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Abstract—The potential intelligence behind advanced 

machining systems (AMSs) offers positive contributions 

toward process improvement. Compared with conventional 

meta-heuristics, imitation learning (IL) appears to provide a 

more powerful tool to exploit such intelligence by observing 

demonstrations from technologists. This paper proposes a 

novel IL-based policy search algorithm that equips the agent 

with the optimization knowledge by executing upper-level 

policy learning to generate an imitation policy distribution 

with diverse decision behaviors. The experimental results of 

heavy cutting scenarios show that the proposed method rather 

than meta-heuristics is more viable for solving AMS 

optimization problems. 

Keywords—Imitation learning; Policy search; Advanced 

machining system 

I. INTRODUCTION 

The advanced machining system (AMS) that relies on 
computer numerical control machines, was developed for 
fast, stable, and accurate processing in contemporary 
manufacturing sectors [1]. However, with the improvement 
of machine intelligence, AMS requires more energy 
consumption to support complex electrical control structures, 
which in return gives rise to environmental impacts and 
emissions [2]. Therefore, energy-efficient measures and 
technologies for process optimization are particularly 
important to maintain enterprises’ business competitiveness 
without violating the green missions. 

Even though meta-heuristic algorithms have achieved 
some success in the parameters optimization for AMS, 
obstacles still exist owing to the following reasons: (i) Meta-
heuristics may suffer from the curse of dimensionality with 
too many conflicting objectives, while AMS often involves a 
large number of stakeholders and functionalities. Compared 
with ordinary machining systems, AMS needs to pursue the 
balance of various requirements more rigorously and 
comprehensively [3]. (ii) The performance of meta-heuristic 
algorithms depends strongly on the accuracy of mathematic 
models. However, AMS is hard to specify as it exhibits real-
time and probabilistic behaviors in processing, which poses a 
significant challenge to formulate an appropriate theoretical 
model. Compounding errors will occur when learning on 
unreliable models and even cause serious mistakes with 
devastating consequences [4]. 

The AMS, as a typical human-computer interaction 
system. If intelligence can sufficiently be included with 
AMS optimization, the optimization processes would require 
almost no ad hoc mathematical modeling; instead, we can 
directly learn optimization from technologists’ 
demonstrations because these data are powerful replacements 
for manually coding domain intelligence [5]. This specialty 
is likely to address the limitations of the meta-heuristics 
mentioned above. In this paradigm, an alternative and often 
more practical approach, termed imitation learning (IL), is 
adopted to help us reveal intelligence (knowledge) hidden in 
demonstration and turn it into a crucial competitive 
advantage [6].  

IL is characteristically inclined towards solutions that 
approximate experts’ thinking and satisfy realistic 
preferences. However, for most policy-based IL algorithms, 
demonstrations from one or multiple experts are assumed to 
obey the identical deciding principles and only a single 
behavioral policy is used to learn from these samples [7]. A 
recent breakthrough in IL, named generative adversarial 
imitation learning (GAIL), encourages the imitator to match 
the state-action distribution of the demonstrator [8]. 
Unfortunately, it retains a single policy for each task. Yet, it 
cannot be guaranteed that all consistently follow the same 
policy because human attention is limited and varies. These 
methods are inherently local and will suffer from mode-
averaging when an agent has to learn a policy across 
trajectory samples with diverse decision behaviors. 
Motivated by this, this paper attempts to learn optimization 
principles from these demonstrations and help to resolve the 
negative impacts regarding objective-dimension failure and 
strong model dependence suffered by conventional meta-
heuristic algorithms. The rest of the paper is organized as 
follows. Section II introduces the optimization problem 
setups. The proposed method is presented in Section III. 
Section IV shows the experimental results and analysis. 
Section V gives the conclusions. 

II. PROCESS OPTIMIZATION OF ADVANCED MACHINING 

SYSTEM  

A. Problem setups 

Similar to conventional machining systems, AMS seeks 
to determine economically and environmentally beneficial 
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process parameters for multi-pass operations. Without loss of 
generality, multi-pass process optimization can be 
transformed into a static, constrained, and multi-objective 
optimization problem described by Eq. 1 [9]. 

{
𝑎𝑟𝑔𝑚𝑖𝑛

𝑋
𝑓𝑞(𝑋) = [𝑓1

𝑞
(𝑋), 𝑓2

𝑞
(𝑋), . . . , 𝑓𝑝

𝑞
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𝑞
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         (1) 

where 𝑋 = {(𝑣𝑐
𝑢 , 𝑓𝑟

𝑢, 𝑎𝑝
𝑢)}𝑢≤𝑈  are the decision variables: 

cutting speed vc, feed rate fr, and cutting depth ap of U passes. 
𝛺 = ∏𝑠=1

𝑛 [𝑎𝑠 , 𝑏𝑠]  denotes the decision space and n is the 
dimensionality of the decision space. The mapping 

1: [ , ]q n p

s s sf a b= →  consists of p continuous conflicting 

objective functions 1 2, ,....,q q q

pf f f
 under the machining 

configuration q=<workpiece property wt, machine tool mt, 

cutting tool ct>. 
q

ih
 and 

q

ig  are the i-th constraints that the 

system must meet. 

B. MDP setups 

A general issue encountered in AMS that concerns 

significant machining dynamics due to variations of q [10]. 

To solve it, the problem is placed in a Markov decision 

process (MDP) framework which is standard for describing 

dynamic systems. Initially, basic notions from 

reinforcement learning (RL) are defined and the MDP 

model is represented by a tuple MA=(S,A,P,R,γ). Action 

A={at,}in which , ,t t t

t c r pa v f a=   specifies the process 

parameters of each pass. State S={st}where st=<Dt,κt,ut,at-1> 

describes the observations, namely workpiece geometry Dt 

and machining allowance κt, the notion of the remaining 

time uh, and the action selected in the previous step at-1 when 

the agent enters an AMS. 
S A

SP   is the Markovian 

transition kernel that gives the probability of an outcome, 

e.g., state s’ by an action executed in state s. S AR   is the 

reward function that defines the gain at each time-step and 

contains the information that guides the agent towards the 

objectives. γ∈[0,1] is the discount factor representing how 

fast the contribution of the present reward decays.  

In this formalism, the agent follows a stochastic policy 

π(a|s): [0,1]S A →  that represents the action choice 

probabilities for each state and satisfies 

1 1( ) ( ) ( , )
t

t t t t t t ta
P s s a s p s s a+ += . To justify the quality of a 

policy π regarding the reward R, the state-action value 

function is defined as , 0
[ ( , )]s a t tt

Q R s a  
+

=
=   mapping state-

action pairs (s,a) to the expected discounted cumulative 

reward for starting in state s, taking the action a, and 

following the policy π afterward. 

III. PROPOSED METHOD 

A. Generative adversarial imitation learning (GAIL) 

This study relied on GAIL, a popular model-free 

imitation learning framework that, similarly to the 

Generative Adversarial Network (GAN), produces an 

imitation policy. GAIL is derived from inverse 

reinforcement learning (IRL), which aims at imitating a 

policy    approximating the unknown expert policy πE 

with an occupancy measure condition :
E  = [11] The 

learning process can be formulated as an optimization 

problem with the following objective function: 

min{ ( ( , ) ( , )) ( )}
E

s a s a H 


   


− −                    (2) 

where ( , ) ( , )t

t tt
s a p s s a a = = =  is the state-action 

visitation distribution defining the one-to-one 

correspondence between the policy and its occupancy 

measure. ( )  denotes distribution discrepancy of the 

occupancy measures. H(π) is the regularisation of the policy. 

B. Motivations for generating imitation policy 

Intelligence in AMS is often vague and multi-

intentioned. We then consider diverse behaviors in each 

expert domain and solve the problem differently, where 

demonstrations are assumed to be a trajectory mixture 

distribution, in the sense that applying GAIL is equivalent to 

learning a segment of the mixture distribution. To fit the 

trajectory distribution, we introduce the concept of an 

upper-level policy πφ(θ) [12] – by defining a parameterized 

distribution over θ – that selects the parameters of the actual 

control (low-level) policy πθ(a|s). A generator 

( ; ) :G z Z →  is used to transfer the distribution ~ (0,1)z  
into an upper-level policy πφ(θ), where Z, Ф, and Θ denote 

the sampled input domain, G’s parameter space, and the 

low-level policy parameter space, respectively. The 

overview of GAIL and the proposed method are shown in 

Figure 1, in which the difference is depicted intuitively. 
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Fig. 1 Graphic representation of GAIL and proposed method 

C. Learning from near-optimal demonstrations 

The agent learns behaviors to advance economic 

interests by employing adversarial imitation. A 

demonstration dataset 0 0 1 1{( , , , ,...) }
E iED s a s a =  is first 

constructed by aggregating all trajectories in the policy 

context 
iE . These demonstrations are assumed to be near-

optimal and are used for preliminary training of generator 

G(z;φ) and discriminator D(s,a;ω). The generator takes 

samples ~ (0,1)z  from a simple Gaussian distribution and 

outputs an upper-level policy πφ(θ), from which the low-

level policies πθ(a|s) can be generated. By executing these 

policies in the MDP environment, we then obtain sets of 

trajectories that imitate the expert behaviors. A 

discriminator is concurrently trained to assign each state-

action pair with logD(s,a), evaluating the immediate cost at 

the time. 
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1)Gradient estimator for generator 

Instead of directly finding the parameters θ of the low-

level policy, we attempt to find the optimal parameter vector 

of G(z;φ). The benefit is that the policy distribution can 

directly be used to explore the parameter space. Hereby, 

learning an extension of GAIL with upper-level policy can 

be formulated as a replacement expression of Eq. 2: 

~ ( ; ) , ~

~ ( ; )

min max ( , ) min max [ log( ( , ; ))]

[log(1 ( , ; ))] [ ( )]
E

G z s a

G z

D s a

D s a H

 

 

  
  

   

  

  

=

+ − −

   (3) 

where D(s,a;ω) denotes the discriminator network with 

weights ω. The first step of Eq. 3 concludes the fitness 

function ( )J   for learning the upper-level policy 

expanded as Eq. 4. Then, the above problem is solved by the 

policy-gradient method. 

~ ( ; ) , ~( ) [ log( ( , ; ))]

( ) ( ) ( ) log( ( , ; ))

G z s a

S A

J D s a

P s a s D s a dadsd

 
    

 

 

     


=

=   

  (4) 

We can derive a gradient estimator for the imitation 

policy generator, which helps to learn the optimal 

distribution parameters φ. The gradient of the policy 

optimization has the form  

( ) ~ ( ; )( ) [ ( )]G zJ H
          = −  .               (5) 

The optimization problem for learning upper-level 

policies can be reformulated as Eq. 6, where ( )J   
is 

updated using traditional gradient estimation with N state-

action pairs in a trajectory. 

( ) ( )

( ) ( )

1

1
ˆ ˆ( ) ( ) ( ; );   ( )m m

M
m m

m

J J G z z z
M

   
   

=

         (6) 

As seen from Eq. 6, the problem lies in finding a means 

of computing the term ( ; )G z   =  . Typically, this term is 

calculated by using the inverse of the path 
1( , )g  −

 [13]. 

However, since an irreversible Multi-Layer Perceptron 

(MLP) was used to construct the imitation policy generator, 

another way of writing ( ; )G z   is by analyzing the 

backpropagation of each layer. 

2) Gradient estimator for discriminator 

A discriminator is developed to infer the cost function 

underlying the demonstrated behaviors. To recover cost 

functions that are more robust to changes in a dynamic 

AMS, a discriminator that relies on energy-based models is 

specially developed.  

The discriminator shares the same objective function as 

the policy generator (see Eq. 3). The negative loss is used to 

invert the maximization problem into one of minimization. 

To reduce the variance, Finn et al. [14] used a mixture 

distribution between the expert dataset and the policy 

samples (denoted as μ) to reduce the variation when the 

policy ( )a s  has poor coverage over the demonstrations in 

the early stages of training. Then, the loss function is 

( ) [log( ( , ; ))] [log(1 ( , ; ))]

( )exp{ ( , )}
             = [log ] [log ]

exp{ ( , )} ( ) exp{ ( , )} ( )

             = { ( , )} [log ( )] 2 [log

E

E

E

D s a D s a

a ss a

s a a s s a a s

s a a s

 

 

 

  


  

 

    

  



   

 

 − = + − 

 
+ 

+ + 

  + −  (exp{ ( , )} ( ))]s a a s +

(7)
 

To find the optimal weighting ω, the policy gradient 

method is applied to minimize the objective ( )− . Taking 

the derivative with respect to ω, we have: 

1 1 1

exp{ ( , )} ( , )
( ) { ( , )} [ ]

1 1
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2 2
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    (8) 

where ( , )s a   is easily calculated through automatic 

derivation by the neural network. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The proposed is tested by two kinds of experiments. 

First, the application experiments in a practical AMS 

environment are conducted to illustrate the effectiveness of 

the proposed method. Second, computational experiments 

focusing on the performance of policy imitation. 

A.  Experimental configurations 

For the application experiments, different machine 

tools, cutting tools, and workpieces were used to design two 

AMS scenarios. Table 1 lists the specifications of the 

primary components, and all of the data were obtained in a 

real workshop [15]. 

The maximum mean discrepancy (MMD) was used to 

distinguish the distance between the learned trajectory 

(distributions) and the demonstration distributions. The 

closer the MMD approached zero, the higher the similarity 

with the expert samples. Additionally, three noise factors, 

namely the tool wear, cutting temperature, and machine tool 

chatter, were investigated. These factors reflect the system’s 

stability. The heavy cutting processes associated with the 

measuring devices are depicted in Figure 2. 

 

Fig. 2: Machining processes and data measurement setup 
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The computational experiments were conducted in 

Python 3.6.3 using an Intel 3.40 GHz PC with 16 GB of 

RAM. The algorithm parameters and neural networks were 

rigorously set by the trial-and-error method. The upper-level 

policy was parameterized in a feed-forward MLP with an 8-

64(Relu)-128(Relu)-256(Relu)-1312(Tanh) structure. All of 

the low-level policy networks followed the same 6(Tanh)-

32(Tanh)-3 structure. The discriminator network was 

arranged as a 9(Tanh)-64(Tanh)-1 structure. We selected the 

Adam optimizer to train the gradient-based generator and 

discriminator. The Adam optimizer was characterized by the  

{ξ1, ξ2, lp, ψ} parameters, where ξ1 and ξ2 denote two 

exponential decay rates, lp denotes the learning rates, and ψ 

avoids division by zero. For the generator, we set ξ1=0.0, ξ2 

= 0.9, lp=5e-4, and ψ=1e-8. For the discriminator, the three 

parameters were changed to ξ1=0.9, ξ2=0.99, and lp=3e-4. 

M=150 low-level policies were sampled each time the 

generator was trained. The IL agent traversed 25 parallel 

environments to collect 100 trajectories (solutions) for 

learning human behaviors from 500 demonstrations. For 

training the networks, the batch size was set to 32.  

Table 1: Machining configurations for AMS 
Item Value 

Task 1 Task 2 

Machine tool C2-6150HK/1 CHK560 

Max cutting force 1.8 1.0 

Max power 

Standby power 

9500 

945 

9000 

860 

Cutting tool CNMG120408 ENMG120408 

Rake angle 10 9 

Tool clearance 4 11 

Cutting edge inclination 9 3 

Circle radius 0.3 0.7 

Max tool life 30 55 

Wokpiece Shaft Shaft 

Material 40CrNiMnA HT300 

Diameter  80 30 

Air-cutting length 15 15 

Cutting length 100 80 

Coolant condition Water-based  Water-based  

Requirements - - 

Machining allowance  15 10 

Cutting speed [50,120] [40,100] 

Feed rate [0.06,0.500] [0.06,0.400] 

Surface roughness 2.5 2.5 

 

B. Application experiments 

We conducted physical tests in a real AMS 

environment to demonstrate the efficacy of learning from 

demonstrations. Four state-of-the-art meta-heuristic 

approaches, including NSGA-III, GDE3, SMPSO, and 

MOEA/D-IEpsilon were also investigated as references. The 

programming code and algorithm descriptions are available 

online (https://github.com/jMetal/jMetalPy). Two traditional 

metrics, namely the time Tp and cost Cp, were observed and 

these metrics exist in the fitness functions of algorithms in 

the form of the mathematical model reported by Xiao et al. 

(2021). Additionally, we tested the CPU runtime in Phase 

III, which represented the computational efficiency of 

GPoLI-PI during application. Table 2 lists the SEC, Cp, and 

Tp values and the CPU runtime obtained for the five 

algorithms when applied to solve two task instances. The 

best and worst values of each metric are marked in bold. 

Table 2 clearly shows that all the solutions generated 

by the meta-heuristics produced smaller SECs since larger 

parameters were chosen in the heavy cutting processes. In 

Task 1, e.g., the SEC of SMPSO was 8.51% lower than that 

of GPoLI-PI. Although the meta-heuristics improve energy 

efficiency, the large parameters will cause severe tool wear, 

extending the tool change time, and thereby increasing the 

total processing time. Under the optimal schemes, the Tp of 

GPoLI-PI could be decreased by up to 11.27% (compared to 

SMPSO in Task 1). Likewise, the tool change cost would 

increase as sharply as the increase in tool change time. 

Despite this, the cost increase caused by tool changing does 

not dominate the total cost, which would thus decrease 

when a large MRR is selected. From the data, the Cp of 

GDE3 was 7.65% lower than that of GPoLI-PI. Besides, 

meta-heuristics must conduct exploration and exploitation 

online, resulting in a reduced convergence rate. The 

computational efficiency of GPoLI-PI could be improved by 

up to 58.91% (compared to NSGAIII in Task 2). 

In addition to traditional metrics, we also investigated 

the noise factors which reflect the robustness of AMS. The 

test indicators include the vibration signals (Figure 3(a)) 

representing the machine tool environment, temperature 

signals (Figure 3(b)) representing the workpiece 

environment, and tool wear (Figure 3(c)) representing the 

tool environment. As the figures show, it is difficult to add 

the noise factors into the models mathematically; therefore, 

their adverse effects on processing stability cannot be 

considered during optimization. This makes the algorithm 

converge to a larger parameter combination and increases 

the risk of workpiece machining failure. Overall, meta-

heuristics demonstrate little preponderance when operating 

on most test problems due to both noise factors and 

traditional economic metrics. This adverse effect cannot be 

alleviated by increasing the optimization time or 

performance of the meta-heuristic algorithms. 

 

 

Fig.3 Vibration (a), temperature (b), and tool wear (c) 

measurements of SMPSO and GPoLI-PI 
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Table 2 Quantitative metrics of proposed algorithm and meta-heuristics during 50 runs 

Task Metric GPoLI-PI NSGAIII GDE3 SMPSO MOEA/D-IEpsilon 

1 SEC 21.495±5.126 20.372±5.754 19.764±4.680 19.665±4.651 19.986±5.098 

 Tp 340.866±24.876 392.422±27.981 387.126±23.775 383.864±21.932 390.763±25.289 

 Cp 2.575±0.293 2.415±0.432 2.378±0.199 2.384±0.217 2.392±0.426 

 CPU time 53.010±6.5674 91.487±9.0556 63.933±14.685 71.143±11.212 88.542±6.597 

2 SEC 13.127±4.078 13.087±4.187 11.542±3.865 11.544±3.173 11.765±4.264 

 Tp 287.532±25.876 319.964±24.085 319.096±18.763 317.856±20.986 323.218±24.165 

 Cp 2.094±0.182 2.043±0.293 1.996±0.132 1.975±0.129 1.984±0.115 

 CPU time 20.356±4.0732 49.536±10.037 28.155±15.221 38.162±9.836 47.697±5.917 

C. Computational experiments 

In this section, we evaluate the performance of 

GPoLI-PI based on several comparative tests on two 

continuous AMS tasks of varying scales and divergent 

expert demonstrations in the training phase. For the given 

tasks, the imitation policy was optimized using 50, 100, 

and 150 trajectories. The divergence for the 

multidimensional trajectory distributions was estimated 

via maximum mean discrepancy, and the K-nearest 

neighbor algorithm was used to classify the extent of 

divergence as small (S), middle (M), or large (L). Given 

the preliminary level of experiments and the absence of 

various state-of-the-art works on the recent generative 

policy distribution-based IL, we adopted three baseline 

algorithms, as introduced below. 

Baseline I (GAIL): This is a framework to extract a 

single policy from diverse demonstrations, which matches 

the state-action distribution of the learned policy to that of 

the expert policy. The test validates using the policy 

distribution against the single policy to fit the 

demonstrations.  

Baseline II (GPowD): The conventional neural 

network : (0,1)D S A  →  with weights ω is used to 

construct a discriminator. The remainder, including 

generator training and policy-manifold learning, follow 

the same steps as GPoLI-PI. It illustrates the effectiveness 

of the energy-based discriminator. 

Table 3 Algorithm comparisons 

 

   

Fig.4 Convergence plots of task 1 and task 2 

It follows from Table 3 and Fig.4 that our method with 

an energy-based discriminator may converge in under 1500 

and 2000 interactions with the environment of Tasks 1 and 

2, respectively. Compared to GPowD, which uses the same 

policy network but a conventional discriminator, GPoLI-PI 

is superior in imitation accuracy and stability even though it 

takes 10%~15% more learning time. In contrast, GAIL is 

more likely to converge to the local optimum slowly and 

may suffer discriminator degeneration in complex tasks. 

This means that GAIL is limited to a mode-average 

regression owing to the forced usage of a single policy to 

map the varied expert trajectories.  

D. Visualisation of trajectory distributions 

To illustrate how the GPoLI-PI algorithm performs 

behavior imitation in Phase I and applies it to the Pareto-

policy manifold learning processes, the evolutionary 

trajectory/policy distributions are visualized as iterations (see 

Figure 5). Given that the above two distributions are high-

dimensional, t-distributed stochastic neighbor embedding (t-

SNE) is used to reduce them to two dimensions and regulate 

the value range to [0,1]. 

 

(a)                         (b)                          (c)                             (d) 

 

(e)                  (f)                        (g)                        (h) 

Fig.5 Visualisations of trajectory and policy 

distributions during Phases I and II 

From the figures, it follows that: After initialization, the 

policy manifold is randomly scattered. After several 

iterations, the number of red points decreases, indicating that 

the algorithm discovers useful knowledge when constraints 

are avoided. Also, the reduction of grey diamonds implies 

that, increasingly, the generated trajectories approximate 

expert decisions. Because even Phase I required >1500 

iterations to imitate near-optimal demonstrations, training 

GPoLI-PI models for more robust optimization is advisable 

and improves the practicality of AMS applications. 
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V. CONCLUSION  

To undertake the process optimization for robust 

and energy-efficient AMS, we have developed an 

amalgamation of upper-level policy IL. The 

summarised results include the following three 

perspectives. First, the optimization of AMS is newly 

formulated to imitate the behaviors of process experts 

who have extensive optimization knowledge. The 

formulation is demonstrated more robustly and 

realistically than conventional meta-heuristics because 

it avoids addressing multi-objective optimization and 

model inaccuracy caused by noise factors. Then, the 

generative neural network is reconstructed to serve as 

an upper-level policy approximator and opens new 

doors to single-policy IL to alleviate the problem of 

mode-averaging. Besides, the efficacy of the energy-

based discriminator is validated by good performance 

when overcoming the degraded learning of the cost 

function. 
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