
Fixed set search applied to the maximum set
k-covering problem

Raka Jovanovic
Qatar Environment and Energy Research Institute

Hamad bin Khalifa University
Doha, Qatar

rjovanovic@hbku.edu.qa

Abstract—The MKCP (Maximum Set k-Covering Problem) is
a widely recognized combinatorial problem that falls under the
category of NP-hard problems. It has diverse applications and
involves the goal of covering a maximum number of elements
using a limited number of candidate sets. In this paper, the
novel fixed set search (FSS), a population based metaheuristic,
is applied on the problem of interest. The FSS adds a learning
mechanism to the greedy randomized adaptive search procedure
(GRASP) based on elements frequently occurring in high quality
solutions. The main advantage of the proposed approach is the
simplicity of implementation compared to the current state-
of-the-art methods. The conducted computational experiments
show that the FSS even when using a simple local search
manages to be highly competitive to state-of-the-art methods. In
addition, the FSS manages to find two new lower bounds for the
standardly used benchmark test instances. Finally, the performed
computational experiments show that the learning mechanism of
the FSS significantly improves the performance of the underlying
GRASP algorithm.

Index Terms—set covering problem, fixed set search, GRASP

I. Introduction

The minimum set cover problem (MSCP) is a well-
established challenge in the realm of combinatorial opti-
mization. Its primary objective is to identify the set cover
that employs the fewest sets [1]. In the maximum set k-
covering problem (MKCP), the aim is to discover a subset of
sets with a specified cardinality that maximizes the number
of elements covered by this particular subset. The MKCP
is widely acknowledged as a challenging problem classified
under the NP-hard category [1]. Its applications extend across
numerous industrial engineering domains, showcasing its ver-
satility and practicality. Examples of such applications include
the maximum covering location problem [2], wireless sensor
networks [3], cloud computing [4], train diver scheduling [5],
among many others. These diverse real-world implementations
underscore the significance and wide-ranging impact of the
MKCP in industrial engineering scenarios.

The computational complexity of MKCP makes it infeasible
to rely on exact algorithms for handling large-scale instances.
Consequently, researchers have invested significant efforts in
developing heuristics to obtain high-quality solutions. An ef-
fective greedy method based on one-pass streaming algorithms
has been proposed in [6]. For the MKCP, solution methods
using local searches have proven to be highly effective. One
such example is the restart local search algorithm (RNKC)

[7]. The best performing methods for the MKCP combine
different metaheuristics with local searches. Some examples
are the use of adaptive binary particle optimization [8] and
the binary artificial bee colony algorithm [9]. To the best of
the authors knowledge, currently the best performing method
is the max–min ant system with memory ants [10]. It should
be noted that all these population based methods [8]–[10] use
more advanced local searches than the basic one based on
the swap operation (removing one set from the set cover and
adding a new one) to maximize the performance.

The Fixed Set Search (FSS) is an innovative metaheuristic
that has effectively tackled various optimization problems. It
has been successfully employed to solve the traveling salesman
problem [11], power dominating set problem [12], machine
scheduling [13], clique partitioning problem [14], minimum
weighted vertex cover problem [15], covering location with
interconnected facilities problem [16] and others. Addition-
ally, the FSS has demonstrated its efficacy in addressing bi-
objective optimization problems [17]. The FSS is a population-
based metaheuristic that incorporates a local search, making
it highly suitable for the MKCP, as methods utilizing local
searches have proven most successful. In practice, the FSS
integrates a learning mechanism into the Greedy Randomized
Adaptive Search Procedure (GRASP) metaheuristic [18]. FSS
is motivated by the observation that high-quality solutions
for a given problem instance often share common elements.
The approach focuses on generating solutions that incorporate
these elements, known as the fixed set. The computational
effort is then directed towards completing the partial solutions
by ”filling in the gaps.”

This paper focuses on the application of the FSS on the
MKCP. One of the main advantages of the FSS is that its
learning mechanism can drastically improve the performance
of the GRASP especially for less effective local searches [11],
[15]. One of the disadvantages of the best performing methods
[8]–[10] is that they become significantly more complex for
implementation which the proposed FSS approach tries to
avoid. To be exact, the proposed FSS uses the simple swap
based neighborhood in the local search and relies on the
FSS learning mechanism for enhancing performance. The
effectiveness of the proposed approach is tested on the standard
benchmark test set and proves to significantly outperform other
simple to implement methods and is highly competitive to the

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1245

more complex state-of-the-art ones.
The paper is organized as follows. The Section II provides

the problem formulation for the MKCP. The following three
sections are dedicated to the greedy algorithm, local search and
GRASP algorithm for the problem of interest. The Section VI
focuses on the FSS method. The next section shows the results
of the conducted computational experiments and provides their
analysis. The paper is finalized with some concluding remarks.

II. Problem formulation

The formal definition of MKCP [1] is as follows: Consider
R = {1, . . . , r} a set of rows and C = {1, . . . , c} a set of columns.
There is a binary matrix, denoted as A = (ai j), with r rows and
c columns. A column j covers a row i if the entry ai j equals
1. The objective of MKCP is to select a subset S ⊂ C of size
k (|S | = k), maximizing the number of covered rows.

The integer programming model (IP) can be specified as
follows [9]. Let us define binary decision variables x j for j ∈
C. The value of x j = 1 is used for all for a column j ∈ S
and zero otherwise. In addition, lets us define auxiliary binary
variables yi, for i ∈ R, which are equal to 1 if set S covers
row i and 0 otherwise. Using these variables the IP can be
specified using the following equations.

Maximize
∑
i∈R

y j (1)

Subjected to∑
j∈C

x j = k (2)∑
j∈C

ai jx j ≥ y j j ∈ R (3)

x j ∈ {0, 1} j ∈ C (4)
yi ∈ {0, 1} i ∈ R (5)

The Eq. (1) states that objective is to maximize the total
number of covered rows. The constraint given in Eq. (2)
guaranties that the there are k selected columns in the solution
S . The constraints given in Eq.(3), guarantee that a row can
only be covered if at least one column that covers it is selected.
Finally, Eqs. (4) and (5) provide the bounds on the variables
related to selected columns and covered rows, respectively.

III. Greedy algorithm

The idea of the greedy algorithm is to start with an empty
partial solution S = ∅ and iteratively expand it. At each
iteration, the partial solution S is expanded by a column
o ∈ S c, where S c = C \ S , which is not already a part of S .
Since our goal is to have the maximal covering, the selected
element for expansion o should cover the largest number of
rows that are not already covered by some column in S .

In relation, let us define the function Cover(S), for a set of
columns S , as the number of rows covered by some column
in S . Now, the heuristic function h, for a partial solution S
and a column o, can be specified as follows.

h(S , o) = Cover(S ∪ {o}) −Cover(S) (6)

In Eq. (6) presents the heuristic function h(S , o) as the number
of newly covered rows in the case set S is expanded with the
column o. Using function h, the greedy algorithm can be fully
specified. Since, our goal is to use the greedy algorithm as
a part of the GRASP metaheuristic, it is necessary to include
randomization. In the proposed algorithm, we use the standard
approach of a restricted candidate list (RCL) to achieve this
as follows. Let us define L as the set on α elements o ∈ S c

that have the largest value of h(S , o). Now, we can expand the
partial solution with a random element of set L instead of the
one having the largest value of the heuristic function h. The
details of the proposed randomized greedy algorithm can be
seen in Alg. 1.

Algorithm 1 Randomized greedy algorithm for the MKCP
Input: Problem instance A, Size of RCL α
Output: Generated covering S
function RandomizedGreedy(A, α)

S = ∅; S c = Columns(A)
while |S | < k do

o = RCL(S , α)
S = S ∪ {o}
S c = S c \ {o}

end while
return S

end function

IV. Local search

The local search is based on the concept of swapping
elements of a solution S with elements of S c = C \ S . The
idea is to swap an element of a solution i ∈ S with one outside
of it (o ∈ S c) if the resulting solutions covers more rows. This
procedure is repeated until not further improvement can be
archived.

To formally define this approach, let us define the function
S wap(S , i, o) that is equal to the change in the number of
covered rows when column i is removed from S and column
o ∈ S c is added, as follows

S wap(S , i, o) = Cover((S \ {i}) ∪ {o}) −Cover(S) (7)

In relation, let us define the Imp(S) as the set of all improving
swap operations for a solution S .

Imp(S) = {(i, o) | i ∈ S ∧ o ∈ S c ∧ S wap(S , i, o) > 0} (8)

In Eq. (8), Imp(S) represented the set of all swap operations,
specified using the pairs (i, o) where column i is removed from
S and column o is added, that increase the number of covered
rows. Using the set of improving swap operations Imp(S) the
local search can be specified, for which details can be seen in
Alg. 2.

In Alg. 2, a solutions S is iteratively improved using the
following procedure. While the set of improving solutions
Imp(S) is not empty, a random swap operation using columns
i ∈ S and o ∈ S c is selected and applied to S .

1246

Algorithm 2 Local search for the MKCP
Input: Problem instance A, Initial solution S
Output: Improved solution S
function LocalSearch(A, S)

while Imp(S) , ∅ do
Select random (i, o) ∈ Imp(S)
S = (S \ {i}) ∪ {o}

end while
return S

end function

V. GRASP

To improve the efficiency of the proposed method the greedy
algorithm and local search are incorporated into the GRASP
metaheuristic. The GRASP iteratively generates solutions us-
ing a randomized greedy algorithm and applies a local search
on each of them. The details of the GRASP used as a part
of the FSS is depicted in Algorithm 3. Firstly, the set of

Algorithm 3 Pseudocode for the GRASP
Input: Problem instance A, Size of RCL α, Number of
iterations MaxIter
Output: Set Of generated solutions S
function GRASP(A, α, MaxIter)

i=0; S = ∅
while i < MaxIterations do

S = RandomizedGreedy(A, α)
S = LocalS earch(A, S)
S = S ∪ S
i = i+1

end while
return S

end function

generated solutions S is set to an empty set. Within the main
loop of Alg 3, a fresh solution S for the MKCP is generated
using the RandomizedGreedy function. The local search is
then performed on the solution S , and it is added to the set
of generated solutions S and is evaluated if it qualifies as the
new best solution. This process continues iteratively until a
certain stopping criterion is met, typically defined by a time
limit or reaching the maximum allowed number of generated
solutions.

VI. Fixed Set Search

In this section, the application of the FSS metaheuristic
to the MKCP is presented. As previously stated, the FSS
combines GRASP with a learning mechanism to identify
common elements in high-quality solutions and generates
new solutions containing them. The algorithm includes a
method for generating fixed sets, using a greedy algorithm
with local search, and implementing a learning mechanism.
The process involves generating an initial population, creating
fixed sets, and iteratively generating new solutions with the

selected elements. In the following subsections each of these
components is described.

A. Fixed Set Generation

The first building block involves representing a solution as
a subset derived from a ground set of elements. As previously
mentioned, a MKCP solution S can be seen as a subset
composed of elements (columns) S ⊂ C. The second building
block is a method for generating multiple fixed sets F while
allowing control over their size or cardinality |F|. Moreover,
when incorporating a generated fixed set into the randomized
greedy algorithm, it must be capable of producing feasible
solutions of equal or superior quality compared to those
generated by the underlying greedy algorithm. To establish
the foundation, let us introduce some definitions.

We denote Sn = {S 1, .., S n} as the set of the n best solutions
generated in the preceding algorithm steps. A base solution
B ∈ Sn is randomly selected from the top n solutions. If
the fixed set fulfills the condition F ⊂ B, it can be utilized
to generate a feasible solution with a quality equal to or
better than that of B. Furthermore, F can incorporate an
arbitrary number of elements from B. The underlying concept
is to include elements in F that occur frequently within a
group of high-quality solutions. We define Skn as the set
consisting of k randomly selected solutions from the n best
ones, denoted as Sn. By leveraging these defined components,
we can effectively generate fixed sets tailored for the MKCP.

Let us introduce the function C(e, S), which operates on a
solution S and an element (column) e. It evaluates to 1 if e
is present in S , and 0 otherwise. Leveraging this function, we
can calculate the occurrence count of an element e within Skn

using the expression:

O(e,Skn) =
∑

S∈Skn

C(e, S) (9)

Subsequently, we define F as a subset of B consisting of the
elements e with the highest values of O(e,Skn). Furthermore,
we denote the process of generating the fixed set, given a
base solution B and a set of solutions Skn with a specified
size S ize, as the function F = Fix(B,Skn, S ize). Note that in
the proposed approach for generating fixed sets, ties between
elements are broken randomly.

B. Randomized greedy algorithm with pre-selected elements

An extension of the randomized greedy algorithm dis-
cussed in Section III, can be easily adapted to incorporate
a fixed set F. In this adaptation, the initial partial solu-
tion S is set to F instead of an empty set. To distinguish
this modified version of the algorithm, we denote it as
RandomizedGreedyWithFix(F, A, α), where F represents the
pre-selected set of elements.

C. Learning mechanism

This section describes the FSS learning mechanism, specif-
ically focusing on utilizing fixed sets to leverage experience
from previous solutions. Initially, N solutions are generated

1247

using the GRASP as the initial population S for exploring the
solution space. Next, the FSS iteratively generates solutions as
follows: a fixed set F of size S ize is generated using previous
solutions, and it is used with the randomized greedy algorithm
to create a new solution S . The local search is applied to
improve S , and the newly obtained locally optimal solution is
added to the set of solutions S. This process continues until
a stopping criterion is met.

The fixed set plays a vital role in the algorithm. It is
generated using a base solution and a set of test solutions.
The fixed set’s size is incrementally increased when stagnation
occurs after, many iterations without finding a new solutions
among the best n solutions Sn. However, to avoid repetitive
solutions, an upper bound is set on the fixed set size. If
this bound is reached during stagnation, the size is reset to
the minimum allowed value. This cycle continues until the
stopping criterion is reached.

To determine the sizes of the fixed sets in the FSS learning
mechanism, an array of permissible sizes is established. These
sizes are defined relative to the base solutions’ size. In the
proposed implementation, the array is defined as:

Portion[i] =
(
1 − βi

)
(10)

In Eq. 10 the value β ∈ (0, 1) is used. The size of the fixed set
is proportional to the base solution B cardinality. At the i-th
level, the size is set to ⌊|B| ·Portion[i]⌋ (rounded down). Here,
the base solution’s size corresponds to the number of columns
in the solution. The maximum permissible size of the fixed
set should satisfy the condition |B|Portion[i] ≤ f , where f is
a predetermined number.

The algorithmic representation of the FSS is illustrated in
Algorithm 4. In this algorithm, the first step involves the
initialization of fixed set sizes using Eq. (10). The size of
the current fixed set, denoted as S ize, is initially set to the
smallest value. The subsequent part of the initialization phase
generates the initial population of solutions by executing N
iterations of the basic GRASP algorithm. Each iteration of
the main loop consists of the following steps: first, a random
set of solutions Skn is generated by selecting k elements
from Sn, and a random base solution B is chosen from
the set Sn. Next, the function Fix(B,Skn, S ize|B|) is utilized
to generate a fixed set F. Subsequently, a new solution
S = RandomizedGreedyWithFix(F, A, α) is created using
the randomized greedy algorithm with pre-selected elements,
followed by the application of a local search. The algorithm
then checks whether S improves the best solution and adds it
to the set of generated solutions S. If stagnation occurs, the
value of S ize is updated to the next value in the array S izes.
Here, stagnation is considered if in the last M iterations no
new solution has been added to the set of S n best solutions. It
is noteworthy that the next size corresponds to the next larger
element in the S izes array. In the case where S ize already
represents the largest size, the smallest element in S izes is
selected instead. This procedure is repeated until a termination
criterion is satisfied, in the proposed implementation this is
that a maximal number of solutions is generated.

Algorithm 4 Pseudocode for the Fixed Set Search
Input: Problem instance A, Size of RCL α, n number of
best solutions used for randomly selecting the base solution,
k specifies the set of test solutions Skn, control parameter
for the stagnation in the FSS MaxS tag, number of initial
runs of the GRASP N,parameter for specifying the sizes of
the fixed sets β
Output: Best found soultion S best

function FSS(A, α, n, k, MaxS tag,N,β)
Initialize S izes using β
S ize = S izes.Next
S = GRAS P(A, α,N)
while (Maximal number of solutions generated) do

Set Skn to random k elements of Sn

Set B to a random solution in Sn

F = Fix(B,Skn, S ize|B|)
S = RandomizedGreedyWithFix(F, A, α)
S = LocalS earch(S)
S = S ∪ {S }
Check if S is new best S best

if No new solution added to S n in M iterations then
S ize = S izes.Next

end if
end while

end function

VII. Results

This section presents the outcomes of the computational
experiments conducted to assess the effectiveness of the FSS.
A comparison is made between the proposed FSS and GRASP
algorithms to the state-of-the-art methods for the MKCP.
To be exact, the comparison is done to the best known
solutions (BKS) acquired using methods presented in [8]–[10].
In addition, a detailed comparison to the RNKC [7] is provided
since it has a high level of similarity to the GRASP but with an
improved local search. The FSS and the GRASP methods are
implemented in C# using Microsoft Visual Studio Community
2022. The computational experiments were performed on a
personal computer running Windows 10, equipped with an
Intel(R) Xeon(R) Gold 6244 CPU operating at 3.60 GHz and
128 GB of memory.

The following parameters have been used for all the test
instances for the GRASP and the FSS. These values have been
selected empirically. The value α = 5 is used for the size of
the RCL. The FSS is considered stagnating if M = 5 iterations
have been performed without adding a solution to the set Sn

of best n solutions. One of the difference to the application
of FSS on other problems [11]–[15] is in the way the size
of the fixed sets are generated. To be more precise, in the
other implementations the value of β is not considered as a
parameter and the value of 0.5 is used. In case of the MCKP,
this value did not produce the best results instead the value of
β = 0.8 is used. One reason for this could be that the number
of potentially selected columns is drastically lower than the

1248

TABLE I
Comparison of the RKNC, GRASP and FSS methods to BKS for large-scale instances. For all the methods the difference to the BKS is presented for the

best found and average solution over 10 runs.

Instance K90 K95

BKS Best Averageg BKS Best Average

RNKC GRASP FSS RNKC GRASP FSS BKS RNKC GRASP FSS RNKC GRASP FSS

scpa1 289 1 2 1 2.2 2.0 1.0 295 2 1 1 2.8 1.9 1.2
scpa2 289 1 1 0 2.4 1.0 0.9 295 2 1 1 2.8 1.2 1.0
scpa3 289 1 0 0 1.9 0.4 0.0 295 1 1 0 2.2 1.8 0.0
scpa4 288 1 2 0 1.2 2.0 0.0 294 1 1 0 1.7 1.5 0.0
scpa5 290 1 1 0 1.6 1.5 0.0 296 2 2 1 2.4 2.0 1.0
scpb1 296 0 2 0 1.0 2.0 0.0 299 0 1 0 1.4 1.5 0.0
scpb2 295 0 0 0 0.7 0.5 0.0 299 1 1 1 1.5 1.2 1.0
scpb3 296 1 1 0 2.5 1.0 0.9 299 2 1 1 2.5 1.0 1.0
scpb4 295 1 2 1 2.0 2.0 1.0 299 1 2 1 2.4 2.0 1.4
scpb5 295 0 0 0 0.8 0.8 0.0 298 0 1 0 0.9 1.0 0.4
scpc1 391 3 2 0 3.7 2.1 0.8 397 3 2 1 4.4 2.7 1.0
scpc2 391 3 2 1 4.0 2.5 1.6 397 3 2 1 4.2 2.8 1.5
scpc3 391 3 1 2 4.1 2.6 2.0 397 3 3 1 4.4 3.2 1.9
scpc4 392 4 2 1 4.6 3.2 1.2 397 3 2 0 4.0 2.9 0.4
scpc5 391 4 2 1 4.5 2.7 1.3 397 3 2 2 4.6 2.5 2.0
scpd1 395 4 4 1 4.1 4.0 1.9 398 2 3 0 2.9 3.0 0.9
scpd2 393 1 1 1 2.2 1.0 1.0 397 2 1 1 2.6 1.0 1.0
scpd3 393 2 1 0 3.4 1.5 1.6 397 3 1 0 3.4 1.9 1.2
scpd4 393 3 3 1 4.0 3.0 1.0 397 3 2 1 3.9 2.4 1.1
scpd5 393 3 3 1 3.7 3.0 1.0 397 3 2 1 3.7 2.0 1.4
scpnre1 488 3 2 0 3.3 2.0 0.9 495 2 1 0 3.5 1.0 0.9
scpnre2 488 1 2 1 2.9 2.0 1.0 495 3 2 1 3.3 2.0 1.0
scpnre3 488 1 2 1 3.3 2.0 1.0 495 3 2 0 3.5 2.0 0.9
scpnre4 488 1 2 1 2.4 2.0 1.0 495 3 2 1 3.8 2.0 1.0
scpnre5 488 1 2 1 2.9 2.0 1.0 495 3 2 1 3.7 2.0 1.1
scpnrf1 498 2 3 1 3.0 3.0 1.7 500 0 0 0 0.7 0.0 0.0
scpnrf2 497 2 2 0 2.5 2.0 0.7 500 0 0 0 0.4 0.0 0.0
scpnrf3 498 3 3 2 3.6 3.0 2.0 500 0 0 0 0.6 0.0 0.0
scpnrf4 497 2 2 0 2.5 2.0 0.7 500 0 0 0 0.6 0.0 0.0
scpnrf5 497 1 2 0 2.3 2.0 0.7 500 0 0 0 0.2 0.0 0.0
scpnrg1 984 9 5 1 13.8 6.1 3.5 995 11 4 0 13.1 4.6 2.2
scpnrg2 984 13 5 1 14.9 6.1 2.0 995 13 4 1 13.8 5.5 2.5
scpnrg3 983 12 5 3 14.1 6.1 3.5 993 10 3 2 11.4 3.6 2.5
scpnrg4 982 11 5 1 13.4 5.8 3.2 995 12 6 4 13.6 6.5 4.6
scpnrg5 983 13 5 3 14.2 6.7 4.7 993 11 3 1 11.7 3.9 2.8
scpnrh1 991 9 0 0 10.0 1.1 1.0 996 9 1 1 9.7 1.9 1.2
scpnrh2 992 9 2 1 10.9 2.5 1.6 995 7 0 -1 8.5 0.7 0.1
scpnrh3 993 10 3 2 12.0 3.4 2.7 996 8 1 1 9.4 1.9 1.3
scpnrh4 992 10 2 0 11.0 2.3 1.3 996 7 1 0 8.7 1.9 0.7
scpnrh5 992 9 2 -1 10.5 2.1 1.5 995 7 0 0 8.6 0.9 0.3
scpclr13 4045 0 0 0 1.2 0.0 0.0 4063 8 7 0 9.3 7.5 5.8
scpcyc09 4349 110 89 29 113.7 91.8 31.3 4468 115 93 20 121.8 99.4 24.9
scpcyc10 11004 302 257 41 316.8 263.2 68.2 11292 336 288 72 346.7 295.7 76.2
scpcyc11 26649 736 602 440 748.2 608.1 452.6 27315 769 641 495 790.3 655.1 524.8

100 BKS−Method
BKS 0.73 0.54 0.19 0.96 0.60 0.28 0.73 0.46 0.19 0.92 0.54 0.26

number of available ones and no similar properties exists in
the previously addressed problems. The population size n had
the value of 200 for all the instances except the scpnrcyc
ones. For these instances the selected value is 20 since due
to the high density of the graphs a much lower number of
solutions could be generated. Similar low values have been
used in case of the application of the FSS to clique partitioning
problem due to the same reason [14]. The number of selected
test solutions (Skn) used for generating the fixed set, k is equal
to 5. The number of iterations of the GRASP for generating
the initial population N was equal to the population size n.
The termination criterion for the FSS and the GRASP is that
30 000 solutions have been generated or a time limit of 120
seconds has been reached.

The tests are performed on the same set of test instances
as in [7]–[10], for which a detailed description can be found

in [8]. Note that this benchmark test set is a part of the OR-
Library. Since, the learning mechanism of the FSS becomes
relevant for improving the GRASP for large problem sizes
only instances having 3000 or more columns are considered,
in total 44. For each of the problem size two values for the
number of used columns are evaluated. To be exact, these
values are equal to 90% (K90) and 95% (K95) of the number
of used columns in the solution of the corresponding set
covering problem. Since, the FSS and GRASP are stochastic
methods the evaluation is done over 10 independent runs for
each instance, as has previously been done for the RKNC. The
comparison is done based on the quality of the best found
solution and the average solution value. The values for the
BKS and the RKNC are collected from the corresponding
articles. The results of the computation experiments can be
seen in Table I. It should be noted that the times needed to

1249

find the best solutions for the GRASP and the FSS are similar
to the ones for the RKNC and are not analysed in detail in
this paper.

The first observation that can be made from these results is
that the GRASP has a better performance than the RKNC.
To be exact, the GRASP has higher quality best solutions
than RKNC for 21 and 30 instance compared to RKNC being
better in 10 and 4 instances for problem types K90 and K95,
respectively. When the average solution quality is compared,
the advantage of GRASP becomes even more significant, with
GRASP being better for 39 and 41 instances for problem
types K90 and K95, respectively. The advantage of GRASP
is related to the fact that the RKNC uses initial solutions for
the local search that are highly random and of much lower
quality than the initial solutions used in the GRASP which
are acquired using the randomized greedy algorithm.

The use of the learning mechanism of the FSS results in a
performance significantly better than the GRASP. When the
average solution quality is considered the FSS is better for 86
instance than the GRASP and worse for only one. A similar
behavior can be observed for the best found solutions where
the FSS had a lower quality solution than the GRASP in
only one instance while being better for 71 instances. The
advantage of the FSS compared to the RKNC and GRASP is
also confirmed when the average relative distance to the BKS
is observed. To be exact, the FSS lowers this value by close
to 75% and 60% for the RKNC and the GRASP, respectively.

VIII. Conclusion

This paper presents an innovative solution for addressing the
MKCP. Specifically, it firstly introduces a GRASP algorithm
for the problem of interest. Later this algorithm is extended
the FSS. The performed computational experiments shown that
the FSS algorithm is highly competitive with state-of-the-art
methods. It is important to point out that even though the FSS
use a simple local search it managed to find to new best solu-
tions for the standardly used test instances. Furthermore, the
conducted tests have clearly indicated that the FSS’s learning
mechanism consistently delivers a significant improvements
when compared to the underlying GRASP algorithm.

The presented research opens up exciting avenues for fur-
ther exploration. For example, applying the FSS to different
variations of the set covering problem. Another direction is
the use of more advanced local searches to further improve
the performance of the algorithm on the MKCP.

References

[1] M. R. Garey and D. S. Johnson, Computers and intractability. freeman
San Francisco, 1979, vol. 174.

[2] J.-F. Cordeau, F. Furini, and I. Ljubić, “Benders decomposition for very
large scale partial set covering and maximal covering location problems,”
European Journal of Operational Research, vol. 275, no. 3, pp. 882–896,
2019.

[3] Z. Wang, J. Liao, Q. Cao, H. Qi, and Z. Wang, “Achieving k-barrier
coverage in hybrid directional sensor networks,” IEEE Transactions on
Mobile Computing, vol. 13, no. 7, pp. 1443–1455, 2013.

[4] Y. Kong, M. Zhang, and D. Ye, “A belief propagation-based method for
task allocation in open and dynamic cloud environments,” Knowledge-
Based Systems, vol. 115, pp. 123–132, 2017.

[5] M. Yaghini, M. Karimi, and M. Rahbar, “A set covering approach for
multi-depot train driver scheduling,” Journal of Combinatorial Optimiza-
tion, vol. 29, pp. 636–654, 2015.

[6] H. Yu and D. Yuan, “Set coverage problems in a one-pass data stream,”
in Proceedings of the 2013 SIAM international conference on data
mining. SIAM, 2013, pp. 758–766.

[7] Y. Wang, D. Ouyang, M. Yin, L. Zhang, and Y. Zhang, “A restart local
search algorithm for solving maximum set k-covering problem,” Neural
Computing and Applications, vol. 29, pp. 755–765, 2018.

[8] G. Lin and J. Guan, “Solving maximum set k-covering problem by an
adaptive binary particle swarm optimization method,” Knowledge-Based
Systems, vol. 142, pp. 95–107, 2018.

[9] G. Lin, H. Xu, X. Chen, and J. Guan, “An effective binary artificial bee
colony algorithm for maximum set k-covering problem,” Expert Systems
with Applications, vol. 161, p. 113717, 2020.

[10] Y. Zhou, X. Liu, S. Hu, Y. Wang, and M. Yin, “Combining max–min
ant system with effective local search for solving the maximum set
k-covering problem,” Knowledge-Based Systems, vol. 239, p. 108000,
2022.

[11] R. Jovanovic, M. Tuba, and S. Voß, “Fixed set search applied to
the traveling salesman problem,” in International Workshop on Hybrid
Metaheuristics. Springer, 2019, pp. 63–77.

[12] R. Jovanovic and S. Voss, “The fixed set search applied to the power
dominating set problem,” Expert Systems, vol. 37, no. 6, p. e12559,
2020.

[13] R. Jovanovic and S. Voß, “Fixed set search application for minimizing
the makespan on unrelated parallel machines with sequence-dependent
setup times,” Applied Soft Computing, vol. 110, p. 107521, 2021.

[14] R. Jovanovic, A. P. Sanfilippo, and S. Voß, “Fixed set search applied
to the clique partitioning problem,” European Journal of Operational
Research, vol. 309, no. 1, pp. 65–81, 2023.

[15] R. Jovanovic and S. Voß, “Fixed set search applied to the minimum
weighted vertex cover problem,” in International Symposium on Exper-
imental Algorithms. Springer, 2019, pp. 490–504.

[16] I. Lozano-Osorio, J. Sánchez-Oro, A. Martı́nez-Gavara, A. D. López-
Sánchez, and A. Duarte, “An efficient fixed set search for the covering
location with interconnected facilities problem,” in Metaheuristics: 14th
International Conference. Springer, 2023, pp. 485–490.

[17] R. Jovanovic, A. P. Sanfilippo, and S. Voß, “Fixed set search applied to
the multi-objective minimum weighted vertex cover problem,” Journal
of Heuristics, vol. 28, pp. 481–508, 2022.

[18] T. A. Feo and M. G. Resende, “Greedy randomized adaptive search
procedures,” Journal of Global Optimization, vol. 6, no. 2, pp. 109–
133, 1995.

1250

