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Abstract—Although Al research aims to build human-level
artificial intelligence, it was not clearly defined. Furthermore,
many tests for HLAI have been proposed, but those are not
practical and thus are not used in evaluating Al research. We
conjecture that learning from others’ experience with the language
is the essential characteristic that distinguishes human intelligence
from the rest. Humans can update the behavior policy with verbal
descriptions as if they had experienced it first-hand. We present
a classification of intelligence according to how individual agents
learn and propose a definition and a test for HLAIL. The main
idea is that language acquisition without explicit rewards can be
a sufficient test for HLAL We built a simulated environment to
conduct this test practically, and we hope other researchers can
use it to facilitate the research on HLAI

Index Terms—I1.2.0 General, 1.2.0.b Philosophical foundations,
1.2.6.h Language acquisition

I. INTRODUCTION

Despite recent advances in Al, the limitations of the current
state-of-the-art are most apparent in the context of robotics.
When a layperson or popular culture imagine Al, it is frequently
associated with a butler robot that can do many services a
human butler could provide. The robot would converse with
other humans and robots to do more tasks. If someone asks for
a new dish, it might search the Internet for a recipe and learn
how to prepare it. Al is thought of as a software part for such
a robot. It might be convenient if there is a specific name for
this aspect for Al research because the term AI nowadays has
a broader meaning. Alternative terms such as true Al, strong
Al or artificial general intelligence (AGI) [1] are often used,
but they are not clearly defined.

This paper suggests naming a subfield of Al research
for something like a butler robot as human-level artificial
intelligence (HLAI). We provide a formal definition and a
test as theoretical common ground for the HLAI research.
Specifically, we try to answer the following questions.

o What is the difference between human intelligence and
other animals?

o What does it mean to learn with the language?

o How can we test whether an agent has HLAI?
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« How can we administer such a test practically to aid the
model development?

Let us begin by explaining what distinguishes human-level
intelligence from the rest.

II. LEVEL OF INTELLIGENCE

It would be helpful for our discussion to clarify a few terms,
such as intelligence, instinct, learning, language, and human-
level intelligence. These definitions draw from an examination
of biological actors, an earthworm, a rabbit, a monkey, and a
human baby, to distinguish different levels of intelligence.

Let us examine the nature of intelligence with a concrete
question of whether an earthworm is intelligent. The answer
will depend on the definition of intelligence. Legg and
Hutter proposed the following definition for intelligence after
considering more than 70 definitions from psychology and
computer science [2], [3]:

Intelligence measures an agent’s ability to achieve
goals in a wide range of environments.

This definition is universal in the sense that it can be applied
to a diverse range of agents, such as earthworms, rats, humans,
and even computer systems. Maximizing gene spreading, or
inclusive fitness, is accepted as the ultimate goal of biological
agents [4]. Earthworms have light receptors and vibration
sensors. They move according to these sensors to avoid the
sun or predators [5]. These behaviors increase their chance of
survival and inclusive fitness [6]. Therefore, we can say that
earthworms are intelligent. If we agree that an earthworm is
intelligent, we might ask again if it has a general intelligence.
Considering that it feeds, mates, and avoids predators in a
diverse environment, it has general intelligence. However, we
would not be as interested in replicating an earthworm-like
intelligence. That is why we suggest using HLAI as a term for
our community’s goal instead of more established terms such
as artificial general intelligence (AGI).

However, there are differences in intelligence between
earthworms and more advanced agents such as rats and humans.
Behavior policy is a function that maps a sensory input with
the appropriate action. The behavior policy of an earthworm is
hard-coded and updated only by evolution. In other words,
it is instinct [7] that is innate and does not change with
experience. For rats and humans, the behavior policy changes
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with experience, which is learning. In this paper, we propose
levels of intelligence based on how learning is achieved in
agents. Table 1 shows a summary of this idea.

a) Level 1 Intelligence: In this categorization, earthworms
have Level 1 intelligence, where there is no learning occurring
at the individual level. Their behavior policy have a hard-coded
mapping from sensory input to the corresponding action that
is instinct updated with evolution [7].

b) Level 2 Intelligence: The problem with Level 1
intelligence is that adaptation with evolution is slow. For
example, if there is abrupt climate change due to a meteor crash,
agents with Level 1 intelligence will have difficulty adapting
to the new environment in a timely manner. Furthermore, the
behavior policy is encoded in the genetic code. If a species
wants to adjust to various settings, such as diverse climates, the
behavior policy has to be encoded in the genetic code, which
is costly. If an agent can update the behavior policy during
its lifetime by learning new rules such as a new type of food
or shelter, it would increase inclusive fitness and reduce the
amount of genetic code for diverse environments.

Experience is a sequence of sensory inputs (states) and agent
actions. A reward is a particular sensory input given by the
internal reward system conditioned by the state. We call those
agents capable of learning with experience level 2 intelligence.

c) Level 3 Intelligence: Contrary to our devotion to
learning (machine, supervised, unsupervised, reinforcement,
self-supervised learning, etc.), most behaviors of Level 2
intelligent agents are not based on learning but on instincts.

Let us consider a rabbit that has never seen a wolf before. If
the rabbit tries to learn the appropriate behavior by randomly
experimenting options when it does encounter a wolf, it is too
late to update its behavior policy based on the outcome of
random exploration. Instead, the rabbit should rely on instinct
or Level 1 intelligence. Natural environments are too hostile
to use learning as the primary method of updating a behavior
policy. Therefore, the range of behavior policy that Level 2
intelligence can learn with direct experience is limited.

Level 3 intelligence overcomes the limitation by learning
from others’ experiences. Bandura pioneered the social learning
theory [8], and learning through observation, so called
observation learning, is found in several species, including non-
human primates, invertebrates, and reptiles [9]. For example,
if you give monkeys locked boxes that contain food, they will
try to open them. When one monkey finds how to unlock it,
other monkeys observe and imitate it to open their boxes.

d) Level 4 (Human-Level) Intelligence: The limitations
of Level 3 are also apparent. In the example of the rabbit and
the wolf, the Level 2 rabbit relied on direct experience. But
for the Level 3 rabbit to learn the proper behavior, it must
observe that its peer rabbit is eaten by wolves, which is also
rare. Therefore, even Level 3 cannot learn a lot because they
rely on the presence of the example case to be observed.

However, humans are the only known species that use
language as a tool for social learning. The verbal and written
language uses a sequence of abstract symbols to transfer knowl-
edge, relieving the burdensome requirements of observational

TABLE I
LEVELS OF INTELLIGENCE

Features
No individual learning
Evolution-based refinement
Ex) earthworms
Learning from direct experience
Reward-based refinement
Ex) rats, dogs
Learning from indirect experience
Social, observation-based refinement
Ex) primates, invertebrates, birds
Learning from symbolic experience
Language-based refinement
Ex) humans

Level

4 (Human-level)

learning, such as presence in demonstrations. Thus, we can
think of human-level intelligence as Level 3 intelligence with
language. In humans, language is a tool to learn from others.
Human technological achievements were possible because we
can learn from others and contribute new knowledge. Isaac
Newton said “If I have seen further, it is by standing on the
shoulders of Giants.” Language is an invention to enable it.

III. CLARIFYING LANGUAGE SKILL

Language has many aspects. For example, dolphins use a
verbal signal to coordinate [10]. Monkeys have been taught
sign language [11]. But can we classify the language behavior
of monkeys as human-level? Similarly, many previous work in
Al has demonstrated various aspects of language skills. Agents
have been trained to follow verbal commands to navigate [12],
[13]. GPT-3 by open Al can generate articles published as an
Op-Ed in Guardians [14], [15]. Some models can do multiple
tasks in language in the GLUE benchmark or DecaNLP [16],
[17]. Do these models have human-level intelligence?

We claim that learning from others’ experiences is the
language’s essential function, differentiating humans’ language
use from other animals. We will explain this with a concrete
example and then introduce a formal definition. Let us say that
you have never tried Cola before. Now, for the first time, you
see dark sparkling liquid that looks dangerous. You have a few
options for actions, including drinking or running away. You
might randomly select to drink. It tastes good. It rewards you.

After this experience, your behavior policy for the situation
will change, so it is more likely that you will drink it the next
time you see cola. The behavior policy was updated by direct
experience. This is how agents with Level 2 intelligence learn.

Learning with language means that it should change your
behavior policy similarly, when you hear someone say “Cola is
a black, sparkling drink. I drank it, and it tasted good.” Figure 1
shows this with the notation in Markov decision process
(MDP) (MDP) [18]. Humans use language for learning, which
distinguishes human-level intelligence from other animals with
language. In this sense, we can define human-level artificial
intelligence (HLAI) as follows;

Definition 1 (Human-level artificial intelligence (HLAI)):
An agent has human-level artificial intelligence if there exists a
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Colal.sa b‘?Ck Idrankit. It tastes good.
sparkling drink.

Fig. 1. Learning with language means that the symbolic description brings
the same changes to the model comparable to direct experiences.

Direct Experience

Indirect Experience
with Language

sequence of symbols (a symbolic description) for every feasible
experience such that the agent can update the behavior policy
equally, whether it goes through the experience or receives
only the corresponding symbolic description.

We can define this more formally with Markov decision
process (MDP). Let S denote a set of all states, and A
denote a set of all actions. The stochastic behavior policy
is given as 7w(als) = Plals] where a € A,s € S. When
the behavior policy, 7, 4(als) is updated with a sequence
of states and actions, h, we represent the updated policy as
Tnew(a|s; h). Given an original behavior policy, we can derive
two policies m(als; hq) and 7(a|s; hy) that are updated with
two different experience sequences h, and hj,. We can measure
the distance Dist between two experience sequences using the
KL divergence [19].

Dist(ha, hy) = Es[Drc(ma(als; ha)llme(als; hy))] - (1)

Considering s can be large, we might approximate the
difference with the restricted set of states s € " C S, where
we choose S’ to be relevant scenarios. Let D represent the
set of all sequences of states and actions that a biological
agents can experience firsthand and 7 represent the set of all
sequences of terms in language. We define a set of language
to aid the discussion as the following.

Definition 2 (A set of language): A set of language is a
set whose element is a tuple of an experience and a symbolic
description, where the agent can update behavior policy equally
either by going through the experience or by receiving the
symbolic description.

L ={(ha,) € (D, T)|Dist(hi, hq) < 0} @

Using a set of language, we can define HLAI as an agent
with an unbounded language set, Lnuman-

Vhd S D,H h; €7 st (hd, hl) € Lhuman 3)

It might lead to a philosophical debate whether a language
set of human is indeed unbound. Authors claim that it is not
bounded because it can be extended as needed. For example,
an integer is infinite. No human can see every feasible integer
in their lifetime. But when required, they can use any of those
integers even if they have never seen them before. As an
example of language, a typical English person will have only

a few words to describe the shades of snow, while an Eskimo
might have more words. But if an English person happens to
spend 10 years with Eskimo people, he might also acquire more
language set for experience related to snow. Or what about
a sentence, “He flew through the cheese holes.” Even though
it is unlikely that someone has seen this sentence before or
experienced what the sentence describes, we have no difficulty
understanding the sentence or imagining some experience that
would justify the sentence.

However, one problem with implementing a test according
to this definition will be ensuring a symbolic description exists
for every feasible experience.

IV. A TEST FOR HLAI

There are many tests for AI. However, the challenge is to
find a sufficient but tractable one. There are many tests that
are sufficient but intractable, including the Turing test, robot
college student test, kitchen test, and Al preschool test [20]. For
example, the robot college student test asks an agent to register,
take classes, and get passing grades by doing assignments and
exams. Unfortunately, they are rarely conducted in current
research, and when they are there is a controversy about the
validity of the study [21].

There are a few limitations that make these tests impractical.
First, most tests assume that the agent has already acquired
the language skill, but we do not know how to program an
agent who can learn a language. Second, they require human
participants to administer the test. While it takes a few years
for humans to be a master StarCraft II player, it took 200 years
for machines to masters [22]. Learning five years of human
experience will take a lot of time for training with human
intervention. Therefore, using humans is cost-inhibitive and
not scalable. Also, interactions with human participants are not
reproducible for validation. Ideally, the test should require the
minimum level of intelligence that can pass as human-level
intelligence, and it should be cheap to run the test.

At the other end of the spectrum, many tests for Al
are tractable but not sufficient for HLAI. While there are
models with near-human or super-human level performance
in Atari games [23], Go [24], Starcraft II [25], classifying
objects from an image [26], or multi-tasks in natural language
understanding [27], none would claim that they achieved
HLAI They are effective in proposing a subset of necessary
components or mechanisms for HLAI but are not built to study
a sufficient set of those mechanisms.

Considering the sufficiency and traceability requirements, we
propose a new test for HLAIL If a human infant is raised in an
environment such as a jungle where there are no other human,
he/she cannot acquire language. It is environment-limited.
Also, if we have animal cubs and try to raise them as human
babies by teaching language, they cannot acquire language.
It is capability-limited. Therefore, language acquisition is a
function of an environment and a capability. Based on this
observation, we propose the Language Acquisition Test for
HLAT as the following;
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Theorem 1 (Language Acquisition Test (LAT) for HLAI):
Given a proper environment, if an agent with an empty set
of language can acquire a non-empty set of the language, the
agent has the capability for HLAI.

Proof 1: (Proof by induction) Suppose an agent can acquire
a new element for the set of language that can bring about
the same change for a certain experience without relying on
the existing set of language. In that case, the agent can keep
adding elements to the set of language for a novel experience
until it finds the symbolic description for any given experience.

For example, a baby will start learning a single word such
as water or mom. When the baby hears these words, they bring
similar effects, such as seeing a cup of water or seeing mom.
Although this is a small start, the baby can continue to add
vocabulary to become fluent in the language.

A. Practical Administration of the LAT

In the Language Acquisition Test, a proper environment
means that there are other humans to teach language to the
learning agent. A straightforward way to administer the test is
by asking human participants to raise the physical robot agent
like a human baby. Turing has suggested this approach [28] and
the Developmental Robotics community has actively pursued in
many researches [29]-[31]. However, we have already discussed
the limitation of human participants: the prohibitive cost and
difficulty in reproducible research.

It would be more useful if we could use a simulated envi-
ronment [32]. There were previous works that used simulated
environments for the language acquisition, where agents get
rewards by following verbal instructions in navigation [12], [13],
[33]-[35] or give correct answers (question answering) [36].
However, previous environments have following limitations for
the test of the HLAL

Use of Rewards: Using reward signals generated by envi-
ronments will be sufficient for the implementation of Level 2
intelligence. However, for Level 3 intelligence, the reward is not
given to the agent but is observed on other agents. Similarly, for
human-level intelligence, the experiencing reward itself should
be part of verbal description. In our previous cola example,
there is a part related to the explicit reward that is ir rasted
good. In the previous researches, they tend to use explicit
reward to teach the concept of the black sparkling drink by
giving explicit reward when the agent point or navigate to the
verbal description [12], [13], [33], [35], [36]. This approach
cannot be applied in this case because we need a separate
reward mechanism for teaching object concept black sparkling
drink and the associated reward it tasted good.

1) Grounded Language and Embodied Exploration: : The
language symbols need to bring changes in the policy. It
means that the language symbols need to be grounded with
sensory input and the actions in the embodied agents. Some
environments that use only the text lack this grounding. [37],
[38].

2) Shallow interaction with large number of items and
vocabulary: : Previous Environments tend to pour large items
and vocabulary into the training. However, as Smith and Slone

pointed out, human infants begin to learn a lot about a few
things [39]. We need to build upon basic concepts before we
can learn advanced concepts.

Therefore, we claim that we need a new simulated environ-
ment for the test of HLAI to overcome these limitations.

B. An Environment for Language Acquisition

We have been working on a Simulated Environment for
Developmental Robotics (SEDRo) for the practical test of
HLALI [40]. SEDRo provides diverse experiences similar to
those of human infants from the stage of a fetus to 12 months
of age. In SEDRo, there is a caregiver character (mother),
interactive objects in the homelike environment (e.g., toys,
cribs and walls), and the learning agent (baby). The agent
will interact with the simulated environment by controlling its
body muscles and receiving the sensor signals according to a
physics engine. The caregiver character is a virtual agent. It is
manually programmed by researchers using a behavior tree that
is commonly used in video games to make a game character
behave like a human in a limited way. Interaction between
the agent and the caregiver allows cognitive bootstrapping
and social learning, while interactions between the agent and
the surrounding objects are increased gradually as the agent
enters more developed stages. The caregiver character teaches
language by simulating the conversation patterns of mothers.
SEDRo also simulates developmental psychology experiments
to evaluate the progress of intellectual development of non-
verbal agents in multiple domains such as vision, motor, and
social. SEDRo has the following novel features compared to
previous work.

1) Open-ended tasks without extrinsic reward: In SEDRo,
there is no fixed goal for the agent, and the environment does
not provide any reward. Rather than relying on the environment
for the rewards, the responsibility of generating rewards belongs
to the agent itself. In other words, Al researchers have to
manually program a reward system to generate rewards based
on the current state. For example, if an agent gets food, the
sensory input from stomach will change and the reward system
in the agent will generate a corresponding reward.

2) Human-like experience with social interaction: Some
studies use environments without explicit rewards, and agents
learn with curiosity, or intrinsic reward [41], [42]. However,
those environments were arbitrary and non-human such as robot
arm manipulation tasks or simple games. Although such simple
environments are effective in unveiling the subset of necessary
mechanisms, it is difficult to answer what is a sufficient set. In
SEDRo, we provide a human infant-like experience, because
human infants are the only known example of agents capable
of developing human-level intelligence. However, we cannot
replicate every aspect of human infants’ experience, nor will
we try to. There is a subset of experience that is critical
for HLAI. Therefore, identifying these essential experiences
and finding ways to replicate them in the simulation are two
fundamental research questions. Another benefit of a human-
like environment is that we can use the experiments from
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Fig. 2. Screenshot of the SEDRo environment. (a) shows the learning agent that has the physical dimension of a one-year-old human baby. The orange line
between the eyes represents the direction of gaze of the eyes. The grid in the torso shows the area for the distributed touch sensors in the skin. (b) shows that a
caretaker agent feeds milk to the learning agent. (c) shows the visual input to the agent.

developmental psychology to evaluate the development progress
of non-verbal agents.

3) Longitudinal development: SEDRo unfolds agent capabil-
ities according to a curriculum similar to that of human babies.
Many studies suggest that humans or agent models learn faster
with constrained capabilities [43], [44]. For example, in the
first three months, babies are very nearsighted and do not have
mobility. This makes many visual signals stationary, and the
agent can focus on low-level visual skills with the eyes. In
later stages, when sight and mobility increase, babies can learn
advanced skills built upon lower level skills.

The final benchmark whether the agent has acquired the
language will follow the protocol resembling the previous
cola example. We give verbal messages like “The red ball
is delicious(good)” or “The blue pyramid is hot (dangerous)”
and check if the behaviour policy toward the red ball or the
blue pyramid has changed accordingly.

V. DISCUSSION

We proposed the definition and test of HLAIL In this section,
we discuss the implications of current research on Al. And we
discuss the limitations of our approach and alternative options.

A. Agent vs Behavior

The levels of intelligence are used to provide a novel insight
into the research of artificial intelligence and not to provide
a new taxonomy for the classification of biological agents.
There are two limitations to applying this classification to
biological agents. First, we do not have complete knowledge
of the intelligence of other animals. It is possible that later, we
might discover that earthworms learn new skills or that other
animals, such as dolphins, have a more sophisticated use of
language. In this case, we should adjust which animals belong
to which level of intelligence. A more fundamental second
limitation is that biological species evolved for a long time, and
boundaries tend to be blurry. For example, we might discern
mammals from non-mammals with features such as laying eggs
or not. But there is a platypus, which is a borderline between
mammals and reptiles [45]. Similarly, there can be a gray area
between what constitutes as the social learning with language.

Therefore, it is better to have the intelligence level to classify
behaviors rather than biological agents. Agents rely on skills

from various levels of intelligence. For example, when a baby
cries when hungry or shows a stepping reflex, these behaviors
are Level 1 intelligence. When they learn to avoid things after
experiencing pain, it is Level 2 behavior. Finally, when they
observe and mimic caregiver behavior with mobile phones,
these behaviors are Level 3 in nature.

B. Limitations and Alternatives of the Test

We proposed using a human-like experience to teach lan-
guage. The main challenge is that it is difficult to program the
caregiver character to enable diverse but reasonable interaction
with the random behaviors of the learning agent. It is expected
to teach a few first words if we are successful. Some alternatives
include using a completely artificial environment that is not
relevant to human experience but still requires skills in many
domains. For example, emergent communication behaviors
that can be thought of as language have been observed in the
reinforcement learning environment with multiple agents [46]—
[49]. While we might find clues about the learning mechanism,
it may be challenging to apply to human-robot interaction
because language is a set of arbitrary symbols shared between
members [50].

Another possibility is to transform existing resources into a
learning environment. Using Youtube videos to create a diverse
experience can be an example. However, Smith and Slone
pointed out that these approaches use shallow information
about a lot of things, while human infants begin to learn a lot
about a few things [39]. Also, visual information from the first
years consists of an egocentric view, and the allocentric view
emerges after 12 months. Another aspect is that humans learn
from social interaction. While infants can learn the language
by having a Chinese tutor in the meeting, they cannot learn
by seeing the recorded video of tutoring [51]. Therefore, we
assume that we need to acquire the necessary skills before we
can learn from recorded video sources.

REFERENCES

[1] B. Goertzel and C. Pennachin, Artificial general intelligence. Springer,
2007, vol. 2.

[2] S. Legg and M. Hutter, “Universal intelligence: A definition of machine
intelligence,” Minds and machines, vol. 17, no. 4, pp. 391-444, 2007.

[3] S. Legg, M. Hutter et al., “A collection of definitions of intelligence,”

Frontiers in Artificial Intelligence and applications, vol. 157, p. 17, 2007.

119



]

—
(08N

[6]

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

R. Dawkins, The selfish gene. Oxford university press, 2016.

C. Darwin, The formation of vegetable mould through the action of
worms: with observations on their habits. Appleton, 1892, vol. 37.
W. D. Hamilton, “The genetical evolution of social behaviour. ii,” Journal
of theoretical biology, vol. 7, no. 1, pp. 17-52, 1964.

N. Tinbergen, The study of instinct. Clarendon Press/Oxford University
Press, 1951.

A. Bandura and D. C. McClelland, Social learning theory. Englewood
cliffs Prentice Hall, 1977, vol. 1.

L. Ferrucci, S. Nougaret, and A. Genovesio, “Macaque monkeys learn
by observation in the ghost display condition in the object-in-place task
with differential reward to the observer,” Scientific reports, vol. 9, no. 1,
pp- 1-9, 2019.

V. M. Janik and L. S. Sayigh, “Communication in bottlenose dolphins: 50
years of signature whistle research,” Journal of Comparative Physiology
A, vol. 199, no. 6, pp. 479489, 2013.

M. A. Arbib, K. Liebal, S. Pika, M. C. Corballis, C. Knight, D. A.
Leavens, D. Maestripieri, J. E. Tanner, M. A. Arbib, K. Liebal et al.,
“Primate vocalization, gesture, and the evolution of human language,”
Current anthropology, vol. 49, no. 6, pp. 1053-1076, 2008.

K. M. Hermann, F. Hill, S. Green, F. Wang, R. Faulkner, H. Soyer,
D. Szepesvari, W. M. Czarnecki, M. Jaderberg, D. Teplyashin et al.,
“Grounded language learning in a simulated 3d world,” arXiv preprint
arXiv:1706.06551, 2017.

D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Rajagopal,
and R. Salakhutdinov, “Gated-attention architectures for task-oriented
language grounding,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

GPT-3, “A robot wrote this entire article. are you scared yet, human?”
The Guardian, Sep 2020. [Online]. Available: https://www.theguardian.
com/commentisfree/2020/sep/08/robot- wrote- this-article- gpt-3

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“Glue: A multi-task benchmark and analysis platform for natural language
understanding,” arXiv preprint arXiv:1804.07461, 2018.

B. McCann, N. S. Keskar, C. Xiong, and R. Socher, “The natural language
decathlon: Multitask learning as question answering,” arXiv preprint
arXiv:1806.08730, 2018.

R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889-1897.

S. Adams, 1. Arel, J. Bach, R. Coop, R. Furlan, B. Goertzel, J. S.
Hall, A. Samsonovich, M. Scheutz, M. Schlesinger et al., “Mapping the
landscape of human-level artificial general intelligence,” Al magazine,
vol. 33, no. 1, pp. 25-42, 2012.

S. M. Shieber, “Lessons from a restricted turing test,” arXiv preprint
cmp-1g/9404002, 1994.

O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M.
Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell et al., “Alphastar:
Mastering the real-time strategy game starcraft ii,” DeepMind blog, p. 2,
2019.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al.,
“Mastering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604-609, 2020.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of go without human knowledge,” nature, vol. 550, no. 7676, pp.
354-359, 2017.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al.,
“Grandmaster level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350-354, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced bert
with disentangled attention,” arXiv preprint arXiv:2006.03654, 2020.
A. Turing, “Computing machinery and intelligence,” Mind, vol. 59, pp.
433-460, 1950.

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

120

M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, “Developmental
robotics: a survey,” Connection science, vol. 15, no. 4, pp. 151-190,
2003.

M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa,
M. Ogino, and C. Yoshida, “Cognitive developmental robotics: A survey,”
IEEE transactions on autonomous mental development, vol. 1, no. 1, pp.
12-34, 2009.

A. Cangelosi and M. Schlesinger, Developmental robotics: From babies
to robots. MIT press, 2015.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

H. Chen, A. Suhr, D. Misra, N. Snavely, and Y. Artzi, “Touchdown:
Natural language navigation and spatial reasoning in visual street
environments,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12538-12547.

M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik er al., “Habitat: A platform
for embodied ai research,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 9339-9347.

M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,
L. Zettlemoyer, and D. Fox, “Alfred: A benchmark for interpreting
grounded instructions for everyday tasks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 10740-10749.

A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, “Embodied
question answering,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2018, pp. 2054-2063.

K. Narasimhan, T. Kulkarni, and R. Barzilay, “Language understanding
for text-based games using deep reinforcement learning,” arXiv preprint
arXiv:1506.08941, 2015.

M.-A. Coté, A. Kédar, X. Yuan, B. Kybartas, T. Barnes, E. Fine, J. Moore,
M. Hausknecht, L. El Asri, M. Adada et al., “Textworld: A learning
environment for text-based games,” in Workshop on Computer Games.
Springer, 2018, pp. 41-75.

L. B. Smith and L. K. Slone, “A developmental approach to machine
learning?” Frontiers in psychology, vol. 8, p. 2124, 2017.

A. Pothula, M. A. R. Mondol, S. Narasimhan, S. M. Islam, and D. Park,
“Sedro: A simulated environment for developmental robotics,” 2020.

S. Singh, A. G. Barto, and N. Chentanez, “Intrinsically motivated
reinforcement learning,” MASSACHUSETTS UNIV AMHERST DEPT
OF COMPUTER SCIENCE, Tech. Rep., 2005.

M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
in NIPS, 2016, pp. 1471-1479.

J. Law, P. Shaw, K. Earland, M. Sheldon, and M. Lee, “A psychology
based approach for longitudinal development in cognitive robotics,”
Frontiers in Neurorobotics, vol. 8, p. 1, 2014.

F. C. Keil, “Constraints on knowledge and cognitive development.” The
psychological review, vol. 88, no. 3, 1981.

W. C. Warren, L. W. Hillier, J. A. M. Graves, E. Birney, C. P. Ponting,
F. Griitzner, K. Belov, W. Miller, L. Clarke, A. T. Chinwalla et al.,
“Genome analysis of the platypus reveals unique signatures of evolution,”
Nature, vol. 453, no. 7192, p. 175, 2008.

T. Eccles, Y. Bachrach, G. Lever, A. Lazaridou, and T. Graepel, “Biases
for emergent communication in multi-agent reinforcement learning,” in
Advances in Neural Information Processing Systems, 2019, pp. 13 111-
13121.

K. Cao, A. Lazaridou, M. Lanctot, J. Z. Leibo, K. Tuyls, and
S. Clark, “Emergent communication through negotiation,” arXiv preprint
arXiv:1804.03980, 2018.

A. Das, T. Gervet, J. Romoff, D. Batra, D. Parikh, M. Rabbat, and
J. Pineau, “Tarmac: Targeted multi-agent communication,” arXiv preprint
arXiv:1810.11187, 2018.

J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” in Advances
in neural information processing systems, 2016, pp. 2137-2145.

S. Kottur, J. M. Moura, S. Lee, and D. Batra, “Natural language does not
emerge’naturally’in multi-agent dialog,” arXiv preprint arXiv:1706.08502,
2017.

P. K. Kuhl, “Is speech learning ‘gated’by the social brain?”” Developmental
science, vol. 10, no. 1, pp. 110-120, 2007.



