
Imitation Learning of Diverse Expert Behaviors for

Advanced Machining System Optimizations

Qinge Xiao, Zhile Yang*,Chengke Wu, Yuanjun Guo

Shenzhen Institute of Advanced Technology

Chinese Academy of Sciences

 Shenzhen, China

Email: qg.xiao@siat.ac.cn; zl.yang@siat.ac.cn; ck.wu@siat.ac.cn; yj.guo@siat.ac.cn

Abstract—The potential intelligence behind advanced

machining systems (AMSs) offers positive contributions

toward process improvement. Compared with conventional

meta-heuristics, imitation learning (IL) appears to provide a

more powerful tool to exploit such intelligence by observing

demonstrations from technologists. This paper proposes a

novel IL-based policy search algorithm that equips the agent

with the optimization knowledge by executing upper-level

policy learning to generate an imitation policy distribution

with diverse decision behaviors. The experimental results of

heavy cutting scenarios show that the proposed method rather

than meta-heuristics is more viable for solving AMS

optimization problems.

Keywords—Imitation learning; Policy search; Advanced

machining system

I. INTRODUCTION

The advanced machining system (AMS) that relies on
computer numerical control machines, was developed for
fast, stable, and accurate processing in contemporary
manufacturing sectors [1]. However, with the improvement
of machine intelligence, AMS requires more energy
consumption to support complex electrical control structures,
which in return gives rise to environmental impacts and
emissions [2]. Therefore, energy-efficient measures and
technologies for process optimization are particularly
important to maintain enterprises’ business competitiveness
without violating the green missions.

Even though meta-heuristic algorithms have achieved
some success in the parameters optimization for AMS,
obstacles still exist owing to the following reasons: (i) Meta-
heuristics may suffer from the curse of dimensionality with
too many conflicting objectives, while AMS often involves a
large number of stakeholders and functionalities. Compared
with ordinary machining systems, AMS needs to pursue the
balance of various requirements more rigorously and
comprehensively [3]. (ii) The performance of meta-heuristic
algorithms depends strongly on the accuracy of mathematic
models. However, AMS is hard to specify as it exhibits real-
time and probabilistic behaviors in processing, which poses a
significant challenge to formulate an appropriate theoretical
model. Compounding errors will occur when learning on
unreliable models and even cause serious mistakes with
devastating consequences [4].

The AMS, as a typical human-computer interaction
system. If intelligence can sufficiently be included with
AMS optimization, the optimization processes would require
almost no ad hoc mathematical modeling; instead, we can
directly learn optimization from technologists’
demonstrations because these data are powerful replacements
for manually coding domain intelligence [5]. This specialty
is likely to address the limitations of the meta-heuristics
mentioned above. In this paradigm, an alternative and often
more practical approach, termed imitation learning (IL), is
adopted to help us reveal intelligence (knowledge) hidden in
demonstration and turn it into a crucial competitive
advantage [6].

IL is characteristically inclined towards solutions that
approximate experts’ thinking and satisfy realistic
preferences. However, for most policy-based IL algorithms,
demonstrations from one or multiple experts are assumed to
obey the identical deciding principles and only a single
behavioral policy is used to learn from these samples [7]. A
recent breakthrough in IL, named generative adversarial
imitation learning (GAIL), encourages the imitator to match
the state-action distribution of the demonstrator [8].
Unfortunately, it retains a single policy for each task. Yet, it
cannot be guaranteed that all consistently follow the same
policy because human attention is limited and varies. These
methods are inherently local and will suffer from mode-
averaging when an agent has to learn a policy across
trajectory samples with diverse decision behaviors.
Motivated by this, this paper attempts to learn optimization
principles from these demonstrations and help to resolve the
negative impacts regarding objective-dimension failure and
strong model dependence suffered by conventional meta-
heuristic algorithms. The rest of the paper is organized as
follows. Section II introduces the optimization problem
setups. The proposed method is presented in Section III.
Section IV shows the experimental results and analysis.
Section V gives the conclusions.

II. PROCESS OPTIMIZATION OF ADVANCED MACHINING

SYSTEM

A. Problem setups

Similar to conventional machining systems, AMS seeks
to determine economically and environmentally beneficial

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 164

process parameters for multi-pass operations. Without loss of
generality, multi-pass process optimization can be
transformed into a static, constrained, and multi-objective
optimization problem described by Eq. 1 [9].

{
𝑎𝑟𝑔𝑚𝑖𝑛

𝑋
𝑓𝑞(𝑋) = [𝑓1

𝑞
(𝑋), 𝑓2

𝑞
(𝑋), . . . , 𝑓𝑝

𝑞
(𝑋)], 𝑋 ∈ 𝛺

𝑠. 𝑡. ℎ𝑖
𝑞
(𝑋) = 0 ; 𝑔𝑖

𝑞
(𝑋) < 0, 𝑖 = 1,2, . . .

 (1)

where 𝑋 = {(𝑣𝑐
𝑢 , 𝑓𝑟

𝑢, 𝑎𝑝
𝑢)}𝑢≤𝑈 are the decision variables:

cutting speed vc, feed rate fr, and cutting depth ap of U passes.
𝛺 = ∏𝑠=1

𝑛 [𝑎𝑠 , 𝑏𝑠] denotes the decision space and n is the
dimensionality of the decision space. The mapping

1: [,]q n p

s s sf a b= → consists of p continuous conflicting

objective functions 1 2, ,....,q q q

pf f f
 under the machining

configuration q=<workpiece property wt, machine tool mt,

cutting tool ct>.
q

ih
 and

q

ig are the i-th constraints that the

system must meet.

B. MDP setups

A general issue encountered in AMS that concerns

significant machining dynamics due to variations of q [10].

To solve it, the problem is placed in a Markov decision

process (MDP) framework which is standard for describing

dynamic systems. Initially, basic notions from

reinforcement learning (RL) are defined and the MDP

model is represented by a tuple MA=(S,A,P,R,γ). Action

A={at,}in which , ,t t t

t c r pa v f a=  specifies the process

parameters of each pass. State S={st}where st=<Dt,κt,ut,at-1>

describes the observations, namely workpiece geometry Dt

and machining allowance κt, the notion of the remaining

time uh, and the action selected in the previous step at-1 when

the agent enters an AMS.
S A

SP  is the Markovian

transition kernel that gives the probability of an outcome,

e.g., state s’ by an action executed in state s. S AR  is the

reward function that defines the gain at each time-step and

contains the information that guides the agent towards the

objectives. γ∈[0,1] is the discount factor representing how

fast the contribution of the present reward decays.

In this formalism, the agent follows a stochastic policy

π(a|s): [0,1]S A → that represents the action choice

probabilities for each state and satisfies

1 1() () (,)
t

t t t t t t ta
P s s a s p s s a+ += . To justify the quality of a

policy π regarding the reward R, the state-action value

function is defined as , 0
[(,)]s a t tt

Q R s a  
+

=
=  mapping state-

action pairs (s,a) to the expected discounted cumulative

reward for starting in state s, taking the action a, and

following the policy π afterward.

III. PROPOSED METHOD

A. Generative adversarial imitation learning (GAIL)

This study relied on GAIL, a popular model-free

imitation learning framework that, similarly to the

Generative Adversarial Network (GAN), produces an

imitation policy. GAIL is derived from inverse

reinforcement learning (IRL), which aims at imitating a

policy   approximating the unknown expert policy πE

with an occupancy measure condition :
E  = [11] The

learning process can be formulated as an optimization

problem with the following objective function:

min{ ((,) (,)) ()}
E

s a s a H 


   


− − (2)

where (,) (,)t

t tt
s a p s s a a = = = is the state-action

visitation distribution defining the one-to-one

correspondence between the policy and its occupancy

measure. ()  denotes distribution discrepancy of the

occupancy measures. H(π) is the regularisation of the policy.

B. Motivations for generating imitation policy

Intelligence in AMS is often vague and multi-

intentioned. We then consider diverse behaviors in each

expert domain and solve the problem differently, where

demonstrations are assumed to be a trajectory mixture

distribution, in the sense that applying GAIL is equivalent to

learning a segment of the mixture distribution. To fit the

trajectory distribution, we introduce the concept of an

upper-level policy πφ(θ) [12] – by defining a parameterized

distribution over θ – that selects the parameters of the actual

control (low-level) policy πθ(a|s). A generator

(;) :G z Z → is used to transfer the distribution ~ (0,1)z
into an upper-level policy πφ(θ), where Z, Ф, and Θ denote

the sampled input domain, G’s parameter space, and the

low-level policy parameter space, respectively. The

overview of GAIL and the proposed method are shown in

Figure 1, in which the difference is depicted intuitively.

z

Generator
As close as

possible

()
E

x

T
h
e

p
ro

p
o

se
d
 m

et
h
o

d
G

A
IL

Trajectory sample τ={(s,a)}

z

State marginal

distribution

G(z;φ)Generator

Simple normal

distribution

~z As close as

possible

Upper-level policy

Low-level policy

() : ()g x   =

s,a

Trajectories

()
E

x

θ2

θ1

θ Trajectory sample τ={(s,a)}

1: ~ (,)t tz s s s −=

()x

()x




Fig. 1 Graphic representation of GAIL and proposed method

C. Learning from near-optimal demonstrations

The agent learns behaviors to advance economic

interests by employing adversarial imitation. A

demonstration dataset 0 0 1 1{(, , , ,...) }
E iED s a s a = is first

constructed by aggregating all trajectories in the policy

context
iE . These demonstrations are assumed to be near-

optimal and are used for preliminary training of generator

G(z;φ) and discriminator D(s,a;ω). The generator takes

samples ~ (0,1)z from a simple Gaussian distribution and

outputs an upper-level policy πφ(θ), from which the low-

level policies πθ(a|s) can be generated. By executing these

policies in the MDP environment, we then obtain sets of

trajectories that imitate the expert behaviors. A

discriminator is concurrently trained to assign each state-

action pair with logD(s,a), evaluating the immediate cost at

the time.

165

1)Gradient estimator for generator

Instead of directly finding the parameters θ of the low-

level policy, we attempt to find the optimal parameter vector

of G(z;φ). The benefit is that the policy distribution can

directly be used to explore the parameter space. Hereby,

learning an extension of GAIL with upper-level policy can

be formulated as a replacement expression of Eq. 2:

~ (;) , ~

~ (;)

min max (,) min max [log((, ;))]

[log(1 (, ;))] [()]
E

G z s a

G z

D s a

D s a H

 

 

  
  

   

  

  

=

+ − −

 (3)

where D(s,a;ω) denotes the discriminator network with

weights ω. The first step of Eq. 3 concludes the fitness

function ()J  for learning the upper-level policy

expanded as Eq. 4. Then, the above problem is solved by the

policy-gradient method.

~ (;) , ~() [log((, ;))]

() () () log((, ;))

G z s a

S A

J D s a

P s a s D s a dadsd

 
    

 

 

     


=

=   

 (4)

We can derive a gradient estimator for the imitation

policy generator, which helps to learn the optimal

distribution parameters φ. The gradient of the policy

optimization has the form

() ~ (;)() [()]G zJ H
          = −  . (5)

The optimization problem for learning upper-level

policies can be reformulated as Eq. 6, where ()J 
is

updated using traditional gradient estimation with N state-

action pairs in a trajectory.

() ()

() ()

1

1
ˆ ˆ() () (;); ()m m

M
m m

m

J J G z z z
M

   
   

=

    (6)

As seen from Eq. 6, the problem lies in finding a means

of computing the term (;)G z   =  . Typically, this term is

calculated by using the inverse of the path
1(,)g  −

 [13].

However, since an irreversible Multi-Layer Perceptron

(MLP) was used to construct the imitation policy generator,

another way of writing (;)G z  is by analyzing the

backpropagation of each layer.

2) Gradient estimator for discriminator

A discriminator is developed to infer the cost function

underlying the demonstrated behaviors. To recover cost

functions that are more robust to changes in a dynamic

AMS, a discriminator that relies on energy-based models is

specially developed.

The discriminator shares the same objective function as

the policy generator (see Eq. 3). The negative loss is used to

invert the maximization problem into one of minimization.

To reduce the variance, Finn et al. [14] used a mixture

distribution between the expert dataset and the policy

samples (denoted as μ) to reduce the variation when the

policy ()a s has poor coverage over the demonstrations in

the early stages of training. Then, the loss function is

() [log((, ;))] [log(1 (, ;))]

()exp{ (,)}
 = [log] [log]

exp{ (,)} () exp{ (,)} ()

 = { (,)} [log ()] 2 [log

E

E

E

D s a D s a

a ss a

s a a s s a a s

s a a s

 

 

 

  


  

 

    

  



   

 

 − = + − 

 
+ 

+ + 

  + −  (exp{ (,)} ())]s a a s +

(7)

To find the optimal weighting ω, the policy gradient

method is applied to minimize the objective ()− . Taking

the derivative with respect to ω, we have:

1 1 1

exp{ (,)} (,)
() { (,)} []

1 1
exp{ (,)} ()

2 2

exp{ (,)} (,)1
 = [(,)]

1 1
exp{ (,)} ()

2 2

M N M N
o o o o

mn mn

m n o
o o o o

s a s a
s a

s a a s

s a s a
s a

M N
s a a s

 

  
     



  
 



 
 

 

 


 



= = =


  = −  + 

+


− +


+

 

 (8)

where (,)s a  is easily calculated through automatic

derivation by the neural network.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed is tested by two kinds of experiments.

First, the application experiments in a practical AMS

environment are conducted to illustrate the effectiveness of

the proposed method. Second, computational experiments

focusing on the performance of policy imitation.

A. Experimental configurations

For the application experiments, different machine

tools, cutting tools, and workpieces were used to design two

AMS scenarios. Table 1 lists the specifications of the

primary components, and all of the data were obtained in a

real workshop [15].

The maximum mean discrepancy (MMD) was used to

distinguish the distance between the learned trajectory

(distributions) and the demonstration distributions. The

closer the MMD approached zero, the higher the similarity

with the expert samples. Additionally, three noise factors,

namely the tool wear, cutting temperature, and machine tool

chatter, were investigated. These factors reflect the system’s

stability. The heavy cutting processes associated with the

measuring devices are depicted in Figure 2.

Fig. 2: Machining processes and data measurement setup

166

The computational experiments were conducted in

Python 3.6.3 using an Intel 3.40 GHz PC with 16 GB of

RAM. The algorithm parameters and neural networks were

rigorously set by the trial-and-error method. The upper-level

policy was parameterized in a feed-forward MLP with an 8-

64(Relu)-128(Relu)-256(Relu)-1312(Tanh) structure. All of

the low-level policy networks followed the same 6(Tanh)-

32(Tanh)-3 structure. The discriminator network was

arranged as a 9(Tanh)-64(Tanh)-1 structure. We selected the

Adam optimizer to train the gradient-based generator and

discriminator. The Adam optimizer was characterized by the

{ξ1, ξ2, lp, ψ} parameters, where ξ1 and ξ2 denote two

exponential decay rates, lp denotes the learning rates, and ψ

avoids division by zero. For the generator, we set ξ1=0.0, ξ2

= 0.9, lp=5e-4, and ψ=1e-8. For the discriminator, the three

parameters were changed to ξ1=0.9, ξ2=0.99, and lp=3e-4.

M=150 low-level policies were sampled each time the

generator was trained. The IL agent traversed 25 parallel

environments to collect 100 trajectories (solutions) for

learning human behaviors from 500 demonstrations. For

training the networks, the batch size was set to 32.

Table 1: Machining configurations for AMS
Item Value

Task 1 Task 2

Machine tool C2-6150HK/1 CHK560

Max cutting force 1.8 1.0

Max power

Standby power

9500

945

9000

860

Cutting tool CNMG120408 ENMG120408

Rake angle 10 9

Tool clearance 4 11

Cutting edge inclination 9 3

Circle radius 0.3 0.7

Max tool life 30 55

Wokpiece Shaft Shaft

Material 40CrNiMnA HT300

Diameter 80 30

Air-cutting length 15 15

Cutting length 100 80

Coolant condition Water-based Water-based

Requirements - -

Machining allowance 15 10

Cutting speed [50,120] [40,100]

Feed rate [0.06,0.500] [0.06,0.400]

Surface roughness 2.5 2.5

B. Application experiments

We conducted physical tests in a real AMS

environment to demonstrate the efficacy of learning from

demonstrations. Four state-of-the-art meta-heuristic

approaches, including NSGA-III, GDE3, SMPSO, and

MOEA/D-IEpsilon were also investigated as references. The

programming code and algorithm descriptions are available

online (https://github.com/jMetal/jMetalPy). Two traditional

metrics, namely the time Tp and cost Cp, were observed and

these metrics exist in the fitness functions of algorithms in

the form of the mathematical model reported by Xiao et al.

(2021). Additionally, we tested the CPU runtime in Phase

III, which represented the computational efficiency of

GPoLI-PI during application. Table 2 lists the SEC, Cp, and

Tp values and the CPU runtime obtained for the five

algorithms when applied to solve two task instances. The

best and worst values of each metric are marked in bold.

Table 2 clearly shows that all the solutions generated

by the meta-heuristics produced smaller SECs since larger

parameters were chosen in the heavy cutting processes. In

Task 1, e.g., the SEC of SMPSO was 8.51% lower than that

of GPoLI-PI. Although the meta-heuristics improve energy

efficiency, the large parameters will cause severe tool wear,

extending the tool change time, and thereby increasing the

total processing time. Under the optimal schemes, the Tp of

GPoLI-PI could be decreased by up to 11.27% (compared to

SMPSO in Task 1). Likewise, the tool change cost would

increase as sharply as the increase in tool change time.

Despite this, the cost increase caused by tool changing does

not dominate the total cost, which would thus decrease

when a large MRR is selected. From the data, the Cp of

GDE3 was 7.65% lower than that of GPoLI-PI. Besides,

meta-heuristics must conduct exploration and exploitation

online, resulting in a reduced convergence rate. The

computational efficiency of GPoLI-PI could be improved by

up to 58.91% (compared to NSGAIII in Task 2).

In addition to traditional metrics, we also investigated

the noise factors which reflect the robustness of AMS. The

test indicators include the vibration signals (Figure 3(a))

representing the machine tool environment, temperature

signals (Figure 3(b)) representing the workpiece

environment, and tool wear (Figure 3(c)) representing the

tool environment. As the figures show, it is difficult to add

the noise factors into the models mathematically; therefore,

their adverse effects on processing stability cannot be

considered during optimization. This makes the algorithm

converge to a larger parameter combination and increases

the risk of workpiece machining failure. Overall, meta-

heuristics demonstrate little preponderance when operating

on most test problems due to both noise factors and

traditional economic metrics. This adverse effect cannot be

alleviated by increasing the optimization time or

performance of the meta-heuristic algorithms.

Fig.3 Vibration (a), temperature (b), and tool wear (c)

measurements of SMPSO and GPoLI-PI

167

Table 2 Quantitative metrics of proposed algorithm and meta-heuristics during 50 runs

Task Metric GPoLI-PI NSGAIII GDE3 SMPSO MOEA/D-IEpsilon

1 SEC 21.495±5.126 20.372±5.754 19.764±4.680 19.665±4.651 19.986±5.098

 Tp 340.866±24.876 392.422±27.981 387.126±23.775 383.864±21.932 390.763±25.289

 Cp 2.575±0.293 2.415±0.432 2.378±0.199 2.384±0.217 2.392±0.426

 CPU time 53.010±6.5674 91.487±9.0556 63.933±14.685 71.143±11.212 88.542±6.597

2 SEC 13.127±4.078 13.087±4.187 11.542±3.865 11.544±3.173 11.765±4.264

 Tp 287.532±25.876 319.964±24.085 319.096±18.763 317.856±20.986 323.218±24.165

 Cp 2.094±0.182 2.043±0.293 1.996±0.132 1.975±0.129 1.984±0.115

 CPU time 20.356±4.0732 49.536±10.037 28.155±15.221 38.162±9.836 47.697±5.917

C. Computational experiments

In this section, we evaluate the performance of

GPoLI-PI based on several comparative tests on two

continuous AMS tasks of varying scales and divergent

expert demonstrations in the training phase. For the given

tasks, the imitation policy was optimized using 50, 100,

and 150 trajectories. The divergence for the

multidimensional trajectory distributions was estimated

via maximum mean discrepancy, and the K-nearest

neighbor algorithm was used to classify the extent of

divergence as small (S), middle (M), or large (L). Given

the preliminary level of experiments and the absence of

various state-of-the-art works on the recent generative

policy distribution-based IL, we adopted three baseline

algorithms, as introduced below.

Baseline I (GAIL): This is a framework to extract a

single policy from diverse demonstrations, which matches

the state-action distribution of the learned policy to that of

the expert policy. The test validates using the policy

distribution against the single policy to fit the

demonstrations.

Baseline II (GPowD): The conventional neural

network : (0,1)D S A  → with weights ω is used to

construct a discriminator. The remainder, including

generator training and policy-manifold learning, follow

the same steps as GPoLI-PI. It illustrates the effectiveness

of the energy-based discriminator.

Table 3 Algorithm comparisons

Fig.4 Convergence plots of task 1 and task 2

It follows from Table 3 and Fig.4 that our method with

an energy-based discriminator may converge in under 1500

and 2000 interactions with the environment of Tasks 1 and

2, respectively. Compared to GPowD, which uses the same

policy network but a conventional discriminator, GPoLI-PI

is superior in imitation accuracy and stability even though it

takes 10%~15% more learning time. In contrast, GAIL is

more likely to converge to the local optimum slowly and

may suffer discriminator degeneration in complex tasks.

This means that GAIL is limited to a mode-average

regression owing to the forced usage of a single policy to

map the varied expert trajectories.

D. Visualisation of trajectory distributions

To illustrate how the GPoLI-PI algorithm performs

behavior imitation in Phase I and applies it to the Pareto-

policy manifold learning processes, the evolutionary

trajectory/policy distributions are visualized as iterations (see

Figure 5). Given that the above two distributions are high-

dimensional, t-distributed stochastic neighbor embedding (t-

SNE) is used to reduce them to two dimensions and regulate

the value range to [0,1].

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig.5 Visualisations of trajectory and policy

distributions during Phases I and II

From the figures, it follows that: After initialization, the

policy manifold is randomly scattered. After several

iterations, the number of red points decreases, indicating that

the algorithm discovers useful knowledge when constraints

are avoided. Also, the reduction of grey diamonds implies

that, increasingly, the generated trajectories approximate

expert decisions. Because even Phase I required >1500

iterations to imitate near-optimal demonstrations, training

GPoLI-PI models for more robust optimization is advisable

and improves the practicality of AMS applications.

168

V. CONCLUSION

To undertake the process optimization for robust

and energy-efficient AMS, we have developed an

amalgamation of upper-level policy IL. The

summarised results include the following three

perspectives. First, the optimization of AMS is newly

formulated to imitate the behaviors of process experts

who have extensive optimization knowledge. The

formulation is demonstrated more robustly and

realistically than conventional meta-heuristics because

it avoids addressing multi-objective optimization and

model inaccuracy caused by noise factors. Then, the

generative neural network is reconstructed to serve as

an upper-level policy approximator and opens new

doors to single-policy IL to alleviate the problem of

mode-averaging. Besides, the efficacy of the energy-

based discriminator is validated by good performance

when overcoming the degraded learning of the cost

function.

ACKNOWLEDGMENT

This work was supported in part by the Natural

Science Foundation of Guangdong Province

(2020A1515110541).

REFERENCES

[1] Mansouri, S.A., Aktas, E., and Besikci, U. (2016) Green scheduling
of a two-machine flowshop: Trade-off between makespan and
energy consumption. European Journal of Operational Research, 248,
772-788.

[2] Yoon, H. S., Kim, E. S., Kim, M. S., Lee, J. Y., Lee, G. B. and Ahn,
S. H. (2015). Towards greener machine tools - a review on energy
saving strategies and technologies. Renewable & Sustainable Energy
Reviews, 48, 870-891.

[3] Deb, K. and Jain, H. (2014) An evolutionary many-objective
optimization algorithm using reference-point-based nondominated
sorting approach, Part I: solving problems with box constraints,
IEEE Transactions on Evolutionary Computation, 18(4), 577-601.

[4] Hung, J. and Lin, W. (2019) Investigation of the dynamic
characteristics and machining stability of a Bi-rotary milling tool.
Advances in Science and Technology-Research Journal, 13(1), 14-
22.

[5] Diego, R.F., Trindade, P., Lobo, J. and Dias, J. (2014) Knowledge-
based reasoning from human grasp demonstrations for robot grasp
synthesis, Robotics and Autonomous Systems, 62(6): 794-817.

[6] Finn, C., Christiano, P., Abbeel, P., and Levine, S. (2018) A
connection between generative adversarial networks, inverse
reinforcement learning, and energy-based models.
arXiv:1710.11248v2.

[7] Zuo, G., Zhao, Q., Huang, S., Li, J. and Gong, D. (2021) Adversarial
imitation learning with mixed demonstrations from multiple
demonstrators. Neurocomputing, 457, 365-376.

[8] Ho, J. and Ermon, S. (2016) Generative adversarial imitation
learning, 30th Conference on Neural Information Processing
Systems (NIPS 2016), Barcelona, Spain.

[9] Xiao, Q., Li, C., Tang, Y., Li, L. and Li L. (2019) A knowledge-
driven method of adaptively optimizing process parameters for
energy efficient turning, Energy, 166, 142-156.

[10] Xiao, Q., Niu, B. and Chen Y. (2021) Policy manifold generation for
multi-task multi-objective optimization of energy flexible machining
systems. IISE Transactions. DOI: 10.1080/24725854.2021.1934756.

[11] Ng, A.Y. and Russell, S. (2000) Algorithms for Inverse
Reinforcement Learning, Poc. ICML, 663-670.

[12] Parisi, S., Pirotta, M. and Peters, J. (2017) Manifold-based multi-
objective policy search with sample reuse, Neurocomputing, 263, 3-14.

[13] Mohamed, S., Rosca, M., Figurnov, M. and Mnih A. (2020) Monte
Carlo gradient estimation in machine learning. Journal of Machine
Learning Research, 21(132), 1-62.

[14] Finn, C., Levine, S. and Abbeel, P. (2016) Guided cost learning: Deep
inverse optimal control via policy optimization, Proceedings of the
33rd International Conference on Machine Learning, New York, NY,
USA.

[15] Li, C., Chen, X., Tang, Y. and Li L. (2017) Selection of optimum
parameters in multi-pass face milling for maximum energy efficiency
and minimum production cost. Journal of Cleaner Production, 140,
1805–1818.

169

