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Abstract—One of the most effective ways to help patients at
the dangerous levels of diabetes is an artificial pancreas, a device
that constantly monitors the patient’s blood sugar level and
injects insulin based on this level. Patient’s reaction to insulin
is highly individualized, so the artificial pancreas needs to be
trained on each patient. It turns out that the best training results
are attained when instead of the usual ReLU neurons, we use
their minor modification known as Exponential Linear Units
(ELU). In this paper, we provide a theoretical explanation for
the empirically observed effectiveness of ELUs.

Index Terms—diabetes, artificial pancreas, neural network,
Rectified Linear Unit (ReLU), Leaky ReLU, Exponential Linear
Unit (ELU)

I. FORMULATION OF THE PROBLEM: DIABETES,
ARTIFICIAL PANCREAS, AND EMPIRICAL DATA ABOUT ITS

TRAINING

Diabetes is a serious problem. Any dynamical system – be
it an engine or a living being – needs energy to function.
To many living creatures, energy comes with food. Food is
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digested. Energy contained in food is transformed into glucose
– a form of sugar. Glucose is then circulated by blood into
different organs that transform it into other molecules that fuel
the cells. Glucose transformation is controlled by a special
hormone called insulin. It is produced by an organ known as
pancreas.

For most people, this process works well. However, in 8%
of the people – almost half a billion – either not enough insulin
in generated or the cells of the body do not react properly to
the insulin. This condition is known as diabetes.

Diabetes is usually diagnosed by an increase blood sugar
level: when the glucose is not absorbed, the blood sugar level
increases.

Diabetes is a serious problem: it prevents fuel from coming
to the cells that form the body, and this can have drastic
consequences – including death. Every year, more than a
million people die of diabetes [4].

How to help diabetic patients: enter artificial pancreas.
One of the main reasons for diabetes is that a body does not
produce enough insulin. So, a natural treatment is to inject
missing insulin into the body.

Usually, diabetic patients periodically check their blood
sugar levels and, if needed, inject insulin. This is not a perfect
arrangement: it requires a significant amount of efforts on
behalf of the patient, and it does not prevent unhealthy fluc-
tuations of the blood sugar level. To help patients, researchers
have been developing automatic systems that continuously
measure the blood sugar level and inject insulin if needed.
Such systems act as substitutes for a malfunctioning pancreas
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and are thus known as artificial pancreas [5].

These systems need to be trained. Different patients have
different reactions to insulin. Because of this, artificial pan-
creas systems need to be individualized. To best way to adjust
the system to a patient is to train this system on the history of
this patient. This way, the system will be able to predict how
this particular patient will react to different insulin doses –
and, based on these predictions, select the does that is optimal
for this patient.

What is the best way to train these systems: empirical
results. At present, the most effective training technique is
using artificial neural networks; see, e.g., [6]. So naturally,
such networks have been used to train the artificial pancreas.

An artificial neural network consists of neurons that trans-
form input signals x1, . . . , xn into the output signal

y = s(w1 · x1 + . . .+ wn · xn + w0),

where wi are coefficients (known as weights) that need to
be determined during the training, and s(z) is a function
known as activation function. The name “neurons” comes
from the fact that these computational units simulate – in a
very simplified way – biological neurons, cells that form our
brain. In the brain, the corresponding function s(z) is (non-
strictly) increasing: if z ≤ z′, then s(z) ≤ s(z′). Because of
this, in most applications, researchers use increasing activation
functions. The most widely used activation function is

s(z) = max(0, z).

This function is known as the Rectified Linear Unit (ReLU,
for short). However, other activation functions are also used.

Some neurons process the measurement results, they for the
first layer. Other neurons process the results of the neurons
from the first layer, etc., until finally, some neurons generate
the desired output.

To design the training scheme for a neural network, we
need to select the value of a large number of scheme’s
parameters; these parameters are known as hyperparameters.
It is known that an appropriate selection of hyperparameters
can drastically increase the training effectiveness. Because of
this, researchers have tested different combinations of hyper-
parameters (and of different activation functions) to analyze
which combinations work the best [3]. In addition to known
activation functions, they also tried modified version of these
functions.

Empirically, one of the most successful modifications of
ReLU are leaky activation functions. The idea behind them is
that when the linear combination

w1 · x1 + . . .+ wn · xn + w0

is negative, ReLU function returns 0 – and thus, does not react
to changes in the inputs. So as not to lose possible helpful
information, it is desirable to modify the ReLU function so
that it produces non-zero values s(z) for negative z. The most
well-known leaky version of ReLU uses

s(z) = −α · z (1)

for z < 0, where α is a small positive number. Interestingly, as
shown in [3], for training artificial pancreas, the most effective
leaky activation function turned out to be a function for which

s(z) = α · (exp(β · z)− 1) (2)

for z < 0, where β > 0. This function was first proposed in
[2]; see also [1]. Since this function is exponential for z < 0
and linear for z > 0, it is called Exponential Linear Unit
(ELU, for short).

Natural question. There are infinitely many possible activa-
tion functions, and it is therefore not possible to try all of
them. So, a natural question is:

• whether the ELU function is simply the best of the ones
that we tried – and there may be better activations that
we did not trye yet,

• or there is some theoretical reason why this particular
activation function worked the best.

What we do in this paper. In this paper, we prove that leaky
ReLU and ELU are indeed, in some reasonable sense, optimal
among all leaky version of ReLU. This result makes us more
confident that ELU is indeed the activation function that should
be used for the training of an artificial pancreas.

II. LET US FORMULATE THE PROBLEM IN PRECISE TERMS

What are we looking for. We are interested in a continuous
non-strictly increasing function s(z) for which s(z) = z for
all z > 0. Since we know the values of this function for all
non-negative z, it is sufficient to describe its values for all
negative z.

In these terms, what we are looking for are non-strictly
increasing functions s(z) which are defined for all z ≤ 0 and
for which s(0) = 0.

We need to have a family of such functions. An experience
teaches us that in different situations, different activation
functions may be more effective – if this was not the case,
we would not need different activation functions. So, what
we want to select is not a single function s(z), but rather a
whole family of such functions. In other words, we are looking
not for a single function s(z), bur rather for an expression
s(z, C1, . . . , Ck) that, for different values of the parameters
C1, . . . , Ck, would provide us with different activation func-
tions.

Possibility of linearization. We know that ReLU functions
are very effective in many applications. Because of this, we
want our selected activation functions to be close to ReLU. In
other words, we want the desired function s(z) to be close to
0 for z < 0.

In general, any sufficiently smooth dependence can be
expanded in Taylor series. In particular, for the dependence
s(z, C1, . . . , Ck) on the parameters Ci, we have

s(z, C1, . . . , Ck) =

s0(z) +

k∑
i=1

Ci · si(z) +
k∑

i=1

k∑
j=1

Ci · Cj · sij(z) + . . .
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Here, quadratic terms are much smaller than linear terms,
cubic terms are even smaller, etc. In our case, the whole
function is small, which means its linear part is small. Thus,
quadratic terms are negligible: e.g., if linear terms are 10%,
their square is 1%, which is much smaller. Thus, it is safe to
ignore quadratic and higher order terms and assume that the
dependence on the coefficients Ci is linear:

s(z, C1, . . . , Ck) = s0(z) +

k∑
i=1

Ci · si(z).

Again, we know that ReLU is effective, so we want ReLU
to be a particular case of our family – corresponding, e.g., to
C1 = . . . = Ck = 0. For ReLU, s(z) = 0 for all z < 0, so
we should take s0(z) = 0 and the family takes the form{

s(z) =

k∑
i=1

Ci · si(z)

}
C1,...,Ck

. (3)

Neural networks are trained by gradient descent. Since we
want our neural network to be close to the ReLU-based ones,
we thus need to make sure that not only the activation function
is close to ReLU, but that its derivative exists and is close to
the derivatives of ReLU. In other words, for negative z, the
selected function must be differentiable and its derivative s′(z)
must be close to 0 – i.e., we must have a small bound b on
the value of this derivative. So, we arrive at the following
definition.

Definition 1. By a modified ReLU function, we mean a
differentiable non-strictly increasing function s(z) which:

• is defined for all z ≤ 0,
• is not identically 0, is non-strictly increasing,
• has the property s(0) = 0, and
• has all the values of its derivative bounded by some

constant b.

Definition 2. Let k be a positive integer. By a k-dimensional
family, we mean a family of type (3) with differentiable
functions si(z).

Need for fast computations. Neural networks have numer-
ous applications. Some applications – e.g., Large Language
Models like ChatGPT – use literally trillions of weights and
require high-performance computers to train. In contrast, in
our application, we are talking about a small device that will
be either imbedded in a patient or carried by the patient. With
this device, we cannot perform too many computations.

In particular, we need to select activation functions that are
as simple to compute as possible. This means, for example,
that we should select the smallest possible number of terms
k in the general description of the family (3). In other words,
we need to select a family (3) with the smallest possible k.

What we mean by optimal. Usually, “optimal” means that
the value of some objective function is the largest (or, if
appropriate, the smallest). However, this is not the most
general way to describe optimality. For example, if we are

selecting the most stable control, i.e., the control with the
smallest possible value of instability, we may have several
controls which are, in this sense, the best. In such situations, it
is reasonable to use this non-uniqueness to optimize something
else – e.g., minimize the control’s non-smoothness.

If this still leaves us with several optimal alternatives, we
can use this non-uniqueness to optimize something else –
until we reach the final optimality criterion, for which there
is exactly one optimal alternative.

To take these complexities into account, we will not limit
ourselves to numerical optimality criteria, we will take into
account that in general, an optimality criterion is a method
that allows us to decide, at least for some pairs of alternatives
a and b, where b is better (or of the same quality) that a. We
will denote this relation by a ≤ b.

Of course, if b is better than a and c is better than b, then
c should be better than a. In mathematics, this property is
known as transitivity. Relations with this property are known
as pre-orders. Thus, we arrive at the following definition.

Definition 3. Let a set A be given; its elements will be called
alternatives.

• By an optimality criterion on the set A, we mean a
transitive relation ≤ (pre-order) on this set.

• We say that an alternative aopt is optimal if a ≤ aopt for
all a ∈ A.

• We say that an optimality criterion is final if for this
criterion, there is exactly one optimal alternative.

Need for shift-invariance. We can use different starting points
for measuring the inputs z. For example, for the artificial
pancreas, a reasonable idea is to use the difference between
the current blood sugar level and the ideal blood sugar level
– this corresponds to using the ideal blood sugar level as the
starting point.

This sounds like a reasonable idea, but, according to the
medical professionals, there are many different ways for se-
lecting this ideal level. For example, we can select the general
ideal level of 100 units, but this may be somewhat misleading:

• If a child’s blood sugar level is getting close to 90, this
is a reason to be seriously alarmed – since for children,
this level is usually much smaller.

• On the other hand, for an older patient, even levels larger
than 100 are OK and probably do not require insulin
injections – provided that the patient otherwise feels well.

It is therefore more reasonable to use different starting points
for different patients, depending on their age, gender, etc.

As medical doctors learn more about diseases, what is
considered an ideal level changes. For example, in recent
decades, there have been changes in thresholds separating
healthy and unhealthy blood pressure, healthy and unhealthy
cholesterol level, etc. When the starting point changes, the
differences z processed by our neural network change to z+z0
for some value z0 – which is the difference between the new
and the original starting points. The selection of the starting
point is just the question of convenience. So, it makes sense
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to require that the relative quality of different k-dimensional
families should not change if we simply change the starting
point.

Let us describe this requirement in precise terms.

Definition 4. Let z0 be a real number.
• For each family a of type (3) corresponding to the

functions si(z), by its z0-shift Sz0(a), we mean the family
corresponding to the functions si(z + z0).

• We say that the optimality criterion is shift-invariant if
for each value z0 and for every two families a and b for
which a ≤ b, we have Sz0(a) ≤ Sz0(b).

Now, we are ready to formulate our main result.

III. MAIN RESULT

Proposition.
• The smallest k for which there exists a shift-invariant

final optimality criterion on the set of all k-dimensional
families that contains at least one modified ReLU function
is k = 2.

• For k = 2, for each shift-invariant final optimality
criterion, if the optimal family contains a modified ReLU
function, then this function is either a leaky ReLU (1) or
has the ELU form (2).

Discussion. This result explains that out of the simplest
families – for which k is the smallest possible – leaky ReLU
and ELU are indeed the optimal modified ReLU functions.
Since in our case, ELU works better than Leaky ReLU, this
means that ELU is optimal.

Proof.

1◦. Let us first prove that for each shift-invariant final optimal-
ity criterion, the optimal family aopt is itself shift-invariant,
i.e., Sz0(aopt) = aopt.

Indeed, by definition of optimality, we have a ≤ aopt for
all a ∈ A. In particular, for each a and for each z0, we
have S−z0(a) ≤ aopt. Since the optimality criterion is shift-
invariant, this implies that Sz0(S−z0(a)) ≤ Sz0(aopt). One can
easily check that Sz0(S−z0(a)) = a, so we get a ≤ Sz0(aopt)
for all a ∈ A. By definition of optimality, this means that the
alternative Sz0(aopt) is optimal. But our optimality criterion is
final, which means that it has only optimal alternative. Thus,
we must indeed have Sz0(aopt) = aopt.

2◦. Let s1(z), . . . , sk(z) be the functions that form the optimal
family. According to Part 1 of the proof, the optimal family is
shift-invariant. This means that if we shift each function from
this family, we still get a function from the same family. In
particular, we can shift the functions si(z) themselves – each
of them belongs to the family when we take Ci = 0 and all
other Cj equal to 0. Thus, for each i, we have

si(z + z0) =

n∑
j=1

Cij(z0) · sj(z), (4)

for some coefficients Cij depending on z0.

We can plug in k different values z1, . . . , zk into the formula
(4) and get the following system of k linear equations with k
unknowns Ci1(z0), . . . , Cn(z0):

si(zm + z0) =

n∑
j=1

Cij(z0) · sj(zm), m = 1, . . . , k. (5)

The solution cij(z0) of a linear system is a linear function
of its right-hand sides. The right-hand sides si(zm + z0) are
smooth functions of z0, so we conclude that the functions
Cij(z0) are also differentiable. Thus, all the functions in the
equality (4) are differentiable.

So, we can differentiate both sides of the equality (4) with
respect to z0, resulting in:

s′i(z + z0) =

n∑
j=1

C ′
ij(z0) · sj(z).

In particular, for z0 = 0, we get

s′i(z) =
n∑

j=1

cij · sj(z), (6)

where we denoted cij
def
= C ′

ij(0).
The system (6) is a system of linear differential equations

with constant coefficients. It is known that each solution to
this system of equations is a linear combination of the terms
zv · exp(λ · z), where:

• λ is an eigenvalue of the matrix cij and
• v is a non-negative integer that is smaller than the

multiplicity of this eigenvalue (and is, thus, equal to 0
when this multiplicity is 1).

3◦. Let us use this result to show that the case k = 1 is not
possible.

Indeed, in this case, the multiplicity is 1, so all possible
solutions of the system (6) have the form

s(z) = C1 · exp(λ · z).

The only way for this function to satisfy the condition s(0) =
0 is to have C1 = 0, in which case the function s(z) is
identically 0. Thus, for k = 1, the optimal family cannot
contain a modified ReLU function.

4◦. Let us prove that the case k = 2 is possible.
Indeed, we can have the following optimality criterion:
• the family

{C1 · exp(β · z) + C2}C1,C2

is better than all other families, and
• all other families are of the same quality.

One can easily check that this criterion is final and shift-
invariant, and that the optimal family contains the modified
ReLU function (2).

5◦. To complete the proof, let us prove that for k = 2, for each
shift-invariant final optimality criterion, if the optimal family

499



contains a modified ReLU function, then this function is either
a leaky ReLU (1) or it has the ELU form (2).

Indeed, in this case, we have two options:
• either we have two different eigenvalues λ1 ̸= λ2,
• or we have a double eigenvalue λ.

5.1◦. In the first case, when we have two different eigenvalues,
a generic function s(z) from the optimal family has the form

s(z) = C1 · exp(λ1 · z) + C2 · exp(λ2 · z). (7)

Without losing generality, we can assume that λ1 < λ2.
In this case, for z → −∞, the term corresponding to λ1

asymptitically dominates both the values of the function and
the values of its derivative. Since the derivative has to be
bounded, we thus have λ1 ≥ 0 – otherwise, the derivative
would grow exponentially when z → −∞.

If we have λ1 > 0, then, since λ1 < λ2, we will also
have λ2 > 0. In this case, for z → −∞, both terms in the
expression (7) tend to 0. So, such a family cannot contain a
modified ReLU, since a modified ReLU should be different
from 0, non-strictly increasing and have s(0) = 0, while here
we have

0 = lim
z→−∞

≤ s(z) ≤ s(0) = 0,

so s(z) ≡ 0.
So, the only remaining case is when λ1 = 0 < λ2. In this

case, a generic function s(z) from this family has the form
C1+C2 ·exp(β ·z), where we denoted β

def
= λ2. Monotonicity

implies that C2 > 0, and the requirement that s(0) = 0 implies
that C1 = −C2. Thus, we indeed get the ELU expression.

5.2◦. When we have a double eigenvalue λ, the general
solution has the form C1 · exp(λ · z) + C2 · z · exp(λ · z).
Similar to Part 5.1, we conclude that:

• the value λ cannot be negative – then the derivative s′(z)
will not be bounded, and

• the value λ cannot be positive – since then we would not
get monotonicity.

So, the only remaining option is when λ = 0, in which case
s(z) = C1 + C2 · z. The requirement that s(0) = 0 implies
that C1 = 0, so we get the leaky ReLU.

The proposition is proven.
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[5] J. Tasic, M. Takács and L. Kovacs, ”Control Engineering Methods for
Blood Glucose Levels Regulation”, Acta Polytechnica Hungarica, 2022,
Vol. 19, No. 7, pp. 127–152.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
Cambridge, Massachusetts, 2016.

500


