2023 IEEE Symposium Series on Computational Intelligence (SSCI)

Mexico City, Mexico. December 5-8, 2023

Stock Volatility Forecasting with Transformer
Network

Golnaz Sababipour Asl
Department of Computer Science
University of Manitoba
Winnipeg, Canada
sababipg @myumanitoba.ca

Ruppa K. Thulasiram
Department of Computer Science
University of Manitoba
Winnipeg, Canada
tulsi.thulasiram @umanitoba.ca

Aerambamoorthy Thavaneswaran
Department of Statistics
University of Manitoba
Winnipeg, Canada
aerambamoorthy.thavaneswaran @umanitoba.ca

ORCID ID: 0000-0002-6519-3929

Abstract—Financial market is in general volatile with so
many uncertainties and volatility is one of the main measures
of uncertainty in the market among other measures. Hence,
forecasting volatility is a critical component in risk management,
optimizing portfolios, and in algorithmic trading among other
financial problems. There have been few machine learning and
artificial intelligence techniques used in the literature for the
forecasting problem. Transformer Network (TN) architecture
is one of newest such techniques proposed. In this work, we
utilized this architecture with multi-head attention mechanism
for volatility forecasting. To enhance the performance of the TN,
we incorporated different variations of the feed forward layer.
The performance of three distinct TN models was evaluated by
implementing three different deep learning layers (CNN, LSTM,
and a hybrid layer (CNN-LSTM)) in the encoder block of TN
as the feed forward layer. The results clearly demonstrate that
the TN model with the hybrid layer (CNN-LSTM) outperformed
the other models, including a recently proposed data-driven
approach.

Index Terms—Volatility, Forecasting, Transformer Network,
LSTM, Time2Vec

I. INTRODUCTION

For financial modelers forecasting volatility is one of the
biggest challenges due to its complex behaviour. It also
presents a high degree of temporal variability. Traditional
linear models like the autoregressive (AR) and autoregressive
integrated moving average (ARIMA) models have certain
limitation on constant variance of price fluctuation assump-
tions. One of the widely used models in volatility forecasting
is generalized autoregressive conditional heteroscedasticity
(GARCH) [1] which adds the variance lag term to ARCH
model [3].

On account of the high level of complexity and non-linearity
of financial markets, deep learning for forecasting has become
one of the most attractive methods [21]. The two most popular
methods for market forecasting are recurrent neural network
(RNN) [16] and long short-term memory (LSTM) [6] models.
Each of them has its own limitations. RNNs suffer from the
vanishing and exploding gradients problem. LSTM models
were introduced to address that problem.

Liu [14] used LSTM network for volatility forecasting and
the result of this research demonstrated that LSTM has better
performance than classical models. LSTM has a long memory

978-0-7381-4408-5/23/$31.00 ©2023 IEEE

90

capacity, however, as the input size increases past informa-
tion could be forgotten [13]. To overcome those limitations,
Vaswani et al. [19] presented a novel deep learning model
called Transformer Network (TN). Adding positional encod-
ing and attention mechanism made the TN different from
traditional convolutional neural network (CNN) and RNN
frameworks. Its unique architecture led to remarkable success
in natural language processing (NLP) problems [2] and hence
considered viable to apply them to forecast time series data
as well. Our primary objective is to study TN for volatility
forecasting. Major contributions from this study include (i)
assessing the viability and performance of TN architecture
for volatility forecasting and (ii) compare and contrast the
performance of TN architecture with other approaches in
general and specifically with a recently proposed data-driven
approach [18]. The rest of this manuscript is organized as
follows: Following the literature review in section II, the
implementation details of TN for the current problem are de-
scribed in section III. Section IV describes the algorithms for
transformer network used in this study. The experiments and
results are presented in Section V, discussions in section VI,
and conclusion in section VIIL

II1.

Using deep learning models for forecasting has become
popular due to their performance as compared to traditional
models such as GARCH models. Xu et al. [22] adopted a
new hierarchical graph neural network (HGNN) to analyse
the market state from a hierarchical perspective for stock
type forecasting. For the purpose of graph construction, they
included both historical sequence patterns and stock relation-
ships in their analysis. The result demonstrated the outper-
formance of HGNN over other the state-of-the-art solutions
including attentive long short-term memory (ALSTM) [4],
graph convolutional network (GCN) [11], and graph attention
network (GAT) [20] models. Jiang [8] presented a review on
the studies that used deep learning models for stock market
forecasting during 2017-2019 in order to provide a compre-
hensive view for researchers interested in this area. Filipovic
and Khalilzadeh [5] examined the ability of machine learning
methods in forecasting the realized volatility of stock returns.

RELATED WORK

The study found that machine learning methods have great
potential in forecasting risk in the stock market and showed
that LSTM architecture provided more accurate forecasting of
volatility compared to other machine learning methods. While
some researchers used TN in sentiment analysis by analysing
comments of users in social networks and financial news [12],
[15], [23], others have applied them to time-series forecasting.
Sridhar and Sanagavarapu [17] used time-series forecasting
as an essential tool for analyzing the fluctuations in the
bitcoin and altcoin markets. The performance of the model was
evaluated using several metrics, including Root Mean Square
Error (RMSE), Mean Squared Error (MSE), Mean Absolute
Error (MAE), and R-squared value, and demonstrated an
impressive accuracy comparable with other cryptocurrency
price forecasting models. Zhou et al. [24] proposed a novel
deep learning model called T2V-TF. They mentioned that
existing methods for stock forecasting tend to rely on limited
features and importance of multi-source information fusion has
been ignored. To address these limitations, they proposed T2 V-
TF that combines Time2Vec and Transformer network. The
research validated the proposed model on a portfolio of stocks
from the Chinese stock market and demonstrates that T2V-
TF outperformed other traditional models. Wang et al. [21]
used daily closing price to forecast stock market indexes in
future. They evaluated the performance of TN model from two
points of view: forecasting accuracy and net value analysis.
The results showed that TN model had the highest Sharpe
ratio and total return in comparison to other models.

III. TIME EMBEDDING IN TN

The historical price of S&P 500 index is utilized to measure
the efficiency of the proposed methodology. The data set used
in this study consisted of daily data of the S&P 500 index from
1982 to 2023, downloaded from Yahoo! Finance. It comprised
of 10,337 rows and 7 columns, namely Date, High, Low, Open,
Close, Adj Close, and Volume.

A. Time Embedding

To establish the temporal relationships within each input
sequence, the TN requires embedded time vectors. Several
studies have utilized Time2Vec to produce time-embedded
vectors for forecasting models in time series forecasting [17],
[24]. Time2Vec, introduced in [9], plays a crucial role in
implementing the TN for time-series data. It offers a vector
representation of time that encompasses both periodic and
non-periodic patterns, ensuring invariance to time rescaling.
The findings of the study [9] demonstrated that replacing the
concept of time with its Time2Vec representation improves
the performance of the final model across various models
and problems. Time2Vec denoted as t2v(7), is mathematically
computed as follows [9]:

t2v(7) = {

The periodic feature consists of a linear function that is
contained within a function F' while the non-periodic feature

if 1=0
if 1<i<K

WiT + @5
Flwit + ¢i)

91

is a linear function with slope w and intercept ¢. By passing
the input data sequence through the ¢2v(7) function both
periodic and non-periodic features are computed. The features
are merged with the input value sequence and are provided
to the TN model. In the subsequent step, the computed time
features are concatenated with the volatility feature forming a
matrix.

B. Transformer Network

The TN model offers a unique methodology by avoiding
recursion and instead relies extensively on the attention mech-
anism to capture overall connections between input and out-
put. Embeddings layer, positional encoding, encoder-decoder,
multi-head attention, and feed forward network are important
components of TN. To enhance the model’s flexibility, we
made some modifications to the original TN architecture. First,
in this study, we have substituted positional encoding with
Time2Vec. Second, we modified the decoder to better align
with our specific requirements. In the original TN design, both
the encoder and decoder blocks consist of two sub-layers: a
multi-head attention (MHA) layer and a feed forward network
(FFN). In this research, the decoder section has significant
alterations, incorporating global average pooling, two dropout
layers, and two dense layers, with the final dense layer yielding
the output. The encoder unit comprised of MHA and FFN lay-
ers. In encoder block, MHA model followed by dropout, layer
normalization, LSTM layers, dropout, and layer normalization.
The first LSTM layer consisted of 256 units, both LSTM layers
utilized the hidden layer activation function (tanh). The input
to the encoder involved embedding the input sequence using
Time2Vec vectorization. The encoder produced a fixed-length
output, before feeding into the decoder. Ultimately, the final
dense layer in the decoder is responsible for generating the
model’s output. Figure 1 demonstrates the TN Model of this
research by applying LSTM layer as FFN layer. There are
different hyperparameters in TN. The mean squared error is
used as the loss function. The Adam optimizer [10] is used
to train the model. In order to prevent overfitting, a dropout
technique with a rate of 0.1 is utilized for each sub-layer.
Models are evaluated with MAE, and MAPE metrics. Batch-
size in this research was 32, dimension of key and value for
attention layers were 256, and 8 heads were employed for
MHA layer. The encoder block is made up stack of 3 layers.
All models are fit with 50 epochs.

IV. TRANSFORMER NETWORK ALGORITHMS

A clear and concise representation of the algorithm designed
for this research problem is presented in Algorithms 1 and 2.
S, refers to the length of the input sequence (St = 12) and d,,
is the number of data points of input. MHA involves the use
of multiple attention functions running in parallel. In MHA,
there are h attention layers that run simultaneously (A is equal
to 8). Algorithm 1 demonstrates the MHA function.
Processing financial data using an encoder and decoder block
for forecasting stock volatility is outlined in Algorithm 2. The
first step is to compute the return of a stock. After that the

Qutput

N S

Decoder
Block

Global Average Pooling

Normalization layer

Encoder
Block

LSTM layer as FFMN

Normalization layer

Multi-head Attention

N I

Time2vev

Input sequence

Fig. 1. Implementation of TN Model by applying LSTM layer as feed forward
layer

Algorithm 1 Multi-head attention Function

Multi-head Attention Layer éq, k,v)

Input: tensor q,k,v € Rm>5L

output: tensor 3/ € R XL

q, kv = Wox + by, Wiz —1— by, Wox + by
k

q1 1 V/1
q/ — N S k‘/ = y U/ = .
an h Vi
Attention(qi, k1, v1)
y= :
Attention(qn, kn, vr)
y = Wyy + by
return 3’

volatility of the stock is computed. Volatility is computed
using the standard deviation, employing a window size of
5. The resulting volatility values are then added into the
dataset. Dataset is split into train, validation, and test data.
After applying Tme2Vec method, the encoder block processes
the input data applying a MHA mechanism to the data, then
passing the result through a FFN layer for which three different
variations of the FFN, (namely CNN, LSTM, and a hybrid
approach combining both (CNN-LSTM)) instead of relying
solely on a simple linear layer have been incorporated. The
encoder layer count is set at 3, and this process is iterated three
times using the EncoderUnit function. The decoder block takes
the output of the previous encoder block with global average
pooling, two dropout layers, and two dense layers, with the
final dense layer yielding the output. The three metrics MSE,
MAE, and Mean Absolute Percentage Error (MAPE) are used

92

Algorithm 2 Transformer Network is used for Stock Volatility
Forecasting
Data: Adj Close price of stock, P;,t =0, ..., k,...Th

1. Compute return, volatility

Pi—Py_1
Py

Tt <— t=1,...,71

voly < Standard Deviation of 7
2. Normalize data, split data
Use Min-max normalization to normalize vol;
Split the data vol; sequentially into 70% train, 15%
15% test
3. Encoder input data, positional encoding
training data are separated into sliding window sequences
a length of 12 days (S = 12)
for i in range(seq-len, len(train-data)) do
X-train.append(train-data [i - seq-len :i])
Y-train.append(train-data[i])
end for
Apply the Time2Vec method to generate the positional
for each X[t], i.e., 2v(X[t]) € Rm*5L,
4. Encoderblock
Input: tensor x € R4™
output: tensor x € Rm
Function EncoderUnit(x):
x’ = layerNorm(x + Multi-head Attention (z, z,))
2" = layerNorm(z’ + feedforward(z"))
return 2’
fori=1,... Ndo
x = EncoderUnit(x)
end for
return x
5. Decoderblock
Input: tensor x € R%m * 5L
output: tensor z’ € R%m*1
Function DecoderUnit(x):
z’ = Global Average Pooling(z)
2’ = Dropout(z’)

validation,

with

encoding

xSy,
xS,

z’ = Dense(z’)

2’ = Dropout(z’)

2" = Dense(z’)
return 2’

to measure the accuracy of models from different perspectives.

V. EXPERIMENTS AND RESULTS

In this research, the first approach univariate volatility
forecasting involves using only the volatility feature. There
are two variations within this approach to compute volatility:

1) Using the Open price.

2) Using the Adj Close price.

The second approach is multivariate volatility forecasting that
utilizes all available features. In this approach, two specific
features are considered:

1) Using the Adj Close price.

2) Using the Open price.

A. First approach: Univariate Volatility Forecasting
1) Using Open Price for computing volatility: By utilizing
the random forest model and analyzing the feature impor-

tance, we determined that the Open price and Adj Close
price are two most significant factors in the provided time

TABLE I

TABLE I

Models MSE MAE MAPE ||

Models

[

MSE MAE MAPE ||

Transformer Network(LSTM layer) 1.1350e-05 0.0019 30.3417

Transformer Network(LSTM layer) 1.1642e-05 0.0022 28.2502

Transformer Network(CNN layer) 4.6428e-05 0.0049 82.4246

Transformer Network(CNN layer) 0.0001 0.0051 68.5471

Transformer Network(CNN-LSTM layer) 1.0810e-05 0.0018 29.5690

Transformer Network(CNN-LSTM layer) 1.0801e-05 0.0021 26.9638

S&P S00 Volatility Prediction

real

0040 —— prediction

0.035

0030

0025

0020

0015

0010

0,005

0,000

200

400

800 1000 1200 1400 1600

Fig. 2. Forecasting result of volatility of S&P 500

series data. Open price was used as it emerges as the most
significant feature according to the feature importance analysis
for volatility forecasting. Table I provides the result of test data
by employing three distinct FFN layers configurations: CNN,
LSTM, and a hybrid approach that combines both (CNN-
LSTM). In Figure 2, we present a visual comparison of the
actual volatility, with the corresponding forecasting values.
This plot aims to provide a comprehensive assessment of
the model performance in capturing the true fluctuations in
volatility over time. Furthermore, Figure 3 illustrates a plot of
the MSE loss over 50 epochs. The smooth and progressively
decreasing MSE loss plot indicates a well-optimized training
process, where the model effectively adjusts its parameters
to minimize forecasting errors. By examining the MSE loss
plot in conjunction with the visual comparison of actual and
forecasted volatility values, a more comprehensive evaluation
of the model’s performance can be achieved.

2) Using Adj Close Price for computing volatility: Alter-
natively, we employed the Adj close price instead of the Open
price for volatility forecasting, the same model configuration
and evaluation metrics were utilized. The result as presented
in Table II, showing the performance of the three FFN
layers configurations: CNN, LSTM, and the hybrid CNN-

105 Model loss

—— Training loss (MSE)
—— Validation loss (MSE)

| A
Vo \/“‘\ 4/-/\-'\/\‘\/\‘*-_,_/_/_f_/‘\\/\._,fﬁ_,.,_w

o 1)l 0 ©

Epoch

Fig. 3. Model loss by applying TN (CNN-LSTM as FFN layer)

93

S&F 500 Volatility Prediction
— el

prediction

0.08

0.04

0.0z

0.00

200 600 1000 1200 1400 1600

Fig. 4. Forecasting result of volatility of S&P 500

LSTM approach. Figure 4 presents a visual comparison of
the actual volatility value with the corresponding forecasted
values. This plot aims to offer a thorough evaluation of the
model’s ability to capture the true fluctuations in volatility
over time. Additionally, Figure 5 displays a plot depicting
MSE loss over 50 epochs. A smooth and steadily declining
MSE loss curve serves as an indicator of a training process
characterized by effective parameter optimization, resulting in
minimized forecasting errors.

B. Second approach: Multivariate Volatility Forecasting

1) Using Adj close Price for computing volatility: In this
step, we used all seven features for S&P 500 volatility fore-
casting by implementing TN. To accommodate these differing
input setups, we made modifications to the input sequence
and adjusted the input shape within our TN. To enhance the
model’s performance, we employed moving average [7] to our
dataset to reduce noise and minimize short-term fluctuations
that are inherent in the time series data. We then assessed
the performance of our three different models by applying
CNN, LSTM, and hybrid (CNN-LSTM) instead of the simple
feed forward layer. Subsequently, we obtained the results
presented in Table III for the test data by employing three

10-5 Model loss

—— Training loss (MSE)
Validation loss (MSE)

Fig. 5. Model loss by applying TN (LSTM as FFN layer))

TABLE III

TABLE IV

| Models MSE MAE MAPE ||

H Models MSE MAE MAPE H

Transformer Network(LSTM layer) 4.7215e-06 0.0018 35.3797

Transformer Network(LSTM layer) 2.4181e-06 0.0016 51.9926

Transformer Network(CNN layer) 2.1032e-05 0.0032 75.5001

Transformer Network(CNN layer) 2.0115e-05 0.0056 92.1289

Transformer Network(CNN-LSTM layer) 4.0552e-06 0.0016 33.0305

Transformer Network(CNN-LSTM layer) 2.7377e-06 0.0015 49.9926

Test Data

o £ a0 00 0 1000 1200

Fig. 6. Forecasting result of volatility of S&P 500

different layer configurations. Figure 6 demonstrates the visual
comparison of the actual volatility and corresponding predicted
values, utilizing all feature as input for the model. This plot
offers a comprehensive evaluation of the model’s performance
in accurately capturing the volatility fluctuations over time.
Figure 7 illustrates the MSE loss plot obtained from training
the TN model with all seven features over 50 epochs. A
steady and uniform reduction in MSE loss is a testament to
the efficacy of the training process, demonstrating the model
efficiently adjusts its parameters to minimize prediction errors.

2) Using Open Price for computing volatility: In this step,
the Open price is used to calculate volatility. The rest of
the steps, including incorporating all seven features for S&P
500 volatility prediction, were replicated as in the previous
experiment. We implemented a TN and applied three distinct
FFN layers, namely CNN, LSTM, and hybrid (CNN-LSTM).
Table IV presents the results of performance comparison of the
test data by employing three different layer configurations.

C. Comparision with LSTM and DDEWMA Models

We used Time2Vec with LSTM Network in order to com-
pare its result with TN. By incorporating the time vector

165 Model loss

—— Training loss (MSE)
Validation loss (MSE)

Fig. 7. Model loss by applying Transformer Network using hybrid (CNN-
LSTM) as FFN layer

TABLE V
I Model MSE MAE MAPE ||
[[LSTM (using one feature) 1.1678¢-05 0.0021 28.0900 ||

through Time2Vec, the LSTM model gains the ability to
capture and utilize temporal patterns effectively. We imple-
mented LSTM Network in two steps. Initially, we input only
the volatility feature into the Time2Vec with LSTM model,
while in the second step, we incorporated all features. To
ensure a fair assessment between the LSTM model and the
TN model, we employed identical evaluation metrics as those
used for the TN model. This methodology enabled us to
effectively evaluate and compare the performance of both
models. Table V demonstrates the results of implementing
Time2Vec with LSTM model. By utilizing all features as
input for our Time2Vec+LSTM model, we obtained the results
presented in Table VI.

Second model is data-driven exponentially weighted moving
average (DDEWMA). The key in the function DDEWMA is
to loop through alpha in order to select the alpha that generates
the lowest MSE. Alpha represents the optimal smoothing
constant, determined by minimizing one-step ahead forecast
errors. We used 12-day historical window of data for fitting
our optimal alpha. We utilized the Adj Close price to calculate
volatility, and solely employed the volatility feature as input
for the DDEWMA model. Table VII presents the results
of the three metrics, providing an overview of the model’s
performance.

VI. DISCUSSIONS

We proposed a TN with a multi-head attention (MHA)
mechanism architecture for the task of forecasting stock
volatility. To enhance its capabilities in this research, we
integrated three different variations of the feed forward
layer—namely CNN, LSTM, and a hybrid approach combin-
ing both CNN-LSTM —instead of relying solely on a simple
linear layer. For initial approach univariate volatility forecast-
ing, we applied two different data for calculating volatility.

TABLE VI
I Model MSE MAE MAPE ||
[[LSTM (using seven features) 3.3587¢-05 0.0041 57.7487 ||

TABLE VII
I Model MSE MAE _ MAPE ||
[[DDEWMA (using one feature) — 2.69093e-05 0.0037 56.3953]

These data included using the Open price and the Adj close
price. Their corresponding results presented in Table I and
Table II Across both cases, it is evident that using the hybrid
(CNN-LSTM) architecture as feed forward networks (FFN)
in the TN, outperforms other models. This is supported by
its lowest MSE, MAE, and MAPE values. The LSTM-based
FFN also demonstrated competitive results, albeit with slightly
higher MSE, MAE, and MAPE values. In contrast, the CNN-
based FFN variant showed higher MSE, MAE, and MAPE
values, indicating relatively lower accuracy in capturing the
true fluctuations over time. Based on the result of comparison
obtained by using the Open price and Adj Close price led to
compute volatility, we can conclude:

1) utilizing the Adj Close price more suitable for capturing
volatility patterns.

2) the hybrid model architecture incorporating both CNN
and LSTM layers as FFN layer is effective for volatility
forecasting.

By closely analysing Figure 2 and Figure 4, it becomes
apparent that incorporating the Adj Close price for volatility
forecasting adeptly captures the inherent fluctuations and pat-
terns within the domain of volatility forecasting. The predicted
values closely correspond to the actual values, exemplifying a
remarkable precision in capturing the dynamics of volatility.
While it is acknowledged that certain instances exist where
the actual and predicted values do not align perfectly, a
consistent pattern of upward and downward movements can
be observed in both, particularly within the majority of the test
data. This observation demonstrates that the model possesses a
commendable capacity to capture the broader trends and shifts
in volatility, thereby demonstrating its efficacy in forecasting
volatility patterns.

The smooth and steadily decreasing MSE loss plots in
Figure 3 and Figure 5, indicate a well-behaved training process
where the model successfully optimizes its parameters to mini-
mize prediction errors. Analyzing the MSE loss plot alongside
the visual comparison of actual and predicted volatility values
allows for a more comprehensive assessment of the model’s
performance. By considering all the results, we can conclude
that the hybrid (CNN-LSTM) architecture within the TN
outperforms other models in volatility forecasting. For the
second approach multivariate volatility forecasting, based on
the result of the MSE, MAE, and MAPE presented in Table III
and Table IV, it becomes evident that employing the Adj
Close price for volatility predictions yields superior results
in comparison to Open price. Furthermore, it’s worth noting
that univariate volatility forecasting outperforms multivariate
volatility forecasting.

To conduct a comparison between the Time2Vec+LSTM
model and the Time2Vec+TN model, we utilized identical
evaluation metrics as employed for the TN model. The results
demonstrated the strong performance of the Time2Vec+LSTM
model on the dataset, as evidenced by the low values obtained
for both MSE and MAE when using only one feature. These
metrics indicate that the model’s predictions align closely

95

Volatility prediction
0.030

—— TN Model prediction’
1| STM Madel Prediction
Actual Price

0.025

0.020

voltity

0.015

0.010

0.005

Fig. 8. Comparing the performance of two models in volatility forecasting

with the actual values, highlighting its accuracy. Furthermore,
when comparing to the results achieved by the TN model
using either LSTM or hybrid (CNN-LSTM) layers as the FFN
layer, the LSTM model performs competitively. The results
obtained from these models are very close to each other,
indicating that the LSTM model is similar in performance
to the TN model. Figure 8 provides a comparison between
the TN model and the LSTM model in terms of their ability
to predict volatility using a limited test dataset (zooming
on 140 Data Points). The plot clearly illustrates that both
models exhibit promising performance in capturing the ups
and downs of volatility. They demonstrate a notable ability
to track and predict the fluctuations in volatility, showcasing
their effectiveness in capturing the overall trends in the data.
Based on the results presented in Table II, Table V, and
Table VI, it can be concluded that the LSTM model demon-
strates strong performance in univariate volatility forecasting
comparable to the performance of the TN model. However,
as the complexity of the dataset increases, along with the
length of data and the number of features, the LSTM model
shows poorer performance. Hence, it can be inferred that
the Transformer Network model is better equipped to handle
the complex dataset, longer sequences of data, and multiple
features, making it more suitable for stock volatility prediction
in such cases. The Table VII demonstrates DDEWMA model
showed the unsatisfactory results in effectively capturing the
volatility projection of the S&P index by displaying higher
MAE and MAPE scores. We compared the results achieved
by the TN model, the LSTM model, and DDEWMA model
in Figure 9 focusing on a limited test dataset (zooming on
140 data points). Table VIII presents the results of the three
metrics of three models.

TABLE VIII
I Model MSE MAE MAPE ||
DDEWMA 2.69093e-05 0.0037 56.3953
LSTM 1.1678¢-05 0.0021 28.0900

Transformer Network(CNN-LSTM layer) 1.0801e-05 0.0021 26.9638

VII. CONCLUSIONS

In this research, we proposed a Transformer Network (TN)
with a multi-head attention (MHA) mechanism for forecasting

Volatility prediction

0.030
—— Actual volatlity

1| STM Madel Prediction
—— TN Model prediction
DDEWMA Model prediction

0.025

0.020

Volatiity

0.015

0.010

0.005

8

Fig. 9. Comparing the performance of three models in volatility forecasting

stock volatility. To improve the model’s performance, we in-
corporated three variations of the feed forward network (FFN)
layer: CNN, LSTM, and a hybrid approach combining both
(CNN-LSTM). We conducted experiments using different data
for computing volatility, including the Open price and the Adj
Close price. The results showed that the TN with the hybrid
CNN-LSTM layer as FFN layer outperformed other models.
When comparing the result of univariate volatility forecasting
versus multivariate volatility forecasting, it was found that
employing the Adj Close price alone yielded superior results
for forecasting the volatility of the S&P 500 index in both
of them. Furthermore, it is important to highlight that the
utilization of univariate volatility forecasting surpasses the
performance of multivariate volatility forecasting.

In the first comparison approach, we compared three mod-
els: DDEWMA, the Time2Vec+LSTM model, and the
Time2Vec+TN model. We focused on using only one feature
for volatility forecasting. Based on the results, both the LSTM
and TN models showed a significant ability to predict volatil-
ity. However, the DDEWMA model performed comparatively
worse than the others.

In the second comparison approach, we again compared
the Time2Vec+LSTM model and the Time2Vec+TN model,
but this time we considered all seven features. While the
Time2Vec+LSTM model exhibited a remarkable ability to
track and predict volatility fluctuations using a single volatility
feature, its performance declined when multiple features were
involved. On the other hand, the TN model with MHA proved
to be more suitable for handling complex datasets and multiple
features. Therefore, in scenarios involving stock volatility
forecasting with various features, the TN model with MHA
is the preferred choice.

ACKNOWLEDGMENT

The first author acknowledges the Research Assistantship
from Prof. Thulasiram and Graduate Enhancement of Tri-
agency Stipends (GETS) from University of Manitoba. The
last two authors acknowledge the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada for Discovery
Grants.

REFERENCES

[1] BOLLERSLEV, T. Generalized autoregressive conditional heteroskedas-
ticity. Journal of Econometrics 31, 3 (1986), 307-327.

96

[2

—

[3

—

[4

flnar

[5

=

[6]
[7]
[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

CHERNYAVSKIY, A., ILVOVSKY, D., AND NAKOV, P. Transformers:
“the end of history” for natural language processing? In Machine
Learning and Knowledge Discovery in Databases. Research Track
(Cham, 2021), N. Oliver, F. Pérez-Cruz, S. Kramer, J. Read, and J. A.
Lozano, Eds., Springer International Publishing, pp. 677-693.

ENGLE, R. F. Autoregressive conditional heteroscedasticity with esti-
mates of the variance of united kingdom inflation. Econometrica 50, 4
(July 1982), 987.

FENG, F., CHEN, H., HE, X., DING, J., SUN, M., AND CHUA, T.-
S. Enhancing stock movement prediction with adversarial training. In
Proceedings of the Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI-19 (7 2019), International Joint Conferences
on Artificial Intelligence Organization, pp. 5843-5849.

FILIPOVIC, D., AND KHALILZADEH, A. Machine learning for predict-
ing stock return volatility. Swiss Finance Institute Research Paper, 21-95
(2021).

HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory.
Neural computation 9 (12 1997), 1735-80.

HYNDMAN, R. J. Moving Averages. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011, pp. 866-869.

JIANG, W. Applications of deep learning in stock market prediction:
Recent progress. Expert Systems with Applications 184 (2021), 115537.
KAzEMI, S. M., GOEL, R., EGHBALI, S., RAMANAN, J., SAHOTA,
J., THAKUR, S., WU, S., SMYTH, C., POUPART, P., AND BRUBAKER,
M. Time2vec: Learning a vector representation of time. arXiv preprint
arXiv:1907.05321 (2019).
KINGMA, D. P., AND BA, J.
optimization, 2014.

KIPF, T., AND WELLING, M. Semi-supervised classification with graph
convolutional networks. international conference on learning represen-
tations, 2017.

L1, Y., Lv, S., Liu, X., AND ZHANG, Q. Incorporating transformers
and attention networks for stock movement prediction. Complexity 2022
(2022).

LIN, H., AND SUN, Q. Financial volatility forecasting: A sparse multi-
head attention neural network. Information 12, 10 (2021).

L1u, Y. Novel volatility forecasting using deep learning—long short term
memory recurrent neural networks. Expert Systems with Applications
132 (2019), 99-109.

MISHEV, K., GJORGIEVIKJ, A., VODENSKA, I., CHITKUSHEV, L. T.,
AND TRAJANOV, D. Evaluation of sentiment analysis in finance: From
lexicons to transformers. IEEE Access 8 (2020), 131662—-131682.
RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Learning
Representations by Back-propagating Errors. Nature 323, 6088 (1986),
533-536.

SRIDHAR, S., AND SANAGAVARAPU, S. Multi-head self-attention
transformer for dogecoin price prediction. In 2021 [4th International
Conference on Human System Interaction (HSI) (2021), IEEE, pp. 1-6.
THAVANESWARAN, A., PASEKA, A., AND FRANK, J. Generalized value
at risk forecasting. Communications in Statistics-Theory and Methods
49, 20 (2020), 4988-4995.

VASWANI, A., SHAZEER, N. M., PARMAR, N., USZKOREIT, J., JONES,
L., GOMEZ, A. N., KAISER, L., AND POLOSUKHIN, I. Attention is all
you need. ArXiv abs/1706.03762 (2017).

VELICKOVIC, P., CUCURULL, G., CASANOVA, A., ROMERO, A., L1O,
P., AND BENGIO, Y. Graph attention networks. stat 1050, 20 (2017),
10-48550.

WANG, C., CHEN, Y., ZHANG, S., AND ZHANG, Q. Stock market
index prediction using deep transformer model. Expert Systems with
Applications 208 (2022), 118-128.

Xu, C., HUANG, H., YING, X., GAo, J., LI, Z., ZHANG, P., X1A0,
J., ZHANG, J., AND LU0, J. HGNN: Hierarchical graph neural network
for predicting the classification of price-limit-hitting stocks. Information
Sciences 607 (2022), 783-798.

ZHANG, Q., QIN, C., ZHANG, Y., Bao, F., ZHANG, C., AND LIU,
P. Transformer-based attention network for stock movement prediction.
Expert Systems with Applications 202 (2022), 117239.

ZHoU, F., ZHANG, Q., ZHU, Y., AND L1, T. T2v_tf: An adaptive timing
encoding mechanism based transformer with multi-source heterogeneous
information fusion for portfolio management: A case of the chinese a50
stocks. Expert Systems with Applications 213 (2023), 119020.

ADAM: A method for stochastic

