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Abstract— Computationally expensive multiobjective opti-
mization problems (EMOPs) that require significant compu-
tational resources are commonly encountered in real-world
applications. To address the challenges associated with such
problems, using computationally inexpensive surrogate models
to approximate objectives has emerged as an effective approach
to handle EMOPs. However, the current collaboration between
evolutionary algorithms (EAs) and surrogate models is limited,
relying on static regression or classification methods that do not
fully capture the dynamic evolution process of EAs. This study
aims to advance the integration of surrogate-assisted multi-
objective optimization by incorporating time-series prediction
models. The target is to track the evolutionary trajectory of an
EA and enhance its search capability. Specifically, long short-
term memory (LSTM) networks are embedded into an EA
for surrogate-assisted optimization (SAO). The role of LSTM
networks in SAO is thoroughly investigated through ablation
studies. Experimental results on six EMOPs demonstrate the
potential of using LSTM networks in SAO. The results are com-
pared with those obtained from four representative surrogate-
assisted EAs, providing insights into the effectiveness of LSTM-
based approaches in addressing EMOPs.

I. INTRODUCTION

The proliferation of simulation techniques has revolu-
tionized the modelling of intricate systems that yield mul-
tiple outputs [1]. Such techniques have been applied to
diverse systems, ranging from computational fluid dynamics
employed in airfoil design [2] to electromagnetic simula-
tion for fault line selection [3]. The use of multiobjective
evolutionary algorithms (MOEAs) has become ubiquitous
for addressing complicated optimization challenges across
multiple systems. MOEAs are attractive due to their global
search capacity, universality, flexibility, and ability to obtain
multiple trade-off solutions within a single run [4]. However,
high-fidelity simulations necessitate substantial computation
resources, posing a barrier to MOEAs for solving compu-
tationally expensive multiobjective optimization problems.
Specifically, Evolutionary Algorithms (EAs) necessitate a
large number of real function evaluations (FEs) to attain sat-
isfactory performance, whereas limited FEs are available [5].
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To surmount this conundrum, cost-effective surrogate mod-
els such as neural networks, Kriging models (Gaussian
process models, GP models), radial basis function (RBF)
networks, and support vector machine (SVM) models are
integrated with EAs to enable surrogate-assisted optimization
(SAO) [6].

Over the past two decades, surrogate-assisted evolutionary
algorithms (SAEAs) have been developed to address com-
putationally expensive single-objective optimization prob-
lems [7]. However, these SAEAs are unsuitable for com-
putationally expensive multiobjective optimization problems
(EMOPs) due to the conflicting nature of multiple objectives.
Recently, specialized SAEAs have been proposed to address
EMOPs using mono/multi-surrogate models to approximate
different targets [8]. For example, the classification-based
SAEA (CSEA) used a single classification-based neural net-
work to learn the dominance relationship between a solution
and a solution set [9]. The efficient global optimization
for Pareto optimization (ParEGO) employed a regression-
based GP model to approximate a randomly selected single-
objective subproblem [10]. The reference vector-guided EA
(K-RVEA) adopted multiple regression-based GP models to
approximate the angle penalized distance [11]. The Kriging
model was also used to approximate the single-objective S-
metric for saving FEs in the S-metric-based SAEA (SMS-
EGO) [12]. Some researchers attempted to leverage surrogate
models [13] by designing infill criteria to balance exploration
and exploitation [14], adopting multiple surrogate models for
embedding learning [15], or refining datasets for better surro-
gate model training. Modern SAEAs can achieve acceptable
performance in solving EMOPs with hundreds of real FEs,
thanks to improved surrogate model accuracy, generalization,
and uncertainty information [16].

Despite the cooperation among surrogate models, train-
ing datasets, and MOEA in existing SAEAs, the mapping
relationships extracted by the surrogate model(s) from the
EMOP are regarded as static and independent. The surrogate
model(s) are trained without considering the order of the
solutions evaluated by the real FEs. As a result, the historical
evolution information is ignored, and the evolution tendency
is only influenced by the machine learning components, i.e.,
the training dataset and surrogate models.

To investigate the effectiveness of the historical informa-
tion during the evolution process of SAEAs, a representa-
tive time-series prediction model, i.e., the long short-term
memory (LSTM) network, is embedded in an MOEA for
SAO. Unlike conventional MOEAs that applied the historical
information for parameter adjustment [17] or operator selec-
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Fig. 1. An illustrative example of the LSTM network, where xt and ht denote the input and hidden state of the network at tth generation, respectively.
Note that activation functions “sigmoid” and “tanh” are adopted in the network.

tion [18] via tracking the short-term evolution, the long-term
evolution of an MOEA is expected to be learned to assist
the MOEA more naturally. As a preliminary study, we first
investigate the role of the LSTM network in predicting (i)
the decision vectors in the next generation, (2) the objective
vector of a candidate solution, and (3) the decision vector
and its objective vector in the future generation. Then, the
best-performed variant is compared with four representative
SAEAs to show the potential of time-series prediction in
solving EMOPs.

Two main observations of this work could be used to
improve the performance of SAEAs in solving real-world
EMOPs. First, the mapping from the decision space to the
objective space should be learned in LSTM-based surrogate
model for pushing the population toward the Pareto optimal
front. If only the tendency of the time-series decision vectors
is learned, the selection pressure of the population will be
lost. Second, the time-series prediction model is promising
in steadily obtaining well-converged solutions. Due to the
consecutiveness of time-series prediction models, the SAEA
tends to select similar but promising solutions to survive.

The rest of this paper is organized as follows. In Section II,
we briefly introduce some backgrounds of EMOPs, and then
the adopted multiobjective EA and the LSTM network are
elaborated. The framework of our proposed LSTM-based
SAEA is described in Section III, and the parameter settings
of the algorithms and test problems are given in Section IV.
In Section V, different variants of the proposed SAEA are
compared to analyse the effect of the time-series predic-
tion model in surrogate-assisted multiobjective optimization.
Empirical results compared on six benchmark EMOPs are
presented in Section V-A, and the conclusions are drawn in
Section VI.

II. BACKGROUND & MOTIVATION

Here, we illustrate the principles of the long short-term
memory (LSTM) network [19] and the decomposition-based
MOEA based on differential evolution (MOEA/D-DE) [20].
The reasons for using the model and the MOEA are elabo-
rated in what follows.

A. LSTM network

As a typical recurrent neural network (RNN) architecture,
the LSTM network was designed to model long-range depen-
dencies precisely [21]. Attributed to the advantage of LSTM
networks in addressing the vanishing gradient problem, they
have been successfully applied to various complex sequence
prediction tasks [22].

Unlike conventional RNNs, an LSTM unit consists of
three gates, i.e., forget gate, input gate, and output gate. An
illustrative example of the LSTM unit is shown in Figure 1,
where the “sigmoid” and “tanh” functions are used for
activation. Generally, the LSTM unit consists of three inputs
ht−1, Ct−1, xt and two outputs ht, Ct. For a given time t,
ht is the hidden state, Ct is the unit state/memory, and xt

is the current data point or input. With the assistance of
different activation functions and pointwise operations, three
functional gates are formed for different purposes.

The forget gate decides what information from the pre-
vious state Ct−1 should be forgotten or kept, which can be
given by

ft = σ(Wf · [ht−1, xt] + bf ), (1)

where σ(·) represents sigmoid function, Wf is weights, ht−1

is the output from the previous unit, xt is the input, and bf
is bias. The input gate consists of two parts, including

it = σ(Wi · [ht−1, xt] + bi), (2)
C̃t = tanh(WC · [ht−1, xt] + bC), (3)

where Wi,WC are weights, bi, bC are biases, and tanh(·)
represents tanh function. Then, the state is updated by

Ct = ft × Ct−1 + it × C̃t. (4)

Finally, the output gate determines the value of the next
hidden state ht by

ot = σ(Wo · [ht−1, xt] + bo), (5)

ht = ot × tanh(Ct), (6)

where Wo is weights and bo is bias of the output gate [23].
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Algorithm 1: Pseudo code of MOEA/D-DE
Input: n (population size), t (length of time series), T (number

of neighbors), nr (number of replaced solutions).
Output: P (final population).

1: Λ← {λ1, · · · ,λn} // generate n weight vectors
2: P ← {x1, · · · ,xn} // initialize n solutions
3: z← min (f(x1), · · · , f(xn)) // ideal point
4: for i← 1 : n do
5: Bi ← {i1, i2 · · · , iT } // distinguish the T

closest neighbor weight vectors of λi

6: end
7: for i← 1 : t do
8: for j ← 1 : n do
9: if rand() < 0.9 then

10: E ← Bi

11: else
12: E ← {1, 2 · · · , n}
13: end
14: k1, k2 ← Randomly select two indices from E
15: y← DE(x1,xk1 ,xk2 ) // k1, k2 ̸= i
16: z← min (z, f(y)) // Tchebycheff approach
17: for l← 1 : nr do
18: if ⟨|f(xk)− z|,λkl⟩ ≥ ⟨|f(y)− z|,λkl⟩ then
19: xj ← y
20: end
21: end
22: end
23: end

B. MOEA/D-DE

The pseudo-code of MOEA/D-DE is given in Algorithm 1,
which follows the idea of decomposing the MOP into a series
of single-objective optimization subproblems and optimiz-
ing them simultaneously. Generally, a set of n uniformly
distributed weight vectors Λ are first generated, followed
by the random initialization of population P of size n
(Steps 1-2). Next, T neighborhood weight vectors of each
weight vector are distinguished according to the Euclidean
distance between pairwise weight vectors (Steps 4-6). Then
the four-step main loop of MOEA/D-DE begins, where each
subproblem is optimized for t generations (Steps 7-23).
First, the parents for each solution are selected according
to probability δ (Steps 9-14). Second, an offspring solution
y is generated using the DE operator (Step 15). Third, the
Tchebycheff approach is adopted to calculate the aggrega-
tion function values of the offspring solution and its nr

neighborhood solutions. Fourthly, the neighborhood solution
with the worse aggregation function value will be replaced
by the offspring solution (Steps 17-19) [20]. Eventually, the
optimized population is output.

C. Motivations

We aim to explore the potential of the time-series pre-
diction model in computationally expensive multiobjective
optimization. Before elaborating on the detailed algorithm,
we first explain why LSTM and MOEA/D-DE are used.

In conventional SAO, surrogate models are employed to
approximate the objective-based fitness function [9]. How-
ever, the surrogate models cannot extract additional knowl-
edge from the MOEA, as they do not learn directly from the

algorithm [24]. To address this limitation, efforts have been
made to enhance the collaboration between the surrogate
model and the MOEA. For instance, in [14], the infill criteria
of the Kriging models have been improved to better utilize
the uncertainty information, thereby enhancing the explo-
ration capability of the MOEA. In K-RVEA [11], training
samples are associated with different reference vectors. In
MOEA/D-EGO, training samples are clustered into different
groups to better capture the evolution process of the EA,
which can help to improve the fitting capability of the
surrogate model.

The SAEAs mentioned above regard the training samples
as time-independent, whereas the training samples are ob-
tained sequentially with a certain ranking. Also, the evolution
of the population is controlled by the iteration number, i.e.,
time, making the ordered sequential dataset a natural time-
series one. Hence, the time-series prediction model LSTM
is expected to learn the evolution capability of the MOEA.

Unlike single-objective optimization problems, the con-
flicting nature of EMOPs leads to multiple Pareto non-
dominated optima. The evolution of the population is essen-
tially the convergence process over different undetermined
search paths, making the characterization of the evolution
challenging. Taking the fast non-dominated sorting-based
MOEA (NSGA-II) [25] as an example, the population is up-
dated according to the non-dominated sorting and crowding
distance. Once a set of offspring solutions are generated,
the current and offspring populations are merged and refined
to form the population for the next generation. Though the
population size is constantly maintained, the evolution of
each solution from generation to generation is hard to track.

The application of decomposition-based MOEA
(MOEA/D) has demonstrated a notable advantage in
providing an intuitive correlation between the optimization
of each subproblem and its corresponding weight vector
[26]. Such a correlation ensures that the evolution of the
solutions associated with a weight vector can be tracked
precisely. Specifically, the solutions associated with a weight
vector form a time-series dataset that can be leveraged
to train an LSTM network. In addition, the Differential
Evolution (DE) operator is an effective tool for generating
high-quality solutions in local regions, thereby smoothing the
evolution of the subpopulation linked to the weight vector.
MOEA/D-DE has also shown its capability in handling
complex problems with diverse Pareto sets, indicating
its proficiency in capturing optima-related information
in the decision space. As a result, MOEA/D-DE is an
ideal candidate for implementing the MOEA framework in
time-series prediction model-assisted optimization.

III. PROPOSED FRAMEWORK

The pseudocodes of the LSTM-assisted MOEA frame-
work, named MOEA/D-T, are given in Algorithm 2. To
begin with, MOEA/D-DE is adopted to optimize the EMOP
for t generations (Step 1). Notably, the solutions associated
with each weight vector are merged to form n solution sets
S = {S1, · · · , Sn}, and all the real FE evaluated solutions
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Algorithm 2: Framework of MOEA/D-T
Input: FEmax (maximum number of real FEs), n (population

size), t (length of time series).
Output: P (final population).

/* initialize population and LSTM models
*/

1: P,S, A← MOEA/D-DE(n, t, T, nr) // S = {S1, · · · , Sn}
2: FEs← t× n
3: for i← 1 : n do
4: net(i)← LSTM(Si) // train LSTM network
5: end
6: while FEs ≤ FEmax do
7: Y ← SA-MOEA/D(P ,net,T ,nr) // Y = {y1, · · · ,yn}
8: P,A,S← Update(P,A,S, Y )
9: for i← 1 : n do

10: net(i)← LSTM(Si) // train LSTM network
11: end
12: FEs← FEs+ n
13: end

are merged in archive A. Then, n LSTM networks are
trained, where the input of the network is the decision vector
of each solution while the output is the target of the SAEA
(Steps 3-5). Three MOEA/D-T variants are mentioned in
this study. The first variant predicts the decision vector of
the next generation for offspring generation in MOEA/D-
DE; the second variant predicts the objective vector of the
current decision vector; the last variant predicts both the
decision and objective vectors of the next generation. Next,
the iterative SAO is conducted until the maximum number of
real FEs are used (Steps 6-13). Specifically, LSTM networks
are embedded in MOEA/D-DE for SAO (Step 7), followed
by the update of population, training dataset, and LSTM
networks (Steps 7-11).

A. SA-MOEA/D

Algorithm 3: SA-MOEA/D-D
Input: P (population of size n), gen (iteration number of SAO),

net (LSTM network set).
Output: Y = {x1, · · · ,xn} (candidate solution set).

1: for i← 1 : gen do
2: for j ← 1 : n do
3: y← neti(xj) // LSTM-assisted generation
4: xj ← y
5: end
6: end

Three LSTM-assisted MOEA/D-DE variants are given,
including LSTM-assisted offspring generation (named SA-
MOEA/D-D, Algorithm 3), LSTM-based objective predic-
tion (named SA-MOEA/D-O), and LSTM-assisted offspring
generation and objective prediction (named SA-MOEA/D-
A). The output of all these three algorithms is the candidate
solution set Y , which will be evaluated using real FEs.

SA-MOEA/D-D generates candidate solutions directly by
using the LSTM network, and then the corresponding solu-
tion in the current population is replaced by the generated
candidate solution. SA-MOEA/D-O follows the framework

of conventional SAEAs, where the objective vectors of the
DE-generated candidate solutions are evaluated by the LSTM
network. In other words, the objective vector f(y) in Step 16
of Algorithm 1 is predicted by the trained LSTM network.
In SA-MOEA/D-A, the LSTM network is used to predict
the candidate offspring solution and its objective vector
simultaneously. Specifically, the offspring solution y in Step
15 and its objective vector f(y) in Step 16 of Algorithm 1
are predicted by the trained LSTM network.

Once the three variants are embedded in Algorithm 2, three
LSTM-assisted SAEAs, namely MOEA/D-TD, MOEA/D-
TO, and MOEA/D-TA, can be obtained, respectively.

IV. EXPERIMENTAL SETTINGS

PlatEMO v4.0 is adopted as the experiment platform, and
four representative SAEAs are compared with MOEA/D-
T. Notably, we select SMS-EGO [12], K-RVEA [11],
KTA2 [16], and HeEMOEA [27] for comparison as they
represent SAEAs with performance indicator-assisted fit-
ness transformation, training dataset processing, embedding
learning, and heterogeneous ensemble based infill criterion,
respectively. All these compared algorithms are set as rec-
ommended in the literature. Some details about surrogate
models and experimental comparisons are presented in what
follows.

A. Settings of test Problems

Six DTLZ problems with 10 decision variables (D = 10)
and two to three objectives (M ∈ {2, 3}) are used [28].
Notably, DTLZ4 is not tested as it could cause the model
collapse in the DACE toolbox as the number of available
unique samples is less than the number of decision variables.
The maximum number of real FEs is set to 300 in all
experiments as recommended in [16].

B. Settings of surrogate models

Kriging: the DACE toolbox is adopted for SMS-EGO,
KTA2, and K-RVEA; the zero-order polynomial regression
function is adopted as the regression model in KTA2, and
the one-order polynomial regression function is adopted in
SMS-EGO and K-RVEA; the Gaussian correlation function
is used in both algorithms; the initial θ is set to 5, the lower
boundary is set to 1, and the upper boundary is set t to 100
as recommended in [11], [16].

RBF: two RBF networks are involved. The first RBF net-
work uses the least square method to determine its weights,
and the second one uses the back-propagation algorithm for
model training. The number of hidden neurons for each RBF
network is set to ⌈

√
M +D + 3⌉, where M and D are the

numbers of objectives and decision variables, respectively.
SVM: the L1 soft margin approach was used to train the

model, and the three-order polynomial kernel is used with
the scale being set to 3 as recommended in [27].

LSTM: the maximum number of epochs is set to 800,
the initial learning rate is set to 0.035, and the RMSProp
optimizer is adopted for training the model. The structure of
the designed LSTM network includes four layers: a sequence
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input layer with input size D, an LSTM unit with 100 hidden
units, a batch normalization layer with mean decay of 0.1 and
a variance decay of 0.1, and a fully connected layer with
output size being D, M , and D +M in the three variants,
respectively.

C. Performance indicator

Since the Pareto optimal fronts of the test problems are
known, the inverted generalized distance (IGD) indicator
is adopted for performance assessment [29]. A number of
roughly 10,000 uniformly distributed reference points are
used as the reference point set for IGD calculation.

Each SAEA has been executed on each test instance over
25 independent runs for Friedman’s test at a significant
level of 0.05 [30], where “+”, “−”, and “≈” indicates
the algorithm is significantly better than, significantly worse
than, and statistically equal to the compared algorithm,
respectively.

V. ABLATION STUDY

Statistics of IGD results achieved by three MOEA/D-T
variants on six DTLZ problems are given in Table I, where
the best result in each row is highlighted. As can be observed,
MOEA/D-TO has achieved the most best mean IGD results,
followed by MOEA/D-TA. Generally, MOEA/D-TO mainly
performs the best on DTLZ1 to DTLZ3, while MOEA/D-
TA mainly performs the best on DTLZ5 to DTLZ7. One
conclusion can be drawn that learning the objective space
is essential, and thus supervised learning is capable of pro-
viding the selection pressure for pushing the population to-
ward the PF. Regarding the performance differences between
MOEA/D-TO and MOEA/D-TA, it seems that MOEA/D-TO
is good at convergence maintenance as only the objective
space is considered, while MOEA/D-TA shows its strength in
diversity maintenance due to the simultaneous consideration
of both decision and objective spaces.

TABLE I
STATISTICS OF IGD RESULTS ACHIEVED BY THREE MOEA/D-T
VARIANTS ON DTLZ PROBLEMS WITH 10 DECISION VARIABLES.

Problem M MOEA/D-TD MOEA/D-TO MOEA/D-TA

DTLZ1 2 8.9831e+1 (1.58e+1) ≈ 7.4019e+1 (2.69e+1) ≈ 8.2005e+1 (1.93e+1)
3 7.4722e+1 (1.93e+1) − 4.4162e+1 (2.10e+1) + 6.3370e+1 (1.51e+1)

DTLZ2 2 2.4741e-1 (6.76e-2) ≈ 2.0346e-1 (6.81e-2) ≈ 2.2067e-1 (4.59e-2)
3 3.7490e-1 (4.59e-2) ≈ 3.2401e-1 (5.72e-2) + 3.5686e-1 (4.39e-2)

DTLZ3 2 2.1183e+2 (1.89e+1) − 1.5456e+2 (7.05e+1) + 2.0011e+2 (1.06e+1)
3 1.7358e+2 (3.99e+1) − 9.4854e+1 (6.38e+1) + 1.6217e+2 (3.36e+1)

DTLZ5 2 2.3118e-1 (6.58e-2) ≈ 1.7960e-1 (5.78e-2) + 2.3450e-1 (6.97e-2)
3 2.3612e-1 (6.17e-2) − 2.1955e-1 (4.30e-2) ≈ 2.0669e-1 (8.85e-2)

DTLZ6 2 3.1507e+0 (6.01e-1) − 3.0631e+0 (8.92e-1) ≈ 2.7116e+0 (8.40e-1)
3 2.6585e+0 (6.95e-1) ≈ 2.3877e+0 (8.89e-1) ≈ 2.1593e+0 (7.78e-1)

DTLZ7 2 3.2035e+0 (1.37e+0) ≈ 2.9457e+0 (1.16e+0) ≈ 3.0074e+0 (1.38e+0)
3 5.1114e+0 (2.22e+0) ≈ 4.5718e+0 (1.35e+0) ≈ 4.3073e+0 (1.62e+0)

+/− / ≈ 0/5/7 5/0/7

Due to the multi-modality of the DTLZ1 problem, con-
ventional SAEAs can hardly obtain well-converged solutions
on this problem. Figure 2 shows the real function evaluated
solutions obtained by the three MOEA/D-T variants on bi-
objective DTLZ1 with ten decision variables. As can be ob-
served, MOEA/D-TD and MOEA/D-TA achieved clustered
solution sets, while MOEA/D-TO can obtain solutions evenly

distributed around the weight vectors. This phenomenon may
be attributed to the fact that the output sizes of the LSTM
networks in the three variants are D, M , and D+M , respec-
tively. In other words, the LSTM networks in MOEA/D-TD
and MOEA/D-TA involve more learnable parameters than in
MOEA/D-TM, causing the problem of overfitting as only a
limited number of training samples are available.

Unlike the DTLZ problem, the PF of the tri-objective
DTLZ6 is a degenerated curve, and thus brings great
challenges to weight/reference vector-based MOEAs [31].
The real function evaluated solutions obtained by the three
MOEA/D-T variants are given in Figure 3. Since only weight
vector [0, 0, 1] interacts with the PF, most real function
evaluated solutions are closed to f3. The ineffectiveness of
MOEA/D-T variants on this problem could be addressed by
selecting weight vectors that interact with the PF.

Since the main challenge in solving EMOPs lies in con-
vergence enhancement, decision-makers could prefer SAEAs
with better convergence enhancement instead of capability
in diversity maintenance. Thus, MOEA/D-TO is used as the
best variant for expensive multiobjective optimization.

A. Comparisons with Existing SAEAs
The effectiveness of MOEA/D-TO is tested by com-

paring it with four representative SAEAs, i.e., K-RVEA,
KTA2, HeEMOEA, and SMS-EGO. Statistics of IGD results
achieved by the five compared algorithms on six DTLZ prob-
lems are given in Table II. It is obvious that MOEA/D-TO has
achieved the most best mean IGD results, followed by KTA2
and K-RVEA. It is also worth noting that MOEA/D-TO
mainly performs the best on DTLZ1, DTLZ3, and DTLZ6,
which are hard to obtain well-converged solutions; on the
contrary, KTA2 has performed the best on DTLZ2 and
DTLZ5; K-RVEA has performed the best on DTLZ7. The
convergence of the proposed algorithm is competitive com-
pared with the four representative SAEAs attributed to the
assistance of the LSTM network. Nevertheless, MOEA/D-
T performs poorly in diversity maintenance, which may be
attributed to the maintenance of a small population.

To show the strength of MOEA/D-TO in convergence
enhancement, the non-dominated solutions obtained by the
five compared algorithms on tri-objective DTLZ3 are given
in Figure 4. The non-dominated solutions obtained by
HeEMOEA and K-RVEA are far from the PF, while only
MOEA/D-TO can obtain well-converged solutions, as shown
in the subplot.

The results in Table II demonstrate that MOEA/D-TO
achieves acceptable variances in multiple runs, where the
variance of the IGD results is smaller than the mean IGD
result. However, K-RVEA and KTA2 have both achieved
statistical results with large variances. Therefore, MOEA/D-
TO’s superior robustness, compared to the other algorithms
evaluated, is promising for solving real-world EMOPs.

VI. CONCLUSIONS

This study explored the use of time-series prediction
models in learning the evolution process for computation-
ally expensive multiobjective optimization. Attributing to
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Fig. 2. All real function evaluated solutions obtained by three variants of MOEA/D-T on bi-objective DTLZ1 with 10 decision variables. The red dash
lines are the adopted weight vectors.

Fig. 3. All real function evaluated solutions obtained by three variants of MOEA/D-T on tri-objective DTLZ6 with 10 decision variables. The red dash
lines are the adopted weight vectors, and the magenta dots are the Pareto optimal solutions.

TABLE II
STATISTICS OF IGD RESULTS ACHIEVED BY K-RVEA, KTA2, HEEMOEA, SMS-EGO, AND MOEA/D-TO ON SIX DTLZ PROBLEMS WITH 10

DECISION VARIABLES.

Problem M K-RVEA KTA2 HeEMOEA SMS-EGO MOEA/D-TO

DTLZ1 2 8.9762e+1 (4.59e+1) ≈ 1.1751e+2 (4.76e+1) ≈ 1.4948e+2 (3.24e+1) − 8.9204e+1 (4.03e+1) ≈ 7.4019e+1 (2.69e+1)
3 9.5041e+1 (2.33e+1) − 6.4702e+1 (3.57e+1) ≈ 1.0705e+2 (2.88e+1) − 7.4849e+1 (2.87e+1) ≈ 4.4162e+1 (2.10e+1)

DTLZ2 2 9.1752e-2 (1.29e-1) ≈ 8.0855e-2 (1.52e-1) + 1.4309e-1 (2.38e-2) ≈ 2.7762e-1 (6.67e-2) ≈ 2.0346e-1 (6.81e-2)
3 2.1620e-1 (1.06e-1) + 1.3100e-1 (1.41e-1) + 1.7829e-1 (1.07e-2) + 2.7641e-1 (5.09e-2) ≈ 3.2401e-1 (5.72e-2)

DTLZ3 2 2.4072e+2 (1.39e+2) ≈ 2.4648e+2 (1.10e+2) ≈ 3.6847e+2 (6.84e+1) − 2.4662e+2 (1.09e+2) ≈ 1.5456e+2 (7.05e+1)
3 2.7030e+2 (7.55e+1) − 1.9695e+2 (9.79e+1) ≈ 2.9209e+2 (8.77e+1) − 2.2145e+2 (1.10e+2) − 9.4854e+1 (6.38e+1)

DTLZ5 2 8.7780e-2 (1.32e-1) ≈ 7.1991e-2 (1.35e-1) + 1.3463e-1 (2.15e-2) ≈ 2.6166e-1 (7.78e-2) ≈ 1.7960e-1 (5.78e-2)
3 1.4614e-1 (8.75e-2) + 7.5257e-2 (1.30e-1) + 1.2281e-1 (1.64e-2) + 1.3889e-1 (9.10e-2) + 2.1955e-1 (4.30e-2)

DTLZ6 2 3.8490e+0 (1.18e+0) ≈ 3.3361e+0 (2.19e+0) ≈ 7.5148e+0 (1.13e-1) − 3.2245e+0 (2.21e+0) ≈ 3.0631e+0 (8.92e-1)
3 3.9423e+0 (1.48e+0) − 2.6012e+0 (1.85e+0) ≈ 6.6418e+0 (1.20e-1) − 4.0937e+0 (1.49e+0) − 2.3877e+0 (8.89e-1)

DTLZ7 2 8.0909e-1 (1.84e+0) + 9.7421e-1 (1.95e+0) + 3.3084e+0 (4.75e-1) ≈ 1.5234e+0 (1.62e+0) ≈ 2.9457e+0 (1.16e+0)
3 1.2792e+0 (2.70e+0) + 1.3246e+0 (2.56e+0) + 5.5028e+0 (4.93e-1) ≈ 2.3972e+0 (2.25e+0) ≈ 4.5718e+0 (1.35e+0)

+/− / ≈ 4/3/5 6/0/6 2/6/4 1/2/9

the decomposition-based MOEA framework, optimizing a
subproblem in an EMOP over several generations can be
regarded as a time-series evolutionary optimization process.
Therefore, the LSTM network can approximate the time-
series data regarding the objective or the decision vectors.
Subsequently, the trained network can predict the candidate
offspring solution or the fitness value of a candidate solu-
tion in an SAEA. Three variants that adopted the LSTM
network for surrogate-assisted multiobjective optimization
are proposed and compared. The ablation study indicates
the effectiveness of the LSTM network in learning the

objective functions in terms of time-series prediction. Em-
pirical comparisons with SOTA SAEAs have validated the
effectiveness and robustness of time-series prediction models
in computationally expensive multiobjective optimization.

Despite the effectiveness of the proposed time-series
prediction model based SAEA, some problems should be
addressed in future work. (1) Due to the limitation in the
number of FEs, the length of the time-series samples for
training the LSTM network is short, which could suffer
from the loss of model accuracy. Innovative ideas for data
augmentation could significantly improve the accuracy of the
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Fig. 4. Non-dominated solutions obtained by five compared algorithms on
tri-objective DTLZ3 with 10 decision variables in the run associated with
the medium IGD results.

surrogate models. (2) The decomposition-based framework
is sensitive to the shape of the PF, and thus its performance
could degenerate on EMOPs with irregular PFs. The employ-
ment of weight adaptation strategies or adaptive MOEA/D
is promising for improving the versatility of the proposed
SAEA. (3) Only the LSTM network was used as the time-
series prediction model in this work. The potential of other
statistical, machine learning, or deep learning time-series
models should be investigated to demonstrate the advantages
of time-series prediction models in SAO. (4) The applications
of time-series prediction model-based SAEAs in real-world
EMOPs are also highly desirable.
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