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Abstract—In many practical situations, practitioners use
easier-to-compute fuzzy control to approximate the more-
difficult-to-compute optimal control. As expected, for many
characteristics, this approximate control is slightly worse than
the optimal control it approximates. However, with respect to
robustness or smoothness, the approximating fuzzy control is
often better than the original one. In this paper, we provide a
theoretical explanation for this somewhat mysterious empirical
phenomenon.

Index Terms—fuzzy control, robust control, smooth control

I. FORMULATION OF THE PROBLEM

A brief formulation. In many practical situations, practition-
ers use easier-to-compute fuzzy control to approximate the
more-difficult-to-compute optimal control. Interestingly, the
approximating fuzzy control is often more robust and more
smooth than the original one. In this paper, we provide a
theoretical explanation for this somewhat mysterious empirical
phenomenon.

Readers who are familiar with this empirical phenomenon
can skip the rest of this section and go directly to Section 2.
For those who are not very familiar with this empirical
phenomenon, the remaining part of this section provides its
detailed explanation.

Fuzzy control: a brief reminder. In the early 1960s, Lotfi
Zaheh, one of the world’s leading specialists in control, and
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a co-author of the most popular textbook on optimal control,
noticed that sometimes, when experts control a plant, they get
better results than supposedly optimal automatic controllers.

To a pure mathematician, this may sound like a paradox,
since optimal means the best. However, from the engineering
viewpoint, this was not really a paradox: optimal means
optimal with respect to a given model of a plant. Models are
approximate. Because of the difference between the approxi-
mate model and the actual system, optimal control based on
the approximate model may not be optimal for the real-life
system.

What this advantage of human controllers indicated was
that expert controllers have some knowledge that was not
implemented in the models. A natural idea is thus to elicit
this additional knowledge and to use it when controlling a
plant. Here he encountered a problem:

• most expert controllers were willing to share their addi-
tional knowledge,

• but they shared it by using words from natural language
like “small”, and

• it was not clear how to incorporate this imprecise
(“fuzzy”) knowledge into a mathematical model.

To make such an incorporation possible, Zadeh came up with
a methodology that he called fuzzy logic; see, e.g., [1]–[5],
[7].

One of the main ideas behind this methodology is that:
• in contrast to well-defined mathematical properties which

are always either true or false,
• properties like “small” are not that precise.

It is not that control engineers had an exact threshold:
• below which everything is absolutely small, and
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• above which everything is absolutely not small.

Yes:

• some values are considered to be absolutely small,
• some as absolutely not small,
• but for many intermediate values, the experts are not sure,

their answers – like “somewhat small” – are somewhere
in between.

In a computer:

• “true” is usually represented as 1, and
• “false” as 0.

It is therefore reasonable to use numbers between 0 and 1 to
represent intermediate opinions. The idea of using such inter-
mediate values, while it was new for engineering applications,
was not fully new: the so-called Likert scale – marking a value
between 0 and 5 or 10 (or some other number) – is something
we use all the time:

• whether we evaluate the quality of our hotel stay or
• whether students evaluate how well we teach.

Control based on such incorporated knowledge is what became
known as fuzzy control.

Fuzzy control is often used as an approximation to the
actual control. One of the advantages of fuzzy control is that
most of its techniques are computationally easy. In contrast,
optimal control often requires a lot of computational resources
to compute – and in many real-time and/or embedded sys-
tems, our computational ability is limited. In such situations,
sometimes, fuzzy control is used as an easier-to-compute
approximation to the optimal control strategy.

Let us describe this idea in precise terms. In control sit-
uations, we want, for each state x of the plant, to provide
an appropriate control y. In these terms, a control strategy is
an algorithm f(x) that, given the current state x, returns the
control value(s) y = f(x).

When the algorithm f(x) is difficult to compute, what we
can do is pre-compute the control yi = f(xi) corresponding
to several typical states xi. Once we have this information, we
can formulate natural common-sense rules of the type

“if the state x is close to xi, then the applied control should
be close to yi = f(xi).”

The resulting approximate fuzzy control is often smoother
and more robust than the original control, but why? In the
use of fuzzy control as an approximation to a known difficult-
to-implement control, an unexpected phenomenon occurred:

• Since the fuzzy control is an approximation, one would
expect that it will be somewhat worse than the original
control.

• With respect to some objective functions, this is indeed
true: e.g., if we want to reach the destination in the
shortest time or with the smallest possible use of fuel,
the approximating fuzzy control will be slightly worse
than the optimal control it approximates.

• However, surprisingly, it turned out that the approximat-
ing control is often more smooth and more robust than
the control it approximates.

This was shown in many applications: e.g., elevators or trains
controlled by fuzzy control run smoother. Zadeh himself liked
to tell what he called an elevator speech about fuzzy control.
As you all know, the elevator speech is a short presentation that
we need to make when riding an elevator with a colleague (or
better a boss or an investor) to whom we need to describe what
we are doing. In Zadeh’s elevator speech, he recalled how at
one of the conferences in Japan, he happened to enter the same
elevator as one of the control experts who was skeptical about
fuzzy. It so happened that this elevator was using fuzzy control.
So, when Zadeh pressed the button and they did not feel the
usual jerk, his opponent proudly remarked: I told you so, fuzzy
control does not work. Immediately after that, the elevator door
opened, and, to this sceptic’s surprise, they turned out to be
exactly on the top floor where they planned to be.

This smoothness of fuzzy control is well-known; it is used
in situations when we want smoothness – e.g., in many car
models, fuzzy control is embedded in automatic transmissions
to make the ride smoother. The fact that this phenomenon
is well known – and actively used – does not make it less
mysterious.

Similarly, fuzzy control is known to be more robust than the
original control – in the sense that when the situation changes
somewhat, the control provided by a fuzzy controller does
not change as much as the control provided by the original
controller.

What we do in this paper. In this paper, we provide a
theoretical explanation for the smoothness and robustness of
fuzzy control.

II. LET US FORMULATE THE PROBLEM IN PRECISE TERMS

How do we gauge (and compare) robustness. In order to
provide the desired explanation, we need to be able to compare
the robustness of different controllers. To be able to make this
comparison, we need to come up with a reasonable numerical
measure of robustness.

Intuitively, robustness means that if we change the state x
a little bit, the control y = F (x) should not change much.
There are many different definitions of robustness, definitions
that describe this intuitive idea in precise terms. Instead of
using one of these definitions, let us analyze what should be
a reasonable formulation of robustness in our context.

For this purpose, let us consider the case when we change
the value of one of the characteristics of a system. In this case,
the control strategy y = F (x) is a function of one variable.
When we change the input x, from x to x+∆x, the control
value changes from F (x) to F (x + ∆x), so the change in
control is equal to ∆y = F (x+∆x)− F (x).

For small changes ∆x, we can expand this expression in
Taylor series and take into account the fact that for small ∆x,
terms which are quadratic (or higher order) in ∆x are much
smaller than linear terms. For example, if ∆x = 1%, then
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(∆x)2 = 0.01% which is much smaller. Thus, we can safely
ignore quadratic and higher-order terms, and keep only linear
terms in this expression, i.e., take ∆y = F ′(x) ·∆x.

Robustness means that the difference ∆y should be small,
i.e., close to 0. Since the value ∆x is fixed, this is equivalent
to requiring that the derivative F ′(x) is small – i.e., close to 0.

We want to have F ′(x) ≈ 0 for all x. From the purely
mathematical viewpoint, there are infinitely many possible
values x. However, from a practical viewpoint, values which
are very close to each other are indistinguishable. Let h be the
smallest distinguishable difference. From this viewpoint, there
are only finitely many distinguishable states X1, X2 = X1+h,
X3 = X2+h, . . . , all the way to some large value xN . (We use
capital letters to distinguish between these very dense values
and much more spare values x1, x2, . . . used in the above
formulation of fuzzy control rules.)

In these terms, robustness means that the corresponding N
derivatives should be all close to 0:

F ′(X1) ≈ 0, F ′(X2) ≈ 0, . . . , F ′(XN ) ≈ 0.

In other words, the tuple

(F ′(X1), F
′(X2), . . . , F

′(XN ))

formed by these derivatives should be close to the zero tuple

(0, 0, . . . , 0).

Each tuple can be naturally represented by a point in the
N -dimensional space. In this space, the natural Euclidean
distance d between these two points is equal to

d =
√
(F ′(X1))2 + (F ′(X2))2 + . . .+ (F ′(XN ))2.

Minimizing this distance is equivalent to minimizing the
square of this distance – i.e., the sum

d2 = (F ′(X1))
2 + (F ′(X2))

2 + . . .+ (F ′(XN ))2.

This expression can be further simplified if we take into
account that if we multiply this sum by the difference h =
Xi+1 −Xi, we get an integral sum:

d2 ·h = (F ′(X1))
2 ·h+(F ′(X2))

2 ·h+ . . .+(F ′(XN ))2 ·h.

For small h, the integral sum is close to the corresponding
integral; after all:

• this is how the integral is defined, as the limit of integral
sums, and

• this is how integrals are often computed – by computing
the appropriate integral sum.

So, we have
d2 · h ≈

∫
(F ′(x))2 dx.

Thus, minimizing the desired distance d is equivalent to
minimizing the integral∫

(F ′(x))2 dx. (1)

So, this integral provides a natural measure of non-robustness
– whichever control has the smaller value of this integral has

the smaller value of the distance d between the actual and
ideal difference, which is exactly what robustness is about.

Which fuzzy control methodology we will use. There are
several different techniques for transforming natural rules into
a precise control strategy. In this paper, we use the most widely
used – and the least computationally intensive – Takagi-
Sugeno methodology, according to which the control strategy
generated by the system takes the form

F (x) =

∑
C(x− xi) · yi∑
C(x− xi)

=

∑
C(x− xi) · f(xi)∑

C(x− xi)
, (2)

where C(∆x) describes the degree (from the interval [0, 1])
to which x is close to xi. This degree:

• is equal to 1 (“absolutely close”) when ∆x = 0, and
• decreases to 0 when the absolute value of the difference

∆x increases.

Resulting question. We need to explain why the degree of
non-robustness (1) corresponding to the fuzzy control (2) is
smaller than the degree of non-robustness corresponding to the
original control strategy f(x).

III. OUR EXPLANATION

To formulate our result, let us first simplify the expres-
sion (2). To make the desired comparison possible, let us first
simplify the expression (2) for fuzzy control.

To perform this simplification, we can use the same idea
as in the previous section – namely, we can take into account
that if we multiply both the numerator and the denominator of
the formula (2) by the difference H

def
= xi+1 − xi, then both

the numerator and the denominator become integral sums:

F (x) =

∑
C(x− xi) · f(xi) ·H∑

C(x− xi) ·H
.

As we have mentioned, integral sums are a good approxima-
tion to the corresponding integrals. So, within this approxima-
tion, we can write that

F (x) =

∫
C(x− z) · f(z) dz∫

C(x− z) dz
. (3)

Now, we are ready to formulate our result.

Definition.
• By a control strategy, we mean a differentiable non-

constant function f(x) defined on a bounded interval.
• By the degree of non-robustness of a control strategy

f(x), we mean the value (1). We will denote this degree
by N(f).

• By a fuzzy control strategy corresponding to control
strategy f(x), we mean a function (3), where C(x) is
a continuous function whose values are from the interval
[0, 1]; we will denote this function (3) by S(f).

Proposition. For each control strategy, the degree of non-
robustness N(S(f)) of a fuzzy control strategy S(f) corre-
sponding to f(x) is smaller than the degree of non-robustness
N(f) of the original control strategy:

N(S(f)) < N(f).
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Discussion. Thus, indeed, fuzzy control based on some control
strategy is always more robust than the original control.

Proof.

1◦. Let us first simplify the denominator of the expression (3).
Indeed, by replacing the original variable z with a new

variable t = x − z, we can check that the integral in the
denominator is simply equal to the integral

∫
C(t) dt and thus,

does not depend on x at all. Let us denote the value of this
integral by I

def
=

∫
C(t) dt. Thus, the expression (3) takes a

simplified form

F (x) =

∫
c(x− z) · f(z) dz, (4)

where we denoted c(x)
def
= C(x)/I . By definition of I , we

can conclude that ∫
c(x) dx = 1. (5)

2◦. To prove our result, we will use the properties of the
Fourier transform; see, e.g., [6]. Fourier transform of a func-
tion a(x) is defined as

â(ω) =

∫
a(x) · exp(i · ω · x) dx, (6)

where, as usual, i means the square root of −1: i def=
√
−1. In

particular, for ω = 0, we get

â(0) =

∫
a(x) dx. (7)

In our proof, we will use the following three properties of
the Fourier transform.

• The first property of the Fourier transform that we will
use is the so-called Parceval theorem, according to which
the integral of the square of a function is proportional to
the integral of the square of the absolute value of its
Fourier transform:∫

(a(x))2 dx =
1

2π

∫
|â(ω)|2 dω. (8)

• The second property of the Fourier transform that we will
use is that once we know the Fourier transform â(ω) of
a function a(x), the Fourier transform of its derivative
b(x) = a′(x) can be obtained from â(ω) by multiplying
by i · ω:

b̂(ω) = i · ω · â(ω). (9)

• Finally, the third property of the Fourier transform is that
if we know the Fourier transforms â(ω) and b̂(ω) of two
functions a(x) and b(x), then the Fourier transform of
their convolution

c(x)
def
=

∫
a(x− y) · b(y) dy (10)

is equal to the product of their Fourier transforms:

ĉ(ω) = â(ω) · b̂(ω). (11)

3◦. Now, we are ready for the proof.

3.1◦. For the original control f(x), its degree of non-
robustness is equal to N(f) =

∫
(f ′(x))2 dx. We want to use

Parceval theorem to evaluate this integral. For this, we need to
know the Fourier transform of the derivative f ′(x) – which,
according to (9), is equal to i · ω · f̂(ω). Thus, we conclude
that

N(f) =
1

2π
·
∫

ω2 ·
∣∣∣f̂(ω)∣∣∣2 dω. (12)

3.2◦. By the formula (4), the function F (x) describing fuzzy
control is a convolution of functions c(x) and f(x). Thus, by
the third property of Fourier transforms, we conclude that

F̂ (ω) = ĉ(ω) · f̂(ω). (13)

For the non-robustness N(F ) of the fuzzy control F = S(f),
similarly to the formula (12), we get the formula

N(S(f)) = N(F ) =
1

2π
·
∫

ω2 ·
∣∣∣F̂ (ω)

∣∣∣2 dω. (14)

Substituting the expression (13) into the formula (14), and
taking into account that the absolute value of the product of
two complex numbers is equal to the product of their complex
values, we conclude that

N(S(f)) =
1

2π
·
∫

ω2 · |ĉ(ω)|2 ·
∣∣∣f̂(ω)∣∣∣2 dω. (15)

3.3◦. Here, due to (7) and (5), we conclude that

ĉ(0) = 1. (16)

For all other values ω, by definition of the Fourier transform,
we get

ĉ(ω) =

∫
c(x) · exp(i · ω · x) dx. (17)

The absolute value of the sum of complex numbers is smaller
than or equal to the sum of absolute values:

|a+ b| ≤ |a|+ |b|,

and equality only happens when these two numbers differ by
a positive factor – in all other cases, we have strict inequality.
This can be easily understood if we recall that the absolute
value of a complex number x + y · i is equal to the length√
x2 + y2 of the vector correcting the point (0, 0) with the

point (x, y), and addition of complex numbers is equivalent
to adding the corresponding vectors.

In our case, as one can easily check, the values

c(x) · exp(i · ω · x)

corresponding to different ω are not differing by a positive
factor. Thus, we have

|ĉ(ω)| <
∫

|c(x) · exp(i · ω · x)| dx =
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∫
c(x) · | exp(i · ω · x)| dx. (18)

We know that for any real number a, we have exp(i · a) =
cos(a) + i · sin(a) and thus,

| exp(i · a)| =
√

cos2(a) + sin2(a) = 1.

Thus, the inequality (18) implies that

|ĉ(ω)| <
∫

c(x) dx. (18)

We already know that the integral on the right-hand side is
equal to 1, so we get

|ĉ(ω)| < 1. (19)

For non-negative values, the function z 7→ z2 is an increasing
function. So we can square both sides of the inequality (19)
and get a valid inequality

|ĉ(ω)|2 < 1 for all ω ̸= 0. (19)

For each ω ̸= 0, the integrated non-negative expression

ω2 · |ĉ(ω)|2 ·
∣∣∣f̂(ω)∣∣∣2 (20)

in the formula (15) is obtained by the integrated non-negative
expression

ω2 ·
∣∣∣f̂(ω)∣∣∣2 (21)

in the formula (12) by multiplying by a factor |ĉ(ω)|2. Since
this factor is smaller than 1 for all ω ̸= 0, we thus conclude
that for all such ω, the integrated non-negative expression (20)
in the formula (15) that defines N(S(f)) is smaller than the
integrated non-negative expression (21) in the formula (12)
that defines N(f). Thus, the corresponding integrals are also
smaller, i.e., indeed, N(S(f)) < N(f).

The proposition is proven.

What about smoothness. For smoothness, the proof is similar,
only instead of dependence on a general value x, we need to
consider dependence on time.
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