
Features and Classes Drift Detector to Deal with
Imbalanced Data Streams

Silas Garrido Teixeira de Carvalho Santos∗†, Danilo Rafael de Lima Cabral∗, Roberto Souto Maior de Barros∗
∗Centro de Informática, Universidade Federal de Pernambuco, 50740-560, Recife-PE, Brazil

{sgtcs,drlc,roberto}@cin.ufpe.br
†SiDi Institute, 51110-160, Recife-PE, Brazil

{s.garrido}@sidi.org.br

Abstract—Data streams, due to their dynamic nature, tend to
impose a number of constraints on the functioning of the learning
models used to extract knowledge from these environments. In
this context, concept drift is an emerging research area, as they
negatively affect the performance of classifiers: after they have
been trained with a specific concept, they tend to lose accuracy
in the presence of a new concept. Additionally, this problem is
often worsened in environments with imbalanced classes, because
the identification of changes in the distributions of examples
belonging to minority classes is usually more complex, due to
their lack of representativeness in the data stream. This work
proposes the Features and Classes Drift Detector (FCDD), a
new method specially designed to deal with the problem of
concept drifts in imbalanced data streams, aiming to maintain
the accuracy of detections in minority classes and, in addition, to
avoid discarding the knowledge inherent to the classes unaffected
by drifts. Experiments conducted in an imbalanced scenario
with partial concept drift demonstrated the effectiveness of the
proposed method when compared to the current state of the art
detectors.

Index Terms—Data Streams, Concept Drifts, Imbalanced
Classes, Online Learning

I. INTRODUCTION

Traditionally, most research efforts in data mining have
followed a historical bias of focusing on extracting knowledge
from static data, previously known and available in repos-
itories [1]. In contrast, given today’s new technologies, the
way people store, process, and transmit data has gradually
changed. This evolutionary process gave rise to applications
that generate data that flows continuously, at high speed, and
in the form of potentially unlimited streams [2]. Examples of
continuous data streams tasks include filtering spam in e-mail
messages, monitoring data from sensors, intrusion detection,
social networks, sentiment analysis, etc.

With the recent growth in the number of applications that
process continuous data streams, it is common to observe data
domains with imbalanced classes [3], such as risk management
and anomaly detection. The imbalance of classes happens
when a data stream arranged as a sequence of pairs containing
a vector of input attributes and an associated class, does
not have classes distributed equitably: at least one class is
a minority when compared to the other(s) [4].

In addition to imbalance, another common problem in these
scenarios is concept drift, which can be observed when a
given data stream has its distribution changed over time [2].

Accordingly, such concept drifts tend to negatively affect the
performance of the learning algorithms, since a model already
trained with a given concept will make more mistakes, losing
its accuracy, when it is presented to a new concept.

From the perspective of the classification task, class im-
balance tends to worsen the concept drift problem in data
streams, besides affecting the performance of the learners in
the minority class [5]. This worsening occurs because most
of the proposed solutions to deal with changes in the data
distributions handle concept drift more generally, regardless
of the class representation in the stream. Thus, identifying
changes in a minority class is a difficult task.

Traditionally, concept drift detectors [6] use two alarm
levels: warning and drift. A new base classifier is created
and maintained in parallel with the old learning model when
the warning level is signaled. If the drift level is reached, the
detector deletes the old classifier and keeps only the new one.
On the other hand, the new classifier is excluded if the warning
signal becomes a false alarm [7].

Since such detectors, in most cases, are based only on the
performance of the classifiers, they restart the base classifier
in order to disregard the instances of the old concept and force
the model to learn only from examples belonging to the new
concept. However, in some situations, this generic approach
tends to be a limited solution [8]. The main problem is that
the change in distribution does not always affect all classes,
and discarding all instances learned by the classifier up to that
point can lead to performance loss.

Taking into account the problems presented, this article
proposes the Features and Classes Drift Detector (FCDD),
a detector designed to signal real and virtual concept drift
associated with the class. This feature identifies changes in
minority classes of imbalanced datasets and ensures that the
classifier does not discard instances associated with classes not
affected by drifts.

To the best of our knowledge, this is the first method able to
identify drifts in imbalanced scenarios at detector level which
is not affected by the number of classes of the problem in
hand, i.e. binary or multiclass.

The rest of this paper is organized as follows: Section II
briefly reviews the online classification and concept drift
detection problems, including the issue of data imbalance
in streams; Section III presents the new approach (FCDD);

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 717

Section IV details the experiments and the environment chosen
for the tests; Section V discusses the results of the experi-
ments; and, finally, Section VI draws conclusions and suggests
proposals for future work.

II. BACKGROUND

Given n instances in the (x, y) form, such that x ∈ X is a
d-dimensional vector of attributes and y ∈ Y is the target, a
hypothesis h ∈ H must be able to map an unknown instance
in the form h : X → Y with adequate accuracy. The data
stream or online classification is a variant of the traditional
batch classification, differing in how the data is presented to
the learner. If the dataset is static and entirely accessible, it
is a batch-based configuration. On the other hand, in stream-
ing environments, instances are not readily available to the
classifier for training; instead, they are presented sequentially
over time, and the learner must adapt its model according
to the arrival of instances from the stream [9]. Therefore, we
denote S = [(xt, yt)]

n→∞
t=1 as a data stream providing instances

(xt, yt), each of which arriving at a timestamp t.
Considering that the probability that an instance x belongs

to a class y is P (y | x) = P (y) · P (x | y) / P (x) [10], a
concept drift is assumed to occur when the joint probabilities
P (xt, yt) and P (xt+1, yt+1) have different values, that is,
P (xt, yt) ̸= P (xt+1, yt+1) [11]. Thus, considering Bayes’
theorem, concept drifts can arise essentially in three ways 1)
change in P (y) – priori probability of y; 2) change in P (x | y)
– posteriori probability from x conditional to y; and 3) change
in P (y | x) – posteriori probability from y conditional to x.

Regarding these three possibilities, variations in P (y) mean
changes in balance levels between classes without necessarily
changing their decision limits [8]. Changes in P (x | y) result
from an incomplete or outdated representation of the actual
distribution of the examined data, suggesting the learning
models need to be updated, even though the true boundaries
of decision between classes may remain unchanged [12].
Finally, changes in P (y | x) reveal drifts in the decision
limits between the classes of the analyzed data, indicating that
the learning models previously built on such data may have
become ineffective and need to adapt to the new concept [3].

Since changes in P (y) and P (x | y) do not necessarily
imply modifications in decision limits between classes, they
are named virtual drifts. Oppositely, changes in P (y | x)
directly impact the decision boundaries between classes and,
thus, they are categorized as real drifts [13].

Concerning the imbalance problem, several approaches are
found in the literature, and they can be categorized into two
groups: data-level and algorithm-level approaches [3]. In the
former, the imbalance is treated at the dataset level, using, for
example, techniques such as oversampling, undersampling, or
a combination of both. Recent work in this line includes [14],
[15]. In the latter, the algorithm-level, decisions are made in
the scope of the classifier in order to better deal with the
problem, as can be seen in [16], [17]. More details about the
data stream imbalance issue and recent directions can be found
at [18].

III. PROPOSED METHOD

This work proposes FCDD, a method capable of identify-
ing concept drift in imbalanced environments by performing
detections associated with the classes. Additionally, FCDD
maintains samples of the unaffected classes to aid in post-drift
classifier recovery. Algorithm 1 details how the method works.
It receives as input the data stream (S), the main classifier
(h1), the size of the windows (W), and the significance levels
related to the warning state (αw) and concept drift detection
(αd).

As new instances arrive (line 6), FCDD stores the last 2×W
instances associated with each label in two sliding windows:
the first (ω1) containing the most recent W instances; and the
second (ω2) containing the oldest W . Considering the iterators
i, j and w, and knowing that ω1 and ω2 are three-dimensional
matrices, we have that i ∈ {1, 2, ..., I}, j ∈ {1, 2, ..., J} and
w ∈ {1, 2, ...,W}, where I , J and W are the total labels of the
dataset, the total attributes and the window size, respectively.

The lines 9 and 15 are responsible for adding the elements
in ω1 and ω2. Initially, each instance associated with a y class
will be inserted into ω1 until the W limit is exceeded. The
first time this occurs, the oldest instance of ω1 will be moved
to ω2, making room for the current instance (W+1) to be
inserted into the last ω1 position. The same procedure will be
performed for all instances, and when ω2 reaches size W , its
oldest instance will be discarded. Thus, ω1 and ω2 will store,
for each y, only the last 2×W instances of the stream S.

As will be seen in detail later, the concept drift verification
of FCDD will be performed individually on each of the
attributes and on the hits and misses of different instances.
For this reason, it is necessary to add the dimension of the
attributes, justifying the iteration performed in the line 8. It is
important to note that the initialization of the J dimension is
increased by 1 (see line 3) because, in addition to the values of
the attributes, the correct and incorrect predictions associated
with y are also stored (line 15).

Given a dimension associated with the y label, only when
ω1
yj and ω2

yj are filled will the drift and warning checks start to
occur (line 18). The requirement for 4×W instances ensures
the window does not contain data from the start of the stream,
which is usually unstable, making false positives less likely.
Note that this verification is performed by class. Thus, a drift
may be detected in a given class even if others have not
reached the minimum number of instances.

Once the condition of line 18 is satisfied, the next step of
FCDD iterates on the dimension of the attributes. The idea is
to compare ω1

yj , which stores the values of the j attribute of the
last W instances associated with the y class, with ω2

yj , which is
similar, but with information from the last instances belonging
to the range [W+1, 2×W]. In addition, the last iteration of the
loop (J+1) compares hits (1) and misses (0) associated with
y contained in ω1 and ω2. Tests on the attributes correspond
to attempts to find drifts in P (x | y) (virtual). On the other
hand, checks on hits and misses aim to detect drifts in P (y | x)
(real).

718

Algorithm 1: Features and Classes Drift Detector
(FCDD)

Input: S, h1, W , αd, αw

1 ni = 1 ∀i ∈ I
2 ai = 0 ∀i ∈ I
3 ω1

ijw = ω2
ijw = 0 ∀ijw ∈ I , J + 1, W

4 s = ∅ ▷ Saved instances
5 h2 = h1

6 foreach x in S do
7 y = label(x) ▷ Get the correct label
8 for j = 1 to J do
9 addCircularArray(ω1

yj , ω2
yj , xj)

10 ŷ = h1(x) ▷ Predict instance
11 error = 0
12 if ŷ ̸= y then
13 error = 1

14 j = J + 1
15 addCircularArray(ω1

yj , ω2
yj , error)

16 ny = ny + 1
17 drift = warning = 0
18 if ny > 4×W then
19 for j = 1 to J+1 do
20 p-value = hypothesisTest(ω1

yj , ω2
yj)

21 if p-value < αd then
22 drift = ay = 1
23 else if p-value < αw then
24 warning = ay = 1

25 if drift then
26 if s == ∅ then
27 s = copy(ω1, ω2)

28 h1 = h2

29 partiallyTrain(h1, s, a)
30 reset()
31 else if warning then
32 if s == ∅ then
33 s = copy(ω1, ω2)

34 train(h2, x)

35 else
36 s = ∅
37 train(h1, x)

To identify concept drifts, a hypothesis test is performed on
the difference in means with known variance [19] (line 20),
assuming that the instances are independent and identically
distributed (IID). The null hypothesis (H0) considers that there
is no difference in the means of the values of ω1

yj and ω2
yj , i.e.,

they belong to the same distribution. The alternative hypothesis
(H1) indicates a difference in these means, suggesting a
concept drift. So, considering that x1, x2, σ2

1 and σ2
2 are the

mean and variance of ω1
yj and ω2

yj , the test statistic can be

calculated by:

z = (x1 − x2)/
√

σ2
1/W + σ2

2/W

p-value = 2[1− Φ(|z|)]

where Φ corresponds to the cumulative distribution function
of a standard normal random variable. Lines 21 and 23 reject
the null hypothesis using two levels of significance. The lower
confidence in rejection means the detector starts the warning
state, while the higher confidence indicates a drift.

After performing the hypothesis test to find changes in P (x |
y) or P (y | x), if a warning has occurred (line 31), the first
action to be performed is to store all instances of ω1 and ω2

in s (if s is empty), considering all dimensions. Then, the
alternative classifier is trained with the current instance (line
34). The warning state is expected to last for some time until
the drift is confirmed, and the rationale of training h2 is to
avoid losing instances during this period.

When a concept drift occurs (line 25), assuming a warning
was detected earlier, there will be two sets of instances: (1)
those stored in s, backward from the point where the warning
started; and (2) those trained in h2, throughout the warning
period. Thus, the main classifier assumes the instances trained
by the alternative classifier (line 28) and later trains using the
instances contained in s associated with classes that identified
neither drift nor warning. This control is performed using the
a array, which will have 1 in the y dimension if at least one
rejection is identified in P (x | y) or P (y | x) – lines 22 and
24.

Sometimes, a drift is identified without previous warning.
Thus, instead of containing the 2×W instances from the back-
ward warning point, s will have instances from the backward
drift point (line 27). Even so, FCDD can train with samples
from unaffected classes. Finally, sometimes warnings are not
followed by a drift: in this case, line 36 is useful to ensure
that s does not store very old instances.

In terms of time complexity, for most cases FCDD will
have asymptotic performance of Θ(J ×W), considering that
the variance of the windows will be updated at each instance,
useful for the hypothesis test calculation. However, its upper
limit will be on the order of O(I×J×W). The worst case will
happen after drift detection, where the two three-dimensional
windows (ω1 and ω2) will be reset. This last information takes
us to the memory complexity of FCDD, which is O(I × J ×
W).

IV. EXPERIMENT SETTING

This section describes the set up of the experiments used
to evaluate FCDD against other well-known concept drift
detectors, namely Reactive Drift Detection Method (RDDM)
[20], Drift Detection Method (DDM) [7], Drift Detection
Methods based on Hoeffding’s Bounds (HDDM) [21], and
Wilcoxon Rank Sum Test Drift Detector (WSTD) [22]. They
all used Hoeffding Anytime Tree (HATT) [23] as base clas-
sifier, a variation of Hoeffding Tree (HT) [24] with minor
modifications. The motivation for the changes was to make

719

HATT more efficient in terms of both computational costs
and accuracy.

To keep the comparison fair, only detectors with charac-
teristics close to FCDD were included in the experiments.
However, despite the existence of classifiers and ensembles fo-
cused on the imbalanced problem, no detector-level approach
that deals with imbalance and multiclass datasets was found
in the literature. Therefore, our selection criteria considered
the most recent, efficient and/or popular detectors.

We chose the FCDD parameters default values following the
methodology proposed by [25] that uses a Differential Evolu-
tion (DE) algorithm to find values that work reasonably well
in many scenarios. The values obtained with this arrangement
were: W = 331, αd = 0.000824958, and αw = 0.00170301.
In the other methods, the used parameters were their default
values proposed by their respective authors.

To simulate an imbalanced scenario with partial occurrences
of concept drift, we implemented an artificial dataset based on
the exclusive or (XOR) operation. Each instance (x ∈ X) will
be composed of two numeric attributes (a1 and a2) in the
range [0, 32[. Knowing that a1 ⊕ a2 will also have an output
in the range [0, 32[, we defined six possible labels (y ∈ Y),
as can be seen in Table I.

TABLE I
XOR DATASET LABELS WITH THEIR RESPECTIVE RANGES.

label1 label2 label3 label4 label5 label6
[0, 5] [6, 9] [10, 15] [16, 19] [20, 25] [26, 31]

Note that classes 2 and 4 have smaller ranges than the
others, precisely to cause the imbalance effect. Besides, we
explore the fact that the 32 possible numbers resulting from
the XOR operation are equally likely to occur, as long as a1

and a2 come from a random source.
With these dataset characteristics, the problem consists of,

given two attributes, the classifier must predict the correct
label, with six possible results. If the prediction matches the
label of the answer of a1 ⊕ a2, the classification is correct,
otherwise, it is incorrect.

A stream S was created containing 100K instances (x),
where a1 and a2 were randomly generated. Several generator
seeds were used in order to create multiple versions of the
dataset and enable the calculation of intervals with 95% confi-
dence. To produce concept drifts in the 30K and 60K instances,
the responses of classes 1, 2, 3 and 4 were exchanged whereas
classes 5 and 6 remained unchanged.

The tests were run on an Intel Core i7 10700 processor,
32GB of RAM, and an SSD, using Ubuntu Desktop 22.04
LTS 64 bits operating system.

All methods and codes related to the experiments were de-
veloped through the Massive Online Analysis (MOA) frame-
work [26].

Considering the data imbalance and its multiclass charac-
teristic, we evaluate the methods usig the metrics Kappa (κ)

TABLE II
SPECIFIC METRICS TO DETECTORS WITH 95% CONFIDENCE INTERVALS,

USING HATT AS BASE CLASSIFIER.

µDist1 µDist2 MCC
FCDD 246.80±26.80 236.60±52.44 0.96±0.10
RDDM 248.20±30.39 248.60±25.77 0.83±0.13
DDM 383.33±31.51 330.00±44.42 0.50±0.62
HDDMA 57.60±86.37 34.00±31.10 0.81±0.19
HDDMW 51.25±59.10 19.33±14.01 0.16±0.09
WSTD 17.60±4.44 23.00±7.17 0.33±0.13

TABLE III
GENERAL PERFORMANCE METRICS WITH 95% CONFIDENCE INTERVALS,

USING HATT AS BASE CLASSIFIER.

Kappa PMAUC Run-time Memory
FCDD 69.79±2.26 0.74±0.01 25.01±2.14 2103±216
RDDM 68.76±0.53 0.74±0.01 15.05±1.62 75.02±7.10
DDM 68.97±2.78 0.74±0.01 14.93±1.87 42.51±6.34
HDDMA 64.97±4.32 0.74±0.01 13.60±2.22 40.26±6.50
HDDMW 28.56±2.26 0.71±0.01 07.76±0.87 22.31±1.77
WSTD 53.74±10.16 0.74±0.02 11.54±1.49 35.77±5.16

[27] and Prequential Multi-Class AUC (PMAUC) [28], both
appropriate for this scenario.

The first metric (κ) is defined by

κ = (p− pran)/(1− pran)

where p represents the accuracy – measured by Prequential
[29] – and pran represents the accuracy of a classifier that
predicts labels randomly from the probability distribution of
the predictions from a reference classifier. If the classification
is perfectly correct, then κ = 1; otherwise, if the prediction
matches that of pran, κ = 0.

The other metric intended to measure performance in this
specific scenario (PMAUC) is defined by

PMAUC =
2

C × (C − 1)

∑
i<j

Â(i, j)

where C is the number of classes and Â(i, j) is the probability
that a randomly drawn member of class j will have a lower
estimated probability of belonging to class i than a randomly
drawn member of class i [28].

Assuming a dynamic and time-changing environment, the
accuracy evaluation used the Prequential methodology with
a sliding window of size 1000 as its forgetting mechanism
[30]: each incoming instance is used initially for testing and
subsequently for training.

In addition to κ and PMAUC, we compared the methods
using run-time; memory usage in bytes per second (B/s);
correctly (true positives, TP) and incorrectly (false positives,
FP) detected drifts, considering a tolerance of 400 instances;
mean detection distances to the exact drift points (µDist1
and µDist2), evaluating separately the two drifts points in

720

the dataset; and, finally, the Matthews Correlation Coefficient
(MCC). The latter is calculated as

MCC =
TP × TN – FP × FN√

(TP+FP)× (TP+FN)× (TN+FP)× (TN+FN)
.

V. RESULTS

Taking into account the scenario defined above, this section
discusses the performance of FCDD against the other selected
concept drift detectors. Table II shows details of the metrics
related to the drift detections while Table III presents the
results of the other more general metrics.

Observing the precision in the drift detections (Table II),
it is possible to verify that FCDD was successful in all of
them, and with a low amount of false positives. RDDM was
the second best method, however, with more false positives
and slightly longer periods to identify concept drifts, which is
reflected in the values of µDist1 and µDist2.

On the other hand, HDDMA, HDDMW and WSTD were
quicker in identifying the drifts, but this greater sensitivity
meant more false positives were identified, especially in the
case of HDDMW .

Regarding class imbalance, DDM was one of the most
affected methods. Because part of the region affected by the
drifts is imbalanced, when more instances of the unaffected
region arrive, the classifier is going to make fewer errors,
which means its detections will take longer – observe the
µDist1 and µDist2 values for DDM. Because FCDD can
detect concept drifts associated with classes, it tends not to
face many problems in this context and, as such, it successfully
identified the changes in the minority classes.

Regarding the MCC metric, we could say it summarizes
the performance of the detectors relating to TP, TN, FP and
FN. Analyzing these results, it is clear that the performance
of HDDMW was deteriorated by its excessive false positives.
The same can be said of WSTD, but to a lesser extent. On the
other hand, the good stability of FCDD in the different seeds
was also reflected in its MCC, putting it at an advantage over
the other approaches.

Considering that the drifts affect only four of the six classes
of the XOR dataset, discarding all previous instances from the
point of drift identification may not be the best strategy. All the
detectors used in the experiments follow this strategy, except
for FCDD. Its characteristic of detecting drifts by class made it
possible to also identify unaffected regions. Thus, the classifier
used in the new concept will be provided with instances not
affected by the change, giving it a possible advantage.

Changing the focus to Table III, specifically for the κ and
PMAUC metrics which takes into account the multiclass and
unbalanced characteristic of the dataset, we observed a distinct
performance from FCDD. Specifically in κ, FCDD delivered
the highest result, closely followed by DDM and RDDM,
even though RDDM had a much smaller confidence interval.
In the PMAUC, the results of most detectors were equivalent,
the exception being HDDMW , which was worse than the other
methods.

In terms of run-time and memory usage, FCDD was the
most expensive method, as expected. Its higher consumption
is directly associated with the more training the classifier
will receive, because instances of old concepts are reused. As
already discussed in Algorithm 1, 2×W instances of each class
are stored in sliding windows for detection and possible reuse
by the classifiers – unaffected regions data.

Considering the O(I × J × W) complexity of FCDD in
time and memory, as explained in Section III, this higher
consumption in these two metrics becomes even clearer. When
compared to the other approaches, almost all of them with
constant time complexity, it would hardly be possible, in
practice, an equivalence in these metrics.

On the other hand, this higher overhead is justified by
the more specialized behavior of FCDD, both in dealing
with imbalanced data and in taking advantage of instances
not affected by changes in the probability distribution. These
characteristics are completely ignored in the other detectors.

Finally, although this overhead is not so significant as to
make the method unfeasible in practice, it is reasonable to
analyze the context in which FCDD might be applied, paying
particular attention to high-dimensional datasets.

Complementing the analysis of the reported results, a hy-
pothesis test, namely the Student’s t-test [19], was performed
in order to verify in which metrics FCDD was statistically
superior to the other approaches. The null hypothesis (H0)
states that the compared methods are equivalent, while the
alternative hypothesis (H1) states that there is a statistical
difference. Table IV shows, for each metric, the detectors
statistically inferior to FCDD, i.e., H0 was rejected. Note
that the run-time and memory metrics were not included in
table IV because FCDD was not better than any of the other
detectors in these metrics.

Finally, strictly observing the confidence intervals: in accu-
racy, FCDD was statistically superior to HDDMA, HDDMW

and WSTD, and statistically equivalent to DDM and RDDM;
in FP, FCDD was better than all other detectors; in the case
of TP, it was statistically superior to DDM, HDDMW and
WSTD; regarding run-time, there was little difference between
the methods but WSTD was the best; and, lastly, in memory
consumption, FCDD was clearly worse than all the other
approaches.

TABLE IV
DETECTORS STATISTICALLY INFERIOR TO FCDD WITH 95% CONFIDENCE

IN THE DIFFERENT METRICS.

Kappa HDDMA, HDDMW , WSTD
PMAUC HDDMW

µDist1 DDM
µDist2 DDM
FP RDDM, DDM, HDDMA, HDDMW , WSTD
TP DDM, HDDMW , WSTD
MCC RDDM, DDM, HDDMA, HDDMW , WSTD

VI. CONCLUSIONS

This article proposes FCDD, a concept drift detector that
performs per-class detections and is meant to deal with im-

721

balanced problems. In scenarios where drifts occur partially,
one of its main strategies is to avoid discarding the instances
associated with unaffected regions, improving the overall
performance of the classifier.

Experimentally, FCDD achieved expressive results in dif-
ferent metrics. Despite its higher memory and run-time con-
sumption, its performance in metrics aimed at imbalanced
and multiclass scenarios (κ and PMAUC) was superior or
equivalent to the other approaches. Specifically in κ, FCDD
was statistically superior to the HDDMA, HDDMW and
WSTD detectors, while in PMAUC FCDD outperformed
HDDMW .

Regarding the metrics that evaluate the quality of the drift
detections, FCDD proved to be very accurate and regular. In
addition to achieving a relatively small delay in the detection
of the existing concept drifts, this result was accompanied
by low false positive rates. Moreover, this good performance
was also reflected in the MCC metric, where FCDD was
statistically superior to all the other detectors included in the
comparison.

As future work, we propose to (a) use other statistical tests
in concept drift detections and compare them; (b) experimen-
tally combine FCDD with ensembles specifically targeted at
imbalanced data (e.g. [31]); and (c) use some strategy of
automatic parameter adjustment, modifying them according to
different contexts.

Finally, it is important to note that all material used in this
article will be freely available to other researchers.

ACKNOWLEDGMENT

Silas Santos was previously supported by post-doctorate
grant number 88887.374884/2019-00 from CAPES. Roberto
S. M. Barros is supported by research grant number
305539/2022-1 from CNPq.

DISCLAIMER

The views and opinions expressed in this research are solely
those of the authors and do not necessarily reflect the official
policy or position of the company.

REFERENCES

[1] H.-L. Nguyen, Y.-K. Woon, and W.-K. Ng, “A survey on data stream
clustering and classification,” Knowledge and Information Systems,
vol. 45, no. 3, pp. 535–569, Dec 2015.

[2] D. Brzezinski and J. Stefanowski, “Stream classification,” in Encyclo-
pedia of Machine Learning. Springer, 2016.

[3] S. Wang, L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 10, pp. 4802–4821, 2018.

[4] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, Sep. 2009.

[5] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, “A survey
on addressing high-class imbalance in big data,” Journal of Big Data,
vol. 5, no. 1, Nov 2018.

[6] R. S. M. Barros and S. G. T. C. Santos, “A large-scale comparison of
concept drift detectors,” Information Sciences, vol. 451-452, pp. 348 –
370, 2018.

[7] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Advances in Artificial Intelligence: SBIA 2004, ser. LNCS.
Springer, 2004, vol. 3171, pp. 286–295.

[8] S. Wang, L. Minku, and X. Yao, “A learning framework for online
class imbalance learning,” in 2013 IEEE Symposium on Computational
Intelligence and Ensemble Learning (CIEL), April 2013, pp. 36–45.

[9] J. Gama, Knowledge Discovery from Data Streams. Boca Raton, FL:
Chapman&Hall/CRC, 2010.

[10] A. Bluman, Elementary statistics: a step by step approach, 9th ed. New
York: McGraw-Hill, 2014.

[11] L. Minku and X. Yao, “DDD: a new ensemble approach for dealing with
concept drift,” IEEE Transactions on Knowledge and Data Engineering,
vol. 24, no. 4, pp. 619–633, 2012.

[12] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517–1531, Oct 2011.

[13] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 12, pp. 2346–2363, 2018.

[14] L. Korycki and B. Krawczyk, “Online oversampling for sparsely labeled
imbalanced and non-stationary data streams,” in International Joint
Conference on Neural Networks (IJCNN), 2020.

[15] A. Bernardo and E. D. Valle, “SMOTE-OB: Combining smote and online
bagging for continuous rebalancing of evolving data streams,” in IEEE
International Conference on Big Data, 2021, pp. 5033–5042.

[16] Y. Lu, Y.-M. Cheung, and Y. Yan Tang, “Adaptive chunk-based dynamic
weighted majority for imbalanced data streams with concept drift,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 8,
pp. 2764–2778, 2020.

[17] A. Cano and B. Krawczyk, “Rose: Robust online self-adjusting ensemble
for continual learning on imbalanced drifting data streams,” Machine
Learning, vol. 111, no. 7, pp. 2561—-2599, jul 2022.

[18] G. Aguiar, B. Krawczyk, and A. Cano, “A survey on learning from
imbalanced data streams: taxonomy, challenges, empirical study, and
reproducible experimental framework,” 2022.

[19] D. C. Montgomery, Applied Statistics and Probability for Engineers, 6th
Edition. Wiley, 2013.

[20] R. S. M. Barros, D. R. L. Cabral, P. M. Gonçalves Jr., and S. G. T. C.
Santos, “RDDM: Reactive drift detection method,” Expert Systems with
Applications, vol. 90, pp. 344 – 355, 2017.

[21] I. Frı́as-Blanco, J. d. Campo-Ávila, G. Ramos-Jiménez, R. Morales-
Bueno, A. Ortiz-Dı́az, and Y. Caballero-Mota, “Online and non-
parametric drift detection methods based on hoeffding’s bounds,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp.
810–823, March 2015.

[22] R. S. M. Barros, J. I. G. Hidalgo, and D. R. L. Cabral, “Wilcoxon rank
sum test drift detector,” Neurocomputing, vol. 275, pp. 1954–1963, 2018.

[23] C. Manapragada, G. I. Webb, and M. Salehi, “Extremely fast decision
tree,” in Proceedings of the 24th ACM SIGKDD Internat. Conference
on Knowledge Discovery & Data Mining, 2018, pp. 1953–1962.

[24] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’00, New York, NY,
USA, 2000, p. 71–80.

[25] S. G. T. C. Santos, R. S. M. Barros, and P. M. Gonçalves Jr., “A
differential evolution based method for tuning concept drift detectors
in data streams,” Information Sciences, vol. 485, pp. 376–393, 2019.

[26] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
online analysis,” Journal of Machine Learning Research, vol. 11, pp.
1601–1604, 2010.

[27] I. Žliobaitė, A. Bifet, J. Read, B. Pfahringer, and G. Holmes, “Evaluation
methods and decision theory for classification of streaming data with
temporal dependence,” Machine Learning, vol. 98, no. 3, pp. 455–482,
Mar 2015.

[28] S. Wang and L. Minku, “AUC estimation and concept drift detection for
imbalanced data streams with multiple classes,” in International Joint
Conference on Neural Networks (IJCNN), 2020.

[29] J. Gama, R. Sebastião, and P. Rodrigues, “On evaluating stream learning
algorithms,” Machine Learning, vol. 90, no. 3, pp. 317–346, 2013.

[30] J. I. G. Hidalgo, B. I. F. Maciel, and R. S. M. Barros, “Experimenting
with prequential variations for data stream learning evaluation,” Com-
putational Intelligence, vol. 35, pp. 670–692, 2019.

[31] H. Du, Y. Zhang, K. Gang, L. Zhang, and Y.-C. Chen, “Online ensemble
learning algorithm for imbalanced data stream,” Applied Soft Computing,
vol. 107, p. 107378, 2021.

722

