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Abstract—Network analysis is responsible for taking insights
or generating predictions from networked data sources where
community detection finds chunks of related data in a network.
The importance of community detection spans in different
domain applications, from social network formation to protein
interaction predictions. This work compares five state-of-the-
art solutions to community detection using machine learning
approaches in the context of online social networks - Graph-
GAN, SDNE, ComE, AC2CD, and CLARE. The experiments
using real-world online social network datasets (Email-EU-
Core, BlogCatalog3, Flickr) with micro-F1, macro-F1, and
NMI scores demonstrate that graph neural networks and deep
reinforcement learning approaches are better suited for the
community detection task than others based on probabilistic
or shallow networks.

Index Terms—Deep Reinforcement Learning, Graph Neural
Network, Network analysis

I. INTRODUCTION

Social network platform usage shows growth statistics
in the last decade, with the total number of users tripling
from 970 million in 2010 to more than 4.48 billion in July
2021 [1]. The continuous growth in the number of people
with internet access and smartphones increases the necessity
to analyze online social network (OSN) data with compu-
tational methods. Thus, analyzing such data is becoming a
relevant aspect of data and network science.

Tasks in network analysis include community detection
(CD), node classification, and link prediction. CD views
networks as graphs looking for which nodes are greatly
attached to each other [2]. The CD challenge is an NP-
complete problem demanding further investigation. Real-
world OSNs exhibit significant irregularities in the degree
of nodes and edge distribution, bringing out a high level of
network organization. The inhomogeneity in the distribution
of the edges among the nodes results from a high density
of edges within special groups of nodes and low tightness
between the nodes across different special groups. These
special groups of subgraphs are known as communities or
clusters within the network. The nodes that belong to the
same community should have common interests or similar-
ities. Disclosing these communities reveals the relationship
between the structure and the functionality of the network [3].
Thus, CD in OSN can used in practical applications like rec-
ommendation systems or network summarization and privacy
as described in [4].

The research of CD solutions seems mature, presenting
classic methods to solve the problem, such as spectral clus-
tering and statistical inference-based. However, we perceive

a growing volume of publications towards the usage of high
volume datasets [5] or machine learning (ML) to enhance the
quality of scoring response [6], [7], [8].

Although the literature presents many ML and DL ap-
proaches for the CD problem in OSN, we note a comparison
gap between such works. Thus, the contribution of this work
is a comparative study of five approaches using public real-
world datasets. We consider the experimental results might
be valuable to the CD, OSN, and DL communities.

Section II presents the concepts related to CD, including
Graph Convolutional Networks (GCN), Graph Neural Net-
works (GNN), Graph Attention Networks (GAT). Section III
covers the CD ML approaches. Section IV displays the
experimental method with the results in Section V. Finally,
conclusion and future work are in Section VI.

II. PRELIMINARIES

CD is a task of network analysis to find groups of
tied nodes in a network. In a graph G = (V, E) with
V = {v1, v2, ...vn}, E = {e1, e2, ..., em}, a community C =
{vi, ..., vj} is typically defined as a group of nodes densely
interconnected and the nodes are sparsely connected among
communities. A community structure C = {C1, C2, ..., Cn} is
a set of possible communities of nodes from a graph G. Find-
ing communities in a network helps to discover the internal
organization of its nodes. CD is a valuable tool to characterize
the entities that compose it (e.g., groups of people with shared
interests, products with common properties) [9].

In the study by Schulman et al. [10], Proximal Policy
Optimization (PPO) is introduced as a type of policy gradient
method with several benefits compared to Trust Region Pol-
icy Optimization (TRPO). PPO is simpler to implement, more
versatile, and exhibits better sample efficiency in empirical
evaluations than TRPO.

Applying ML, one can undertake CD tasks from different
perspectives, using DL, Gaussian models, generative adver-
sarial models, GCN, and reinforcement learning (RL) [11].
In an RL general architecture, there are two main elements
the agent and the environment. These elements continually
interact from a starting state to a final one by finding the
best action that guides the agent between each state. The
environment is the locus where the agent operates and is
composed by state. The agent is responsible for observing
the environment, taking actions that change it, and receiving
rewards for each action at each timestep. The reward received
for each action taken is a stimulus that can be positive
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or negative, and the agent’s final objective is to maximize
the accumulated reward through the episodes. In [10], the
Proximal Policy Optimization (PPO) is defined as a kind of
policy gradient method and has some of the benefits of Trust
Region Policy Optimization (TRPO). The PPO method is
simpler to implement, more general, and has better sample
complexity (empirically) than TRPO.

GNN is a specialization of neural network (NN), defined
by [12], to deal with networked data. GNN implements a
function τ(G,n) ∈ Rm that maps a graph G and one
of its n nodes into an m-dimensional Euclidean space. A
GNN processes an input graph by a set of units, each unit
corresponding to a graph node, linked according to the graph
connectivity. The units update their states and exchange
information until they reach a stable equilibrium. The output
of a GNN is then computed locally at each node on the base
of the unified state. The diffusion mechanism is constrained
to ensure that a unique stable equilibrium always exists. Some
specializations of GNNs are GCN and GAT.

GCN is a GNN architecture present by [13] successfully
applied to the CD problem as described by [14] joining
GCN to Markov random fields. GCN defines a spectral graph
convolution by multiplying a graph signal with a spectral
filter in the Fourier domain, using two graph convolution
layers to derive a network embedding, and applying the
softmax function to classify nodes into different categories. In
training, the prior information on community memberships of
a few nodes, network topology, and possibly node attributes
are used to learn the NN weight parameters. GCN has an ex-
cellent global search capability with at least two drawbacks: it
aims primarily at deriving a network embedding of the input
data in the hidden layers of CNN, but such an embedding is
not community-oriented, and it does not consider community
properties, and can only obtain a relatively coarse community
result since it lacks smoothness constraints to reinforce sim-
ilar or nearby nodes to have compatible community labels.

GAT represents an attention-based NN architecture de-
signed to perform node classification of graph-structured
data. It computes the hidden representations of each node
in the graph with a self-attention strategy. The attention ar-
chitecture has interesting properties: the operation is efficient
and parallelizable across node neighbor pairs, can apply to
graph nodes having different degrees by specifying arbitrary
weights to the neighbors, and the model is directly applicable
to inductive learning problems, including tasks where the
model has to generalize to completely unseen graphs [15].

III. COMMUNITY DETECTION APPROACHES

The authors in [16] implement an architecture based on a
network diffusion module to capture malicious behavior in
networks. The model represents a message passing through
the network. In [17], a semi-supervised CD solution is
implemented using GNN to combine topological and con-
text information. This approach models OSN connections
as sparse matrices (SparseConv2D). The study undertaken
by [18] also implemented a semi-supervised CD solution
based on GCN and RL. GraphGAN is a graph representation

framework proposed by [19] to learn node embeddings based
on edge-wised information. The main objective is a method
to represent nodes in a low-dimension vector space, it imple-
ments the GAN approach with generative and discriminative
thinking for graph representation learning. ComE [20] defines
a technique that relies on node and community embedding
for learning graph embeddings. SDNE [21] is a method that
depends on a deep model using Laplacian eigenmaps.

1) Generative Adversarial Approach: GraphGAN is a
graph representation framework that implements the GAN
approach with generative and discriminative thinking for
graph representation learning [19].

The GAN is formulated in GraphGAN in the following
terms. Let G = (V, E) be a given graph, where V =
{v1, ..., vV } represents the set of vertices and E = {eij}Vi,j=1

represents the set of edges. For a given vertex vc, N (vc) is
defined as the set of vertices directly connected to vc, the size
of which is typically much smaller than the total number of
vertices V . The conditional probability ptrue(v|vc) denotes
the underlying true connectivity distribution for vertex vc,
which reflects vc’s connectivity preference distribution over
all other vertices in V . From this point of view, N (vc) can be
seen as a set of observed samples drawn from ptrue(v|vc).

GraphGAN trains two models during the learning process.
The Generator G(v|vc) tries to fit the underlying true con-
nectivity distribution ptrue(v|vc) as much as possible and
generates the most likely vertices to connect with vc. The
Discriminator D(v, vc) tries to distinguish well-connected
vertex pairs from ill-connected ones and calculates the prob-
ability of whether an edge exists between v and vc. In
GraphGAN, the generator G and the discriminator D are two
players in a minimax game. The generator produces the most
indistinguishable “fake” vertices under guidance provided
by the discriminator. The discriminator draws a clear line
between the ground truth and “counterfeits” to avoid being
fooled by the generator. Competition drives them to improve
their capability until the generator is indistinguishable from
the proper connectivity distribution. Figure 1 presents the
GraphGAN architecture and the evolution of an execution
highlighting the role of the Generator G and Discriminator
D.

Fig. 1. GraphGAN architecture [19].

2) Deep Network Embedding Approach: Structural deep
network embedding (SDNE) [21] is a semi-supervised deep
network model that exploits the first and second-order prox-
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imity to preserve the network structure. The second-order
proximity is used by the unsupervised component to capture
the global network structure. The first-order proximity is used
as the supervised information in the supervised component
to preserve the local network structure. By jointly optimizing
them in the semi-supervised deep model, this method can
retain both the local and global network structure and is
robust to sparse networks. The SDNE architecture overview
is presented in Figure 2, each vertex embedded using an un-
supervised approach and then pair-wised using a supervised
component based on Laplacian Eigenmaps.

3) Gaussian Mixture Approach: ComE [20] defines a
method that relies on the node and community embedding for
learning graph embeddings in a closed loop among commu-
nity embedding, community detection, and node embedding.
On the one hand, node embedding can help improve com-
munity detection, which outputs good communities for fitting
better community embedding. On the other hand, one can use
community embedding to optimize the node embedding by
introducing community-aware high-order proximity. ComE
closed loop for learning includes community detection, com-
munity embedding, and node embedding.

Fig. 2. SDNE architecture [21].

4) Actor-Critic Approach: The AC2CD architecture [22]
consists of a DRL approach based on GAT to find the optimal
community structure in a dynamic social network. AC2CD
uses the message-passing feature of GAT as an element to
propagate the label for each community. The RL method
chosen is Actor-Critic with PPO in the clipped version
and generalized advantage estimation (GAE) to compute the
surrogate function of the policy gradient. According to [23],
PPO performs the best in terms of profit and loss, training
time, and quantity of data needed for training compared to
Q-learning and deep Q-learning. It is worth noting that the
proposed architecture is extensible to other implementations.

Figure 3 shows the AC2CD architecture overview high-
lighting the Actor-Critic components in gray. Inside these
components, there are the GAT layers. Each node of the
input graph is embedded in a vector with 256 positions using
the Node2Vector strategy [24] resulting in a matrix M265xn

where n is the number of vertexes. Figure 3 presents the inter-
action between the agent (light gray), environment (blue), and
internal aspects of these entities. AC2CD was developed to

work with dynamic networks, however, it presented relevant
results for CD in static networks as well.

The learning process begins with the agent observing the
environment for changes in the network. Changes can be the
creation or exclusion of an edge or a node. Once a change in
the state of the network is observed, the Actor chooses the
best community structure, and the Critic computes the mod-
ularity density for the community structure. The difference
between the value issued by the Critic and the ground truth
corresponds to the TD Error.

The RL action space represents the possible assignment
combination between node and community. The reward
function is implemented as the modularity density for the
community structure of each network snapshot. A positive
reward indicates an improvement in the modularity density,
a negative otherwise.

Fig. 3. AC2CD architecture [22].

5) Graph Convolution Network Approach: The study un-
dertaken by [18] presented CLARE, a framework consisting
of two key components, Community Locator and Community
Rewriter. The community locator can quickly locate potential
communities by seeking subgraphs similar to the training
ones. Specifically, CLARE encodes communities into vec-
tors, measures the similarities between communities in the
latent space, and then discovers candidates based on the
similarities with the nearest neighbors matching strategy. The
community rewriter further adjusts those candidate communi-
ties by introducing global structural patterns. CLARE frames
such refinement process as a DRL task and optimizes this
process via policy gradient. For located communities, the
rewriter provides two actions: adding outer nodes or dropping
existing nodes, thus refining their structures flexibly and
intelligently.

The CLARE core is a GCN that learns to encode nodes and
community representations. Figure 4 presents the CLARE
architecture emphasizing the two main components, at left
the Community Locator and right the Community Rewriter.
The Community Rewriter implements DRL, where the state
is a predicted community united with its outer boundary. The
action is a combination of (aexcludet , aexpandt ), i.e., at each
time t one node can be excluded and another included in a
community Ct. The reward signal is taken directly from the
F1 score of the community structure.
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Fig. 4. CLARE architecture [18].

IV. EXPERIMENTAL METHOD

The empirical experimental setup includes eight executions
of each ML approach using the available implementations in
GitHub. The objective is to attenuate the non-determinism
effect of the ML approaches by evaluating the influence of the
mean maximum value. Such a process is a better alternative
than only setting all seeds to a fixed value or getting just the
top resulting value. The experiments use a computer with
a CPU Intel® Xeon Gold 5220R with 48 cores, 187GB of
RAM, and two GPU NVIDIA® V100S. The operating system
is Ubuntu with the Conda project external libraries.1 Each
dataset represents a social network where a node is a person,
and an edge is an interaction between them. The dataset
partitioning follows the original works of GraphGAN, SDNE,
ComE, and AC2CD as presented in Table I. We used labeled
nodes for the Email-EU-Core and Flickr, 1%, 3%, 6%, and
9%, and BlogCatalog, 10%, 30%, 60%,90%. The CLARE
partitioning is based on the number of communities using
the same dataset percentage of labeled nodes.

TABLE I
DATASETS CHARACTERIZATION.

Name # Nodes # Edges # Communities
Email-EU-Core 1,005 25,571 42
BlogCatalog3 10,312 333,983 39
Flickr 80,513 5,899,882 195

The Email-EU-Core is generated using email data from
a large European research institution, with only nodes from
inside the institution available on the Snap Project Home
page.2 Each edge (u, v) tells that a person u sent an email
to v. Figure 5 illustrates the community network topology
as presented by [25]. Figure 6 presents the community
distribution of users. It is worth to note the community
topology is homogeneous, but the distribution is not since
it presents only two communities among 42 with more than
80 users.

BlogCatalog3 is a social blog directory where each edge
represents a friendship between two bloggers, available at the
Arizona State University repository.3 In [27], a novel method
is proposed for multi-task learning-based network embedding
using the BlogCatalog3 dataset as presented in the network
topology of Figure 7. The figure shows a homogeneous
clustering, although it is not. Figure 8 presents the community
distribution of bloggers showing the long tail aspect, where
only one community has more than 1000 members.

1Conda Project available at https://docs.conda.io/en/latest/
2https://snap.stanford.edu/data/email-Eu-core.html
3http://datasets.syr.edu/pages/datasets.html

Fig. 5. Email-EU-Core topology.
Fig. 6. Email-EU-Core community
distribution.

Flickr is built by forming edges between images and shar-
ing standard metadata from the Flickr platform. Edges are
formed between images from the exact location, submitted
to the gallery, group, or set, images sharing common tags,
and images taken by friends, among other attributes. The
Flicker dataset is available at the Arizona State University
repository. The authors in [28] use Flickr to validate their peer
prediction-based trustworthy service rating system for social
networks, as presented by the complex network topology
of Figure 9. Figure 10 shows the community distribution
of users with an accentuated long-tail aspect, where one
community aggregates 13,700 users, one with 6,000, and the
other communities have fewer than 500.

Fig. 7. BlogCatalog3 topol-
ogy. Fig. 8. BlogCatalog3 community distribution.

Fig. 9. Flickr topology. Fig. 10. Flickr community distribution.

Figure 11 presents the distribution of community users for
the datasets. Note that Flickr has a heterogeneous distribution
enforced by the topology (Figure 9). The Emai-EU-Core and
BlogCatalog3 communities have regular aspects verified by
the network topologies (Figures 5 and 7).

Metrics: The performance comparison of the presented
approaches uses the F1-score [29] and normalized mutual
information (NMI) [30]. F1-score is the harmonic measure
of precision P , and recall R, and n represents the num-
ber of categories. Macro-averaged F1-score (Macro-F1) and
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Fig. 11. Comparative box plot of dataset community distribution.

micro-averaged F1-score (Micro-F1) aggregate the F1-score
measuring the performance of a classifier in a multi-label
categorization. Macro-F1 is the arithmetic means of F1-
scores of all categories:

F1 =
1

n

∑
x

F1x =
1

n

∑
x

2PxRx

Px + Rx
.

Micro-F1 is the harmonic mean of the micro-precision and micro-
recall computed with the sum of true positives, false positives, and
false negatives values:

F1 =
2P̄ R̄

P̄ + R̄
= 2

( 1
n

∑
x Px)( 1

n

∑
x Rx)

1
n

∑
x Px + 1

n

∑
x Rx

.

Given a reference community structure A and a detected com-
munity structure B, NMI computes the overlapping nodes in A
and B. NMI approximates the marginal probability of a randomly
selected node being in the community a and b by PA(a) = na

n
and

PB(b) = nb
n

, where na and nb denote community size of a and
b. Moreover, PAB(a, b) = nab

n
, where nab is the number of nodes

that are both in the community of partition A and the group b of
partition B.

Macro-F1 and Micro-F1 represent good evaluation options to
CD. However, they have a lack of sensibility in the permutation
of communities that can be addressed by the MNI.

V. RESULTS AND DISCUSSION

The comparative study undertook to show a little improvement
in the NMI scores for approaches based on GNN’s, with the best
mean for the AC2CD solution and the best stability for CLARE
using GCN, as presented in Figures 19 and 18. The solution based
on Deep Learning (DL), ComE, performed worst on average, this
issue may indicate a weakness in classical DL approaches to cope
with more sophisticated data structures such as graphs.

This section presents the accuracy results considering the datasets
evaluated through the F1 and NMI metrics. As cited by [31], 98% of
nodes are concentrated in the largest community. Thus, the results of
the Macro-F1 score resemble the respectful performance of CLARE
to learn such concentrated edges in one node (Figure 12). However,
the results of the Micro-F1 score in Figure 13 are not so good to
capture such regularity in the density distribution of communities.

The results of Macro-F1 present good performance with CLARE
to learn the community structure as the network is composed of
a homogenous community distribution (Figure 14). However, the
Micro-F1 in Figure 15 presents no good results of the GCN since
this metric computes the sensitivity of the difference among density
distribution of communities. Additionally, the results of Macro
and Micro-F1 scores of the Flickr community resemble the GCN
difficulty in detecting the community structure (Figures 16 and 17).
Using the same dataset (Flickr), the actor-critic approach presents
the best results by capturing such complex community structure.

We highlight that such a complexity associated with the Micro-
F1 metric sensitivity resembles the importance of more robust
approaches to CD.

The results using the NMI score generate box plot graphs (Fig-
ures 18 and 19). Figures describe the mean, median, and standard
deviation for the executions of each ML approach. Note that the
GNN-based approaches (i.e., GraphGAN, AC2CD, CLARE) present
on average superior performance than others. The GraphGAN
presents a symmetric profile related to the medium, and the SDNE
has a high median where most results are near the maximum NMI
(Figure 18). The ComE with a single DL approach presents a low
median where most results are near the minimum NMI value. The
AC2CD presents the best NMI results compared to GraphGAN,
SDNE, ComE, and CLARE. Nevertheless, the standard deviation
of CLARE is low compared to the other approaches with a stable
profile.

Fig. 12. Email-EU-Core Macro-F1. Fig. 13. Email-EU-Core Micro-F1.

Fig. 14. BlogCatalog Macro-F1. Fig. 15. BlogCatalog Micro-F1.

Fig. 16. Flickr Macro-F1. Fig. 17. Flickr Micro-F1.

VI. CONCLUSION

This work presents a comparative study of five ML approaches
for CD problems in OSN. The approaches using GNN (i.e., Graph-
GAN, AC2CD, CLARE) seem to better adapt to the distinct dataset
community network topology (Section IV). The AC2CD presents
the best results with BlogCatalog and Email-EU-Core datasets
compared to GraphGAN, SDNE, ComE, and CLARE using Micro-
F1 (Figures 13 and 15), but CLARE is better using Macro-F1
(Figure 12 and 14).

The AC2CD presents the best results with the Flickr dataset com-
pared to GraphGAN, SDNE, ComE, and CLARE using Macro-F1
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Fig. 18. NMI scores for Email-EU-
Core.

Fig. 19. NMI scores for BlogCatalog.

(Figure 16), but competitive to CLARE using Micro-F1 (Figure 17).
The Flickr dataset presents an asymmetric distribution with the most
complex network topology (Figure 9) highlighted by the different
sizes of circles, representing the density of edges on each node.
Flickr also exhibits an accentuated long-tail aspect (Figure 10). The
AC2CD with the Email-EU-Core dataset presents the best stability
results with adequate accuracy (Figure 18), with the BlogCatalog
(Figure 19) achieving the top score and the best mean MNI value.
The DL techniques handling well high-dimensional graph data
demonstrated superior performance over classic methods [32].

Future work include aspects related to the diversity and com-
plexity of the CD problem. As many approaches are constrained to
heuristic solutions, there is still space for new ML-improved strate-
gies. Also, formal verification to validate the solution’s correctness
is necessary. A valuable research investigation to evaluate proposals
include dynamic OSN with reliable ground truth since data volume
is growing.
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