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Abstract—In order to improve the task execution capability
of home service robot, and to cope with the problem that
purely physical robot platforms cannot sense the environment
and make decisions online, a method for building digital twin
system for home service robot based on motion simulation is
proposed. A reliable mapping of the home service robot and
its working environment from physical space to digital space is
achieved in three dimensions: geometric, physical and functional.
In this system, a digital space-oriented URDF file parser is
designed and implemented for the automatic construction of
the robot geometric model. Next, the physical model is con-
structed from the kinematic equations of the robot and an
improved particle swarm optimization algorithm is proposed
for the inverse kinematic solution. In addition, to adapt to the
home environment, functional attributes are used to describe
household objects, thus improving the semantic description of
the digital space for the real home environment. Finally, through
geometric model consistency verification, physical model validity
verification and virtual-reality consistency verification, it shows
that the digital twin system designed in this paper can construct
the robot geometric model accurately and completely, complete
the operation of household objects successfully, and the digital
twin system is effective and practical.

Index Terms—Service Robot, Digital Twin, Motion Simulation,
Particle Swarm Optimization Algorithm

I. INTRODUCTION

Home service robots, as an important medium to improve
the quality of human life, are able to replace humans to
complete domestic work. However, in the face of complex
domestic service tasks, relying solely on physical robotic
platforms, the execution of tasks is highly unstable, and
often unpredictable problems occur, which are likely to cause
irreversible damage to expensive physical robots or the home
environment, with a high degree of risk and uncertainty.
Therefore, it is very necessary to design a digital twin system
for home service robots to simulate various situations that
may occur in real environments, to try to discover and solve
problems that may occur when the physical robot platform
actually operates, and to guide the physical robot to perform
home service tasks reliably and efficiently.
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In this paper, we argue that the main things that a robot can
rely on to complete domestic service tasks are the movement
of its robotic arm and chassis. Most physical engines already
integrate path planning internally to enable chassis movement,
so this paper focuses on how to simulate the real motion of
the robotic arm in a virtual environment and build the digital
twin system based on it.

Digital twin refers to the construction of a virtual mapping
of the physical entity in the whole life cycle of a system,
through data fusion, information interaction, and virtual sim-
ulation [1], to describe the operational state of the physical
space [2] [3]. The first generic framework for the digital twin
was modeled in terms of physical entities, virtual models and
connections [4]. For monitoring of complex objects, the five-
dimensional model that adds services and digital twin data to
the three-dimensional model was proposed [5].

Driven by the development strategies of various countries
[6] [7], the application of digital twin has become a hot spot
[8]-[10], including the field of robotics [11] [12]. Through vir-
tual reality technology, [13] proposes a digital twin-based pro-
gramming method for industrial robot demonstrations, which
improves the human-robot interaction of robot demonstrations.
Reference [14] proposes a digital twin-based approach for
flexible robot work cell development, which speeds up the
overall commissioning process.

Digital twin is rapidly developing in the industrial robot
field, but it is not yet targeted for home service robots.
The home environment is unstructured, and has a number of
manipulable objects, so the digital twin construction method
for industrial robots cannot be applied to home service robots
directly. This paper proposes a digital twin system for home
service robot based on motion simulation. The system in-
tegrates geometric, physical, and functional information. A
parser for URDF [15] (Unified Robot Description Format)
files is designed to build the robot geometric model automat-
ically. An improved partcle swarm optimization algorithm is
proposed to solve the inverse kinematics problem and achieve
rational motion of the robot arm in digital space. Functional
model is also proposed to describe the semantic information
of household objects. Finally, the validity and practicality are
demonstrated by geometric consistency verification, physical
validity verification and virtual-reality consistency verification.
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Fig. 1. Framework for the digital twin system for home service robot based on motion simulation.

II. OVERALL DESCRIPTION OF THE SYSTEM

A. System Framework and Workflow

The framework of the proposed system is shown in Fig. 1,
which mainly includes physical space, digital space and con-
nections. The physical space is consisting of service robots
and home environment. The digital space is composed of
the digital robot platform and the virtual home environment,
which is required to map the physical space realistically. The
connection of this digital twin system is based on ROS#, which
reliably exchanges twin data.

During the operation phase of the system, the physical
robotics platform monitors various operational data in the
physical space in real time, including odometer information,
robot arm status, and so on. This data is connected to the
digital space via ROS#, which helps map the physical space
to the digital space with high fidelity. In the digital space, the
robot simulates the operation of the real environment in the
digital space to guide the physical robot platform.

B. Model Composition and Correlation Analysis

The digital twin model M consists of the geometric model
G, the physical model P, and the functional model F,:

M=G,UP,UF,, (1)

where, G, is the 3D models, including the shape and
material properties of all objects in the physical twin space,
which has the most intuitive impact on the visual effect of
the digital space; P, describes the physical properties of the
robot platform and household objects, such as gravity, which
determine the similarity between physical and digital spaces;
F, is used to describe the functional properties of household

objects, which determine the behavior of the robot in digital
space that is consistent with real-world common sense.

III. CONSTRUCTION METHOD OF DIGITAL TWIN SYSTEM

This section introduces the construction method of the
digital twin system for home service robot, described in terms
of the robot and the home environment, respectively.

A. Geometric Modeling of Robot

The robot model contains joint and kinematic parameters
that can be constructed with the help of URDF files. URDF
files can be obtained from the ROS and can be parsed by
the Gazebo software, but cannot be used directly in Unity3D.
Therefore, the URDF file parser is implemented in Unity3D.

The URDF parser uses the System.rml namespace of C#
to parse the URDF file, and gets the robot’s Joint and Link
information, as well as the robot’s description file and material
file. The above information can form the basic framework of
the model, so that the robot’s URDF model can be imported
into Unity3D as a GameObject.

In this paper, we use the TIAGo robot as the physical
robot platform. This platform has a 7 Dof robotic arm, a
Hey5-type 5-finger manipulator, and a PMB-2 type mobile
chassis, to flexibly move and manipulate tiny objects in indoor
environments [16].The geometric model of the TIAGo robot
obtained by 3D stereoscopic display is shown in Fig. 1.

B. Forward Kinematic Modeling of Robot Arm

The robot arm of the TIAGo robot has 7 Dof. As shown in
Fig. 2, the coordinate system at each joint of the TIAGo robot
arm can be established.

By denoting the 7 joint variables of the TIAGo robot arm
as 61,0, ..., 07, the forward kinematic equations of this robot
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arm can be established using the D-H parameter method. By
reviewing the relevant information, the D-H parameter of the
TIAGo robot arm are shown in Tab. I, where o, and a; are
the angle and length of rotation from the Zj_; axis to the
Z axis along the Xj_ axis, respectively. 85 and dj, are the
angle and length of rotation from the Xj_; axis to the Xy
axis along the Zj, axis, respectively.

Fig. 2. Coordinate system of each joint of TIAGo robot arm.

TABLE I
D-H PARAMETER OF TIAGO ROBOT ARM.

Joint Index k  ay/rad ag/mm  di/mm 6% /rad  0}/rad
1 0 0.15505 -0.151 0 2.75
2 1.57 0.125 -0.0165 -1.57 1.09
3 -1.57 0 -0.0895 -3.53 1.57
4 1.57 0.02 -0.027 -0.39 2.36
5 -1.57 0.02 0.162 -2.09 2.09
6 1.57 0 0 -1.41 1.41
7 -1.57 0 0 -2.09 2.09

The transformation matrix between the (k — 1) joint and
the k*" joint of the TIAGo robot arm is shown in (2), where
Cy and Sy donate cos 6 and sin 6, respectively:

C’Gk _SQkC’OLk Séksak akc(gk
T(oE = | 5 el T ) o
0 0 0 1

Substituting the parameter in Tab. I, T(6,)Y, T(62)3, ...,
T(07)$ can be found sequentially, and multiplying them to-
gether gives:

’ R P
M(01,0s,....,07) = [[ T(0x); " = {0 1] 3)
k=1
where R and P are the pose matrix and position matrix of
the end-effector, respectively. M (61,60, ...,07) is the posi-
tion&pose matrix of the end-effector, which is the forward
kinematic model of the robot.

C. Inverse Kinematic Modeling of Robot Arm

Since the motion of the robot arm joints is physically
constrained, and the degrees of freedom are redundant, this
paper uses the particle swarm algorithm to solve the inverse
kinematics of the robot arm. The particle swarm algorithm is
suitable for the case where the robot has redundant degrees of
freedom and has strong robustness.

In the particle swarm algorithm, the optimal particles in-
clude the historical optimal particle pBest and the global
optimal particle gBest. Each particle iteratively updates its
velocity v and position x with pBest and gBest as references
to explore the solution space:

v(t+1)=W - v(t) + Cy - rand() - [pBest(t) — x(t)] @
+ Cy - rand() - [gBest(t) — x(t)],

z(t+1)=z)+o({t+1), 5)

where W € [0, 1] is the inertia weight, reflecting the effect
of the original velocity on the subsequent motion; C; and Cs
are the learning factors, indicating the ability of the particle
to utilize its own experience and the ability to absorb the
experience of other particles, respectively.

From the current joint variables 61, 6, ..., 07, the current
position&pose matrix Mo, pose matrix Ro and position
matrix Pc of the end-effector can be calculated by (3). In
addition, the desired position&pose matrix Mo, pose matrix
Ro and position matrix Pp are given.

Define the position error E'p as the 2-norm of the difference
of the position matrix, i.e.

Ep =||Pc — Poll2 (6)

The current pose R¢ and the desired pose Ro are trans-
formed into quaternions (Zc, Ye, 2e, We) and (Lo, Yo, Zo, Wo)-
Define the pose error Er as

Er =2arccos (T Te 4 Yo * Yo + 20 2 + Wo - we)  (7)

In order to obtain a unique solution that conforms to the
constraint, this paper adds additional conditions with the help
of the optimal flexibility rule. For the TIAGo arm, the optimal
flexibility is defined as

7
min {0k (7) — (i — 1))°}, ®)
k=1

where 0y (j) — 0;(j — 1) is the difference between the current
angle and the previous angle of the joint 6. wj is the
weighting factor, following the principle of “more movement
of the lower arm and less movement of the upper arm” to
achieve more stable movement. In this paper, we take w; = 1,
LUQ:LU3=O.5, w4:w5:w6:w720.1.

According to the position error E'p, pose error E'r and the
optimal flexibility rule (8), the fitness function is

7

f=wpBp+woEo+ Y wr(0k(j) — 0k — D) 9
k=1

where wp = rand(0,1) and wp = 1 — wp are the weighting

coefficients of Ep and Eg, respectively. The smaller the f

of the particle, then the better its quality, i.e., the smaller the
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difference between the current position&pose matrix M¢c and
desired position&pose matrix Mp.

To improve the global convergence performance of the
algorithm, this paper lets the inertia weights W and the
learning factor C; and C; make adaptive adjustments with
the number of iterations:

t 2t

W(0) = (W, = W) () + (We = W) () + W,
C1(1) = (Cro = Cuo) (3 + (Cre = Cu) () + Crs. (10)
Oolt) = (Cos — Coe) (%) + (Coe — C2) () + O,

where T and ¢ are the final and current number of iterations,
respectively. Take W5 = 0.9 and W, = 0.4 to denote the
initial and final values of W (t), respectively. As the number
of iterations ¢ increases, W (t) will gradually become smaller,
then the particle swarm can explore the whole solution space
at the beginning of the iteration and quickly locate the local
area where the optimal solution is located. At the later stage
of exploration, the particle swarm can launch a detailed search
for the optimal solution locally. Taking Cs = 1.5 and C4, =
2.5 to denote the initial and final values of C(t), and taking
Cys = 2.5 and (5, = 1.5 to denote the initial and final values
of Cs(t), respectively, which can prevent the algorithm from
falling into local optimum at the beginning and enhance the
search accuracy at the end.

The improved particle swarm optimization algorithm is used
to solve the inverse kinematic problem, as shown in the Alg. 1.

Algorithm 1 Solution of the inverse kinematic problem.
Input: Desired position&pose matrix Mo;
Output: Joint variables (61,05, ...,07) of the robot arm;
1: Randomly initialization of 50 7-dim particles;
2: while ¢ < T do
3:  Calculate the fitness of each particle according to (9);
4:  Update the pBest and gBest;
5:  Update the weights and learning factors by (10);
6
7
8
9

Update the particles by (4) and (5);
: end while
. Select the global optimal solution gBest;
. return The 7 joint variables corresponding to gBest.

D. Geometric and Physical Modeling of Home Environment

The home environment contains a diverse range of objects.
To build the digital twin system here, it is necessary to
model the household objects. Household objects do not contain
complex joint structures and can be modeled directly using
Blender software. The basic shape is constructed first, and
then given the materials to obtain a realistic model display
effect. The open source SLAM (Simultaneous Localization
and Mapping) technology allows the robot to explore the
environment and obtain a environment map. The geometric
model of the home environment can be completed by manually

placing the household object and the room structure model in
the digital space according to the map.

In order to simulate the manipulation of household items,
physical modeling of them is also indispensable. In the
Unity3D, physical properties such as gravity and collision can
be easily added to various items through various components.

E. Functional Modeling of Household Objects

When interacting with household objects, robots cannot only
consider physical properties. In order to bring robot behavior
closer to that of humans, it is also necessary to describe the
functional properties of each household item.

In [17], 22 attributes are proposed to describe the function-
ality of objects in home environment. In this paper, however,
we argue that some of these attributes are only relevant to
humans and not to robots to accomplish tasks, such as Sittable.
There are also some attributes that can be combined into one.
For example, Puttable, Rotatable and Moveable can be unified
and described by Moveable. In this paper, we use a total of
nine functional attributes as shown in Tab. II to describe the
functional semantic information of household objects.

FE. Connection of Home Service Robot Digital Twin System

Regarding the data interaction in the digital twin system, this
paper focuses on the acquisition and transmission of the real-
time status of the physical robot platform during its operation,
and the control commands from the digital space to the
physical robot. Specifically, this paper uses ROS to acquire and
manage the various data of the physical robotics platform, and
then uses ROS# to achieve two-way communication between
the data in ROS and Unity3D.

IV. EXPERIMENTAL VERIFICATION AND ANALYSIS

To validate the proposed approach in this paper, a digital
twin system for home service robot is built in laboratory
environment as shown in Fig. 3. In the digital space, the virtual
environment uses Unity3D 2021.3.11flcl as the development
engine. The computer is equipped with a GTX1080 graphics
card with 8GB memory, an i7-8700 CPU, and 16GB of RAM.

/\..ﬁ\ >

(a) The physical space of home environment

(a) The digital space of home environment

Fig. 3. Simulated home environment built in the laboratory.

A. Geometric Model Consistency Verification

By measuring the real robot, its geometric parameters can be
obtained, which allows the calculation of the accuracy of the
geometric modeling. In addition, the number of components is
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TABLE II
THE DESCRIPTION OF FUNCTIONAL ATTRIBUTES

Functional Attribute Describe

Pickable
Moveable
Heatable
Coolable
Receptacle
Toggleable
Openable
Sliceable
Fillable

These objects can be picked up or put down into receptacles.
These are non-static objects that can be moved around the scene.
These objects can increase the temperature of other objects.
These objects can decrease the temperature of other objects.
Receptacle objects allow other objects to be placed on or in them.
These objects can be toggle on or toggle off.

These objects can be opened or closed.

These objects can be sliced into smaller pieces.

These objects can be filled with liquid.

known by consulting relevant information, and by comparing
the real number with the modeled number, it is possible to
indicate whether the robot geometric model has completeness.

Tab. III shows the measured data of the physical TIAGo,
the modeling data of the digital TIAGo, and the error between
the two. All data are in centimeters, except for the number of
components. “Height” refers to the overall height of the robot,
”Chassis” is the robot’s movable chassis, and “Laptop Tray”
is the platform behind the head of TIAGo. From the data in
Tab. III, it can be seen that the modeling error of the geometric
model of TIAGo is not large and all the components of TIAGo
are modeled, so the geometric model has high accuracy and
completeness.

The coordinates of a vertex of some household objects in
the physical space and digital space are measured separately.
Since objects are affected by gravity, only the two-dimensional
coordinates of object on the map plane are of interest. The con-
sistency of the geometric model of the home environment is
verified by calculating the difference between the coordinates.

The coordinates of some objects in physical and digital
space obtained from the measurements are shown in Tab. IV,
and all data are in centimeters.The error is the Euclidean
distance between two coordinates. The data in Tab. IV shows
that the modeling error of the geometric model of the home
environment is small, and therefore the geometric model of
the home environment is geometrically consistent.

B. Physical Model Validity Verification

This experiment realizes the trajectory planning of the robot
arm in the joint space according to the inverse kinematics
model by the fifth polynomial interpolation method. The
validity of the physical model is verified by using the example
of TIAGo grasping a water cup.

To ensure the stability of grasping, the action of TIAGo
robot is divided into two stages, approaching and grasping.
Fig. 4 shows the process of robot approaching the water cup.
The robot drives the robot hand to gradually approach the
water cup through the position&pose adjustment of the robot
arm until it is close to the water cup.

After approaching the water cup, the robot hand needs to
perform a grasp action, as shown in Fig. 5.

From the experimental results, it can be seen that the
physical model enables the TIAGo robot to complete the

(a) Robotic Arm Initial State (b) Robotic Arm Movement (C) Robotic Arm Reach Cup

Fig. 4. The process of TIAGo robot hand approaching the water cup.

(a) Prepare to Grip

(b) Complete Grip

Fig. 5. The process of TIAGo robot hand grasping the water cup.

water cup grasping task smoothly, which meets the expected
requirements.

C. Virtual Reality Consistency Verification

Since the effective execution of all home service tasks re-
quires robot movement, the virtual-real consistency is verified
from the operation of movement command in the digital twin
system.

Firstly, the Localization module that comes with the phys-
ical robot is used to obtain its initial position&pose, and to
initialize the position&pose of the digital robot. Secondly, a
movement command is sent to the robot, which will move and
display the status and the home environment in real time. The
movement of the robot is synchronized in the digital space,
and the effect is shown in Fig. 6.

As can be seen from Fig. 6, the digital and the physical
space can achieve the same execution effect when performing
the same task, and the digital space can be synchronized with
the physical space in real time. This proves that the digital twin
system established in this paper has virtual-reality consistency.
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TABLE III
GEOMETRIC PARAMETERS AND ERRORS OF ROBOT

Space Components Height(cm) chassis Laptop Tray
Number Height(cm)  diameter(cm)  Height(cm) — Width(cm) — Length(cm)
Physical 89 110 30 54 60 28 33
Digital 89 110.0998 30.0384 53.172 60.4548 28.476 33.264
Error 0 0.998 0.384 0.828 0.4548 0.476 0.264
TABLE IV
GEOMETRIC PARAMETERS AND ERRORS OF HOME ENVIRONMENT
Space Fridge Tablel Table2 Desk Microwave Television
Physical (107 ,348) (412, 157) (334, 347) (493, 213) (405, 163) (427, 152)
Digital ~ (105.423, 348.525)  (414.205, 156.423)  (333.012, 345.423)  (491.432, 212.433)  (406.429, 162.956)  (425.912, 153.422)
Error 1.662 0.612 1.861 1.667 1.430 1.790

(c) Physical robot ready to manipulate

(d) Physical robot move to fridge

Fig. 6. Operational effect of the digital twin system.

V. CONCLUSION

This paper proposes the motion simulation-based digital
twin system for home service robots and its implementa-
tion method, to meet the practical need of complex home
environment. This system integrates geometric, physical and
functional models for accurately map the robot and its working
environment. 3 aspects of validation experiments demonstrate
the accuracy and practicality of the proposed method and
system, providing a feasible approach to completing complex
tasks for home service robots.

There are, however, still missing areas that need a lot
of research, such as auto-adaptation to different homes, im-
plementation of more atomic actions, and so on. Therefore,
subsequent work will further refine the system.
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