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Abstract—The real estate asset class has captured the attention
of billions of global investors due to its ability to generate con-
sistent returns and offer diversification benefits within a mixed-
asset portfolio. Prior research has highlighted the advantages of
including real estate in portfolio optimization. However, existing
studies have primarily focused on historical data when addressing
this optimization problem. This paper presents an analysis of the
performance of a portfolio that incorporates real estate using
price predictions derived from a Long Short-Term Memory
(LSTM) model. To provide a comprehensive evaluation, we
compare the performance of our portfolio against a benchmark
portfolio consisting of stocks and bonds only. To this end, we run a
genetic algorithm on the two portfolios. Our findings demonstrate
a substantial improvement in the average risk-adjusted return of
the portfolio that includes real estate with a magnitude of around
100%, highlighting the substantial value that real estate brings to
a diversified portfolio. In this way, we propose a novel approach
for showing the benefits of investing in real estate.

Index Terms—mixed-asset portfolio, real estate, LSTM, risk-
adjusted return

I. INTRODUCTION

Real estate has long been recognized as a valuable com-
ponent of a diversified investment portfolio [1]. Including
real estate in a mixed-asset portfolio offers several poten-
tial benefits. First, real estate has historically exhibited low
correlation with traditional asset classes such as stocks and
bonds [2]. This low correlation can help improve portfolio
diversification and reduce overall portfolio risk [3]. Second,
real estate investments have the potential to provide consistent
income streams through rental income, which can act as a
hedge against inflation and provide stability during economic
downturns [4]. Third, real estate has the potential for capital
appreciation over the long term, as property values tend to
increase over time [5].

In order to assess the added value of investing in real
estate, it is useful to compare the performance of a portfolio
that includes real estate to that of a portfolio that does not
include it. Previous studies have examined such comparison
and found evidence supporting the inclusion of real estate in
mixed-asset portfolio. For instance, [6] found that portfolios
that included real estate showed higher risk-adjusted returns
compared to portfolios without real estate. In a more recent
study, [7] conducted an analysis of U.S. investment portfolios
and concluded that portfolios that incorporated real estate
assets outperformed those that did not, both in terms of

risk-adjusted returns and diversification benefits. Furthermore,
[8] confirmed the positive impact of real estate inclusion on
portfolio performance, emphasizing its ability to enhance risk-
adjusted returns and improve diversification benefits.

However, those studies relied on historical data in calcu-
lating the optimal weights of a mixed-asset portfolio, and
then applied those weights to an unseen test set [9]. A
potential limitation of such approach is that prices in the
test set might differ significantly compared to the prices in
the training set [10]. As a result, weights computed using
the training set might not fit the test set very well and thus
lead to worse portfolio performance (i.e., increased risk and/or
reduced return).

To alleviate the above issue, an alternative approach is to try
and predict prices in the test set, and then perform the portfolio
optimization task — i.e. calculating the optimal weights —
directly in the test set [11]. The advantage of this approach
is that we focus only on the data period we’re interested in
— i.e., the test set —; as a result, accurate predictions would
closely reflect the prices in the test set, and thus lead to a
more efficient portfolio selection. However, the quality of the
results is very much dependent on the effectiveness of the price
predictions.

Once we have obtained price predictions, we run a genetic
algorithm (GA) to optimize a portfolio that includes real
estate, stocks and bonds. In order to provide a comprehensive
evaluation, we compare the performance of our portfolio to
that of a portfolio consisting of stocks and bonds only. Our
goal is to demonstrate that a portfolio including real estate
outperforms a portfolio not including it. To this end, we
evaluate financial metrics such as Sharpe ratio, returns, and
risk and compare the results with the proposed benchmark —
i.e., portfolio not including real estate.

For our experiments, we used daily prices downloaded from
Yahoo!Finance for stocks and REITs, and Investing.com for
bonds, referring to the period between January 2017 and
January 2021, for financial instruments belonging to three
asset classes — i.e., stocks, bonds, and real estate —, and
to three countries — i.e., US, UK, and Australia. For each of
the three markets, we used prices for five stocks, five bonds,
and five REITs. Thus, we ran our experiments on a total of 90
datasets. All prices were expressed as USD, so as to account
for currency risk.
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The rest of this paper is organized as follows. Section II
explains the methodology used in this study. The results of our
experiments are presented in Section III, where we provide a
detailed discussion of the results obtained by predicting asset
prices using LSTM, and by running a GA to optimize our
portfolios. Finally, Section IV summarizes the conclusions of
the study.

II. METHODOLOGY

Our experiments aim to provide evidence that a mixed-asset
portfolio including real estate can significantly outperform a
mixed-asset portfolio not including real estate. This aim can
be broken down into two subtasks: (i) use LSTM to predict
the prices of REITs, bonds, and stocks, and (ii) use these
predictions as an input to a genetic algorithm, which is going
to optimize the weights of all assets in the portfolio.

Before applying the LSTM algorithm, we first needed to
take several data pre-processing steps, which are presented in
Section II-A. We then present the features that we included
in the price prediction in Section II-B and the loss function,
which is the same across all algorithms, in Section II-C.
Afterwards, we briefly present the Python libraries we used to
apply our machine learning algorithms in Section II-D. Lastly,
we present the genetic algorithm setup in Section II-E.

A. Data preprocessing

Before being used for price prediction, each time series
data is differenced and scaled. In this work, we adopt a
first-order differencing process to transform our data. First-
order differencing is a common technique used in time series
analysis to remove the trend component from the data. It aims
to transform a non-stationary time series into a stationary one.
A stationary time series is one whose statistical properties,
such as the mean and variance, remain constant over time.
Stationarity is desirable because it simplifies the analysis and
makes it easier to model the underlying patterns. By taking the
difference between consecutive observations, Dt = Pt−Pt−1,
we obtain a new time series that represents the changes
between adjacent data points.

After obtaining the values of Dt, they are further trans-
formed to fall within the range of 0 and 1 using the scaling
equation outlined in Equations 1.

Nt =
(D −Dmin)

(Dmax −Dmin)
(1)

where Nt is the standardized value of each variable (in this
case the differenced price D), and Dmin and Dmax are the
minimum and maximum value for D respectively, over all data
in each dataset.

B. Features

For our regression problem, we employ two types of fea-
tures: past observations of a given time series, denoted as
Nt, and technical analysis (TA) indicators. The past obser-
vations (Nt−1, Nt−2, Nt−3, ..., Nt−T ) are incorporated as
features, with the lag length determined based on the Akaike

Information Criteria (AIC) optimization. AIC is a widely-
used metric for model selection. Each dataset may have a
different lag length, resulting in a varying number of features.
Additionally, we incorporate five TA indicators: Simple Mov-
ing Average (SMA), Exponential Moving Average (EMA),
Moving Average Convergence/Divergence (MACD), Bollinger
Bands, and Momentum. These indicators help identify trends
and assist in price prediction and have been shown to improve
REITs price prediction accuracy [12]. The SMA represents
the average of past prices, while the EMA assigns expo-
nentially decaying weights to past observations. The MACD
measures the difference between short-term and long-term
EMAs. Bollinger Bands define an interval around the SMA,
considering standard deviations from the mean. Momentum
captures the difference between prices over a specific time
period. These indicators provide valuable information for
predicting future price movements.

C. Loss function

Our LSTM model evaluated by using out-of-sample pre-
dictions, rather than one-day-ahead predictions. The former is
when today’s Nt value (t1) is known and is used to forecast
the value of tomorrow (t2). However, tomorrow’s value is
unknown and cannot be used to forecast the value two days
ahead. Hence, this method uses the value forecast at time-step
1 to forecast the value at time-step 2, and so on. In the case
of one-day-ahead forecasting, the price today (time-step 0) is
known, and is used to forecast tomorrow’s price (time-step
1). Then tomorrow’s real price is used to forecast the price
at time-step 2, and so on. This second method is expected
to be more accurate, because we are using the actual values
as features, instead of predictions. However, for portfolio
optimization purposes using out-of-sample predictions would
be more realistic as using one-day-ahead predictions would
require rebalancing a portfolio on a daily basis for a time
period of around 150 days which can lead to significant
management costs.

For our problem, we use the root mean square error
(RMSE) as the loss function, which is presented in Equation
2:

RMSE =

√∑|j|
t=1(Pt − P̂t)2

|j|
, (2)

where Pt refers to the actual value of the price, P̂t is its
predicted value, and |j| denotes the number of observations
for each dataset j. Please note that as it was explained in
Section II-A, the differenced and scaled values (i.e. Dt and
Nt respectively) are reverted back to their original price values
(i.e. Pt), so that the loss function can be calculated.

D. LSTM

To apply our LSTM algorithm we used the keras1 library.
In order to fit the algorithm to the training data we used the

1https://keras.io/getting started/ Last access: January 2023
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keras.Sequential method. The trainable hyperparame-
ters were determined using a grid search method. Once the
algorithms were fit to the training data, they were then applied
to the test set by using the predict attribute of the relevant
model.

E. Genetic algorithm

Evolutionary algorithms have been widely used for financial
applications — e.g. [13, 14, 15] —, including portfolio opti-
mization [16]. To tackle the portfolio optimization problem we
consider in this paper, we use a particular type of evolutionary
algorithm known as genetic algorithm (GA) [17]. Below we
briefly discuss the GA we have used.

GA chromosomes (or, individuals) consist of N genes indi-
cating the weights allocated to the N assets in the portfolio.
The weight are real numbers in the interval [0, 1], and their
sum is equal to 1. For example, a GA individual that has the
genotype [0.5 0.2 0.3] indicates that there are three assets, and
the weight for those asset are 0.5, 0.2, and 0.3, respectively.
Initially, all genes are assigned the same weight (in particular,
Wi = 1/N for each asset i), which are then evolved according
to a set of operators.

We use elitism, one-point crossover and one-point mutation.
After the application of crossover and mutation, we apply
normalization to each GA individual, to ensure that the sum
of weights remains equal to 1.

State-of-the-art methods for solving portfolio optimization
problems have used many different metrics as fitness functions.
In this paper, we use the Sharpe ratio, defined as the ratio of
the difference between the average return and the risk-free
rate, over the standard deviation of the returns, that is,

S =
r − rf
σr

, (3)

where r is the average return of the investment, rf is the risk-
free rate, and σr is the standard deviation of the returns.

III. RESULTS

In this Section, we examine the experimental results in the
form of RMSE distributional statistics (Section III-A), and
summary statistics regarding the GA portfolio optimization
results (Section III-B). It should be noted that all results are
daily results. So when, for example, we present a seemingly
“low” return of around 0.03%, its annual equivalent would be
around 11.6%. 2

A. RMSE

First, we compare the accuracy of predictions between
two scenarios, one that includes REITs, and one that does
not include REITs. Table I shows the summary statistics
for two RMSE distributions, one for each of the two previ-
ously mentioned scenarios. For each of those distributions,
we analyze the mean and standard deviation. As we can
observe, the RMSE distribution in the first scenario shows
lower RMSE average value compared to the second scenario,

2AnnualizedReturn = [(DailyReturn + 1)365 − 1]× 100 = 11.6%.

with a percentage difference of -46.43%. This indicates that
including REITs in the analysis improves the accuracy of
predictions. Furthermore, the RMSE distribution for the first
scenario shows a noticeably lower standard deviation value
compared to the second scenario, with a reduction of 50.79%.
This suggests that incorporating REITs in the analysis leads
to more accurate predictions with reduced variability.

In order to compare the RMSE distributions obtained,
we performed a Kolmogorov-Smirnov (KS) test at the 5%
significance level. The null hypothesis is that the compared
RMSE distributions belong to the same continuous distribu-
tion. According to the test results, the adjusted p-value is
equal to 1.94E-45, which indicates a statistically significant
difference in the two distributions.

In summary, when analyzing the RMSE values, it becomes
evident that incorporating REITs in the analysis improves
the accuracy of predictions in terms of mean and standard
deviation. The scenario of incorporating REITs consistently
outperforms the scenario of not including REITs, suggesting
that including REITs provides more precise predictions. From
the KS test results, we observed that such difference is
statistically significant.

B. GA portfolio optimization

After having analyzed the RMSE distributional statistics, we
examine the expected portfolio performance for the above-
mentioned scenarios. First, we examine the expected return
distributions. From Table I, we can notice an increase in the
expected return average of around 66.06%. We also notice
a 54.11% reduction in the volatility of the expected return
distribution, which indicates an increased concentration of
values around the mean. This implies that including REITs
in a mixed-asset portfolio might improve the overall portfolio
return with a reduced volatility.

We also observe that the average expected risk tends to
decrease when including REITs with a magnitude of around
33.21%. This implies that investing in REITs allows to reduce
the overall portfolio risk. On the other hand, we notice that
the standard deviation of the expected risk values tends to
decrease with a magnitude of around 63.28%, which indicates
an increased concentration of risk values around the mean.

Finally, we observe that the average Sharpe ratio increases
when incorporating REITs, with a percentage difference of
103.71%. We also notice a slight increase in the volatility of
4.17%. This suggests that including REITs tends to have a
marginal impact on the volatility the risk adjusted returns.

In order to compare the Sharpe ratio distributions obtained,
we again performed a Kolmogorov-Smirnov (KS) test at the
5% significance level. Since we are making three comparisons,
one for each metric (i.e., portfolio return, risk, and Sharpe
ratio), we adjusted the p-values according to the Bonferroni’s
correction (e.g., 0.05/3 = 0.0167). According to the test
results, the adjusted p-value is equal to 1.55E-45 for all the
considered metrics, which indicates a statistically significant
difference in the compared distributions.
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TABLE I: RMSE and Sharpe ratio distributional statistics. Values in bold represent best results for each statistic.

RMSE Expected return
Metric Without REITs With REITs % Difference Without REITs With REITs % Difference
Mean 36.29 19.44 -46.43% 5.41E-04 8.99E-04 66.06%
Std Dev 146.15 71.93 -50.79% 6.08E-05 2.79E-05 -54.11%

Expected risk Sharpe ratio
Metric Without REITs With REITs % Difference Without REITs With REITs % Difference
Mean 5.54E-03 3.70E-03 -33.21% 7.26E-03 1.48E-02 103.71%
Std Dev 4.04E-04 1.48E-04 -63.28% 5.33E-04 5.55E-04 4.17%

In summary, when considering the portfolio return, risk, and
Sharpe ratio distributions, we observe that including REITs in
the analysis has a positive impact on the portfolio performance.
It significantly improves the risk-adjusted distributions, as a
result of an increased portfolio return and a reduced portfolio
risk. The effect of REITs on risk-adjusted return distributions
is significant, as shown by the KS test results.

IV. CONCLUSIONS

In our work, we evaluated the performance of a portfolio
including REITs by comparing it against a portfolio that does
not include REITs. From our experimental results, we noticed
a significant improvement in the risk-adjusted performance of
our portfolio which is highlighted by a greater average Sharpe
ratio that doubles the average Sharpe ratio of a portfolio that
does not include REITs. This can be related to a lower average
RMSE that results from including REITs in the analysis. This
suggests that including REITs in a portfolio including bonds
and stocks can mitigate the greater portfolio risk caused by
including stock investments.

While our results show that adding real estates to investment
portfolios can have positive effect under the diversification
perspective, further research can be done on different countries
to further explore the opportunities of investing in real estate.
Another opportunity for further research might be to extend
the holding period for real estate portfolios.
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