a small subset of packets is important for
the prediction. Overlaying the Integrated Gradients from

853

(a) Htbot Xception (b) Virut Xception

(c) Htbot VGG-19 (d) Virut VGG-19

Fig. 3. Grad-CAM of Virut and Htbot malware for Xception (3(a),3(b))
and VGG-19 (3(c),3(d)). The color red indicates a strong influence on
the prediction, whereas the color blue has little effect on the prediction.
As depicted, the malicious packets of the session that send HTTP POST
requests to a server outside of the network are highlighted.

Fig. 4 with the Grad-CAM from Fig. 3 shows differences
in the input feature importance. For Xception, we identify a
similar subset of packets fetching malicious data from servers
outside the network. However, investigating the marked area
of VGG-19, we see that the first three non-suspicious TCP
connections receive a high attribution. For the Virut sample
in Fig. 4(b) and Fig. 4(d), we identify a similar behavior
for Xception and VGG-19. While Xception attributes a
similar subset of packets that fetches malicious data, VGG-
19 attributes non-suspicious TCP handshakes that occur in
benign and malware traffic interchangeably. Viewing these
results could explain the accuracy differences of multiclass
classification between the Xception and VGG-19. Thus,
showing that Integrated Gradients helps to understand the
outcome of deep learning models in context network security.

E. Attention heat maps for Vision Transformer

Fig. 4 shows the attention heat maps for the same
malware samples of Virut and Htbot as in section IV-C
for our ViT model for multiclass classification. For Ht-
bot in Fig. 5(a), we notice a subset of packets pj =
{p20, . . . , p23, p36 . . . , p38, p41 . . . , p48} that fetches mali-
cious data from servers outside of the network, and over-
lays our previous findings from Xception and VGG-19.
We observe that non-suspicious TCP handshakes are not
highlighted in yellow in the heat map, Fig. 5(a) and Fig. 5(b).
While malware traffic differs between Htbot and Virut, the
highlighted attention weights in yellow of Fig. 5 look similar;
however, comparing the weights reveals that both heat maps
are unequal. Overall, our ViT model correctly predicts both
samples as Htbot and Virut classes. Thus, using attention heat
maps to get insights into a ViT model is a helpful method
to understand its outcome.

(a) Htbot Xception (b) Virut Xception

(c) Htbot VGG-19 (d) Virut VGG-19

Fig. 4. Integrated gradients of Virut and Htbot malware for Xception
(4(a),4(b)) and VGG-19 (4(c),4(d)). The highlighted area in green displays
the pixel with the highest influence on the gradient. As depicted, the
malicious packets of the session of Xception are similar highlighted as in
Fig. 3, whereas VGG-19 attributes non-suspicious TCP handshakes that
occur in both classes.

(a) Htbot (b) Virut

Fig. 5. Attention visualization of the last head of the Vision Transformer
model of Virut and Htbot malware sample. The last layer displays the
weighted sum of the representation. The highlighted area in yellow displays
the pixel with the highest influence on the attention weights.

V. SUMMARY AND DISCUSSION

Securing networking infrastructures is a challenging task
with newly advancing threats every day. This study showed
that inheriting deep learning methods for traffic classification
can improve network security by detecting malicious behav-
iors in various packet streams. In particular, we proposed
a new network traffic image representation by converting
network sessions into images. Unlike trimming a session to a
certain byte length, we created image patches for each packet
in a session and tiled them to a quadratic representation.
This novel approach helped models train on bi-directional
network traffic. We evaluated the performance of the new
representation on the well-established deep learning mod-
els VGG-19 and Xception. In addition, we conducted an
experimental study of ViT models on network images due
to their ability to process images in patches. Overall, our
best model Xception achieved an accuracy of 99.92% for
binary classification and 97.95% for multiclass classification.

854

Our experimental ViT model achieved a significantly lower
performance with 95.86% for multiclass and 99.36% for
binary classification. In addition, we applied the XAI tech-
niques Integrated Gradients and Grad-CAM to interpret the
VGG-19 and Xception model to understand the relationship
between input features and prediction. For our ViT model, we
visualized the attention heat maps. We see that our models
can understand the impact of pixel to bytes, and they start to
detect information in packets, such as malicious HTTP POST
requests or communications to C&C servers. Overall, our
approach shows strong classification performance; thus, this
study contributes to the network traffic image classification
field.

Regarding images, currently, we only use a single channel
to represent packets, resulting in a grayscale image; however,
recent studies used a three-channel representation. Increasing
channels on images allow for storing more bytes and, thus,
more information that could help to distinguish benign from
malicious traffic. Future research could investigate the impact
of input features on the prediction by reverse engineering the
highlighted bytes of the XAI method’s output.

In summary, deep learning methods on network traffic
transformed into images is a promising approach for sup-
porting network infrastructures to detect malicious behavior
ahead of time, including XAI methods to interpret results,
which could be advantageous to increase network security.

REFERENCES

[1] X. Cao, Q. Luo, and P. Wu, “Filter-GAN: Imbalanced Malicious
Traffic Classification Based on Generative Adversarial Networks with
Filter,” Mathematics, vol. 10, no. 19, p. 3482, Sep. 2022.

[2] S. Kim and A. Reddy, “Modeling network traffic as images,” in IEEE
International Conference on Communications, 2005. ICC 2005. 2005,
vol. 1, Seoul, Korea (South), 2005, pp. 168–172 vol. 1.

[3] S. S. Kim and A. Reddy, “A study of analyzing network traffic
as images in real-time,” in Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies.,
vol. 3, Miami, FL, USA, 2005, pp. 2056–2067 vol. 3.

[4] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic
classification using convolutional neural network for representation
learning,” in 2017 International Conference on Information Network-
ing (ICOIN), Da Nang, Vietnam, 2017, pp. 712–717.

[5] H.-K. Lim, J.-B. Kim, J.-S. Heo, K. Kim, Y.-G. Hong, and Y.-H. Han,
“Packet-based Network Traffic Classification Using Deep Learning,” in
2019 International Conference on Artificial Intelligence in Information
and Communication (ICAIIC), Okinawa, Japan, 2019, pp. 046–051.

[6] H.-K. Lim, J.-B. Kim, K. Kim, Y.-G. Hong, and Y.-H. Han, “Payload-
Based Traffic Classification Using Multi-Layer LSTM in Software
Defined Networks,” Applied Sciences, vol. 9, no. 12, p. 2550, 2019.

[7] F. Ullah, S. Ullah, M. R. Naeem, L. Mostarda, S. Rho, and X. Cheng,
“Cyber-Threat Detection System Using a Hybrid Approach of Transfer
Learning and Multi-Model Image Representation,” Sensors, vol. 22,
no. 15, p. 5883, 2022.

[8] P. Xu, C. Eckert, and A. Zarras, “Falcon: Malware Detection and Cate-
gorization with Network Traffic Images,” in ICANN - The International
Conference on Artificial Neural Networks, Bratislava, Slovakai, 2021,
pp. 14–17.

[9] R. Banu, T. Jyothi, M. Amulya, K. Anju, A. Raju, and S. N.
Kashyap, “MONOSEK – A Network Packet Processing System for
Analysis & Detection of TCP Xmas attack using Pattern Analysis,” in
2019 International Conference on Intelligent Computing and Control
Systems (ICCS), Madurai, India, May 2019, pp. 952–956.

[10] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open-
source high-speed deep packet inspection,” in 2014 International Wire-
less Communications and Mobile Computing Conference (IWCMC),
Nicosia, Cyprus, Aug. 2014, pp. 617–622.

[11] V. Carela-Español, T. Bujlow, and P. Barlet-Ros, “Is Our Ground-
Truth for Traffic Classification Reliable?” in Proceedings of the 15th
International Conference on Passive and Active Measurement - Volume
8362, ser. PAM 2014. Berlin, Heidelberg: Springer-Verlag, Mar. 2014,
pp. 98–108.

[12] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic Attribution for
Deep Networks,” in Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ser. ICML’17. JMLR.org, Jun.
2017, p. 3319–3328.

[13] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in 2017 IEEE International Conference
on Computer Vision (ICCV), Venice, Italy, 2017, pp. 618–626.

[14] H. Chefer, S. Gur, and L. Wolf, “Transformer interpretability beyond
attention visualization,” in 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021,
pp. 782–791.

[15] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovitskiy,
“Do Vision Transformers See Like Convolutional Neural Networks?”
Mar. 2022, arXiv:2108.08810 [cs, stat].

[16] Stratosphere, “Stratosphere Laboratory Datasets,” 2015.
[17] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward

Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization:,” in Proceedings of the 4th International Conference
on Information Systems Security and Privacy. Funchal, Madeira,
Portugal: SCITEPRESS - Science and Technology Publications, 2018,
pp. 108–116.

[18] G. R. Ruth, N. Brownlee, and C. G. Mills, “Traffic Flow Measurement:
Architecture,” Internet Engineering Task Force, Request for Comments
RFC 2722, Oct. 1999.

[19] B. E. Carpenter, S. E. Deering, J. Rajahalme, and A. Conta, “IPv6
Flow Label Specification,” Internet Engineering Task Force, Request
for Comments RFC 3697, Mar. 2004.

[20] T. Zseby, B. Claise, J. Quittek, and S. Zander, “Requirements for IP
Flow Information Export (IPFIX),” Internet Engineering Task Force,
Request for Comments RFC 3917, Oct. 2004.

[21] S. Machmeier, M. Trageser, M. Buchwald, and V. Heuveline, “A
generalizable approach for network flow image representation for
deep learning,” in 2023 7th Cyber Security in Networking Conference
(CSNet), Montréal, Canada, 2023.

[22] J. Zhao, X. Jing, Z. Yan, and W. Pedrycz, “Network traffic classi-
fication for data fusion: A survey,” Information Fusion, vol. 72, pp.
22–47, Aug. 2021.

[23] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale,” Jun. 2021.

[24] Z. Xu, C. Dan, J. Khim, and P. Ravikumar, “Class-Weighted Classifi-
cation: Trade-offs and Robust Approaches,” May 2020.

[25] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” Apr. 2015.

[26] F. Chollet, “Xception: Deep Learning with Depthwise Separable
Convolutions,” Apr. 2017.

[27] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization
for free? - Weakly-supervised learning with convolutional neural
networks,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, Jun. 2015, pp. 685–694,
iSSN: 1063-6919.

[28] N. Capuano, G. Fenza, V. Loia, and C. Stanzione, “Explainable
Artificial Intelligence in CyberSecurity: A Survey,” IEEE Access,
vol. 10, pp. 93 575–93 600, 2022.

[29] T. Zebin, S. Rezvy, and Y. Luo, “An explainable ai-based intrusion
detection system for dns over https (doh) attacks,” IEEE Transactions
on Information Forensics and Security, vol. 17, pp. 2339–2349, 2022.

[30] G. Andresini, A. Appice, F. P. Caforio, D. Malerba, and G. Vessio,
“ROULETTE: A neural attention multi-output model for explainable
Network Intrusion Detection,” Expert Systems with Applications, vol.
201, p. 117144, Sep. 2022.

[31] G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone, “Towards an
interpretable deep learning model for mobile malware detection and
family identification,” Computers & Security, vol. 105, p. 102198, Jun.
2021.

855

