2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

An Actor-Critic Architecture for Community
Detection Ablation Study

Rafael Henrique Nogalha de Lima, Aurélio Ribeiro Costa, Thiago de Paulo Faleiros, Célia Ghedini Ralha
Exact Science Institute - Computer Science Department - University of Brasilia - Brazil
rafaelnogalha@gmail.com, arcosta@gmail.com, thiagodepaulo@unb.br, ghedini @unb.br

Abstract—This article conducts an ablation study of the
Actor-Critic Architecture for Community Detection (AC2CD).
The AC2CD uses Deep Reinforcement Learning (DRL) and
Graph Attention Networks (GAT). Our ablation study method
adheres to the principles of explainable artificial intelligence,
focusing on assessing performance factors, including execu-
tion time, memory usage, and GPU utilization. We carried
out experiments using two real-world datasets: Email-Eu-Core
(EC), an email network among members of a European re-
search institution (comprising 1,005 nodes, 25,571 edges, and
42 communities) available through the Stanford Snap Project,
and a High School contact and friendship network (HS) in
Marseilles, France, from December 2013 (comprising 329 nodes,
45,047 edges, and nine communities), obtainable from the Socio
Patterns Website. We evaluated performance while considering
three hyperparameters: learn_rate (LR), batch_size (BS), and
n_games (NG), varying them at 10%, 30%, 50%, and 70%. The
LR of 70% yielded optimal results with execution time for both
EC and HS datasets. Furthermore, a BS of 70% indicated an
ideal balance between execution time, GPU usage, and memory
consumption for the HS dataset.

Index Terms—Ablation Study, AC2CD, Hyperparameters

I. INTRODUCTION

Reinforcement Learning (RL) and Deep Reinforcement
Learning (DRL) refer to learning how to make decisions
sequentially while being influenced by the environment,
becoming mature in the past years [1]. In short, the RL goal is
to map situations to actions that maximize a numerical reward
signal indicating how well the agent performs tasks. Agents
learn through trial and error, adjusting actions to achieve the
highest possible reward. And DRL integrates deep learning
into RL techniques to train an agent.

Given the advancement in research and the diverse appli-
cations of ML, specifically RL, in various fields, including
scientific and commercial domains, it becomes imperative
to understand the impact of selecting specific components
and parameters for developing an ML system, given its
complexity. Therefore, a compelling approach to address this
issue is to conduct an Ablation Study (AS) [2]. As presented
in [3], the AS technique is a scientific examination of ML
systems to gain insight into the effects of code blocks on
performance. And because of that, the method of AS has
gained significant attention in the field of ML in recent years.

The AS findings inform future research on optimizing
actor-critic architectures and potentially lead to the develop-
ment of automated hyperparameters (HP) tuning techniques.
The actor-critic is a Temporal Difference (TD) version of
policy gradient with two networks: actor and critic. The actor

978-0-7381-4408-5/23/$31.00 ©2023 IEEE

13

decides which action to take, and the critic informs the actor
how good the action was or how to adjust it. Investigating
the optimization process at the impact of learning strategies
with HP contributes to the broader understanding of DRL
models and their transformation towards based Explainable
Artificial Intelligence (XAI) [4].

Therefore, the main objective of this work is to present an
AS using an actor-critic architecture developed upon DRL
and Graph Attention Networks (GAT), called the Actor-Critic
for Community Detection (AC2CD) [5]. GAT is significant
for ML research, but it has received low levels of attention.
Thus, the AS analyzes the algorithm performance by em-
pirically modifying specific HP when executing real-world
datasets. The AC2CD uses as datasets an email network
between members of a European research institution, Email-
Eu-Core (EC), a High School (HS) contact and friendship
network in Marseilles/France in December 2013, the Blog-
Catalog3, the Flicker and the Youtube2. In this AS, we used
EC and HS as presented in Section IV.

This work contribution presents an AS with the AC2CD
architecture, including execution time, memory, and GPU
usage to assess performance. The insights gained contribute
to the ongoing efforts to enhance the efficiency and effec-
tiveness of DRL algorithms in real-world applications.

The rest of the manuscript presents in Section II pre-
liminaries with an overview of concepts, in Section III
related work, in Section IV the experimental AS method,
in Section V the results, and in Section VI conclusion and
future work.

II. PRELIMINARIES

Section II-A presents an overview of Al concepts with
DRL, and XAI. Section II-B offers community detection
aspects. Section II-C presents the actor-critic architecture
applied to the community detection problem with the AC2CD
algorithm. Finally, Section II-D presents AS definition and
techniques.

A. Al Overview

For [6], DRL is an RL approach combined with deep
learning employed when decisions become too complex for
RL alone. A neural network estimates states instead of map-
ping all possible solutions, allowing for a more manageable
solution space in the decision-making process.

With the growth of ML approaches, various domains of
knowledge have benefited. However, systems with Al have

become complex and hard to understand and explain. As a
result, a new approach to Al-based systems has emerged
to provide explainability to human users, highlighting the
strengths and weaknesses of the algorithm and conveying an
understanding of how it will behave in the future. According
to [7], XAl enables greater transparency and interpretability
in complex Al systems allowing users’ trust and permitting
humans to make informed decisions while effectively coop-
erating with such systems. XAl bridges the gap between the
black-box nature of traditional Al and the human need for
comprehensibility by providing explanations for algorithmic
decisions. That enhances the usability and ethical considera-
tions of Al applications across various domains.

B. Community Detection

Community detection is one of the fundamental problems
in network analysis, belonging to the field of complex
network studies. According to [8], the community detection
technique is characterized by having a community structure,
where the nodes in the network are grouped into sets such that
each set of nodes is densely connected. For [9], community
detection is the process of identifying relevant communi-
ties in a network that evolves as in a dynamic network.
Community detection is vital to understanding the structure
of complex networks. Community detection techniques are
helpful for social media algorithms to discover people with
similar opinions, functions, purposes, and shared interests
significant to scientific inquiry and data analytics. There
are classic methods of community detection using spectral
clustering [10] and statistical inference [11]. However, such
methods drop out, as deep learning techniques demonstrate
an increased capacity to handle high-dimensional graph data
with impressive performance.

C. Actor-critic

Actor-critic is a TD learning method representing the
policy function independent of the value function. The pol-
icy function returns a probability distribution over possible
agents’ actions based on the provided state or the agents’
strategy to achieve a goal. On the other hand, the value
function determines the expected return for an agent starting
in a particular state and continually acting under a specific
policy [1], [12]. In the actor-critic learning method, the actor
decides which action to take. The critic provides feedback
to the actor on the quality of the action and how it can be
adjusted to achieve the goal [13]. In short, the actor-critic is a
hybrid architecture combining value-based and policy-based
methods that help to stabilize the training by reducing the
variance. It provides a solution to reducing the RL algorithm
variance, training agents faster and better.

The AC2CD is a DRL-based architecture with a GAT ap-
proach. GAT are novel neural network architectures operating
on graph-structured data, leveraging masked self-attention
layers [14]. It is employed to find an optimal community
structure in a dynamic social network while also serving as
a learning component to select actions and improve the value
function [5]. Experimental work indicates that AC2CD copes

14

well with dynamic real-world social networks. Nevertheless,
the performance of such complex architecture motivates AS
approach to enhance performance to evaluate the growing
size of dynamic social networks.

Algorithm 1 presents the AC2CD for community detection,
including the input (i.e., Input:) with Dataset and the HP. The
manipulation of Dataset is made by DataManip(Dataset).
The method Agent(Hp) create the agent according to Hp
and consequently makes the actor, the Critic networks, and
the experience memory store the last episodes of execution.
Inside the loop, line 5 to line 12, while not in a terminal
state, the agent chooses an action based on the observations
and executes a step returning a new observation, the reward,
and a flag indicating that the new state is terminal. After
the learning process, the model file is ready to infer the
community assignment for nodes in a network, and the output
is the score stored in the score_history variable.

Algorithm 1: Community Detection in AC2CD

Input: Dataset
Input: Hp

1 node_emb, edge_index < DataManip(Dataset);
2 env < GAT Env(node_emb, edge_index);

3 agent < Agent(Hp);

4 score_history < [|;

5 while n < Hp.max_iter do

6 obs + env.reset();

7 while not done do

3 action, prob, val <— agent.choose_action(obs);
9 new_obs,reward,done < env.step(action);

10 agent.remember(obs, action, reward,prob,val);
1 if n % Hp.train_interval == 0 then

12 L agent.learn();

D. Ablation Study

The first idea of AS comes from speech recognition studies
[15]. Although not a new idea, it is a relatively young Al re-
search theme [4]. AS is defined by [16] as a scientific method
that involves highlighting or removing individual or blocks
of components from a system to prove and understand which
aspects of a system are vital through statistical analysis.
Using statistics and analyzing the results obtained from AS,
it is possible to gain insights into the relative importance of
the parameters of architecture or model. With these insights,
improving systems’ design, optimization, and interpretabil-
ity is possible. AS is a valuable tool for discovering the
component’s influence in ML systems. Through statistical
analysis, it is possible to enhance the interpretability of ML
approaches.

The use of AS in XAI systems becomes interesting,
considering its complementarity to understanding Al systems.
The AS aims to understand the importance of parameters
and code blocks in an architecture or model [4]. This study
enables identifying and quantifying the influence of various
components on an algorithm, model, or architecture, leading
to a better understanding of the underlying mechanisms.

This understanding is crucial for building trust and ensuring
transparency in Al systems.

III. RELATED WORK

This section presents related work of AS, DRL, and actor-
critic with publications from 2018 to 2023. Table I presents
an outline including AS, DRL, actor-critic, and GAT aspects.

TABLE 1

RELATED WORK OUTLINE.
Reference | AS | DRL | Actor-critic | GAT
Fan et al. (2023) [17] v’ v’ N
Nagqvi & Anggorojati (2022) [18] | v~ v’
Ye et al. (2022) [19] v’ N v’
da Silva Filho et al. (2022) [20] | v/ NG
Hessel et al. (2018) [21] N N
This study v’ v’ v’ v’

The authors in [17] present a new approach using DRL
and actor-critic for a multi-agent system that analyzes and
simulates an environment with multiple intelligent agents
across various domains. Additionally, the authors conduct an
AS to assess the effectiveness of the innovative components
in the proposed method. The results show that each actor-
critic algorithm component is indispensable for good inter-
ception performance, including success rate, good reward,
and interception steps.

In [18], the authors explore the utilization of DRL for
congestion control in cellular network settings. Congestion
control uses algorithms responsible for regulating the data
transmission rate in a network to prevent congestion. Using
the policy gradient method, the author employs an AS to
identify the component that influences the algorithm. With
the AS, the authors remove or modify parameters to analyze
the impact of the changes on the algorithm’s performance.
In conclusion, a higher reward for the method presented is
only sometimes related to better networking performance.

The authors in [19] focus on the popularity of multi-
agent DRL demand for large-scale real-world tasks, which
hamper the models’ low sample efficiency and the high data
collection cost. An AS is used to investigate, validate and
understand the contribution of each component in multi-agent
actor-critic methods. The authors propose PEDMA, a plugin
unit for multi-agent DRL that consists of three techniques:
parallel environments to accelerate the data acquisition, ex-
perience augmentation utilizing the permutation invariance
property to reduce the cost of acquiring data, and delayed
updated policies to improve the data utilization efficiency.
Experiments on three benchmark tasks show that the multi-
agent actor-critic model trained with PEDMA outperforms
state-of-the-art algorithms.

The authors in [20] discuss the learning-to-optimize
method for automatically optimizing algorithms from data
instead of using traditional HP tuning. The focus is on
learning global optimization by DRL. It provides a direct
framework to understand an optimizer to deal with the
exploration-exploitation dilemma. The applied techniques
improved stability and generalization. The authors conducted

15

AS to investigate the significance of learning strategies and
components concerning this optimization.

In [21], the authors perform an AS to understand the
components and parameters contribution in the Deep Q-
Network (DQN) algorithm. DQN utilizes DRL to address
learning challenges in complex and high-dimensional en-
vironments. Each ablation phase removes or changes an
algorithm component, and the algorithm’s performance is
analyzed. The authors propose Rainbow to combine improve-
ments in DRL. In experiments, six integrated DQN algorithm
extensions are empirically studied. The results show that
the combination provides state-of-the-art performance on the
Atari 2600 benchmark considering data efficiency and final
performance.

Note that this work is the only one focusing on GAT as
a novel convolution-style neural network architecture. GAT
is the most popular approach to the community detection
problem, but it has received comparatively low levels of
attention in performance comparative studies. In addition,
the actor-critic architecture disseminated in DRL applications
is highly resource-demanding. Thus, the motivation of our
AS research is to assess the effectiveness of HP through the
AC2CD case study with GAT and actor-critic.

IV. EXPERIMENTAL METHOD

Figure 1 presents the experimental method with three steps.
The first step includes the datasets and baseline definitions.
The EC dataset, available on the Snap Project website! and
the HS, available on the Socio Patterns website® are used
as input to AC2CD. The second step includes HP variation
during the AC2CD executions (funning). Finally, in the third
step, we use the AS to observe the importance of the selected
HP. The effect analysis focuses on the execution time, GPU,
and memory usage.

First Step Second Step Third Step

Tuning Hyperparameter Analyze

Dataset

7—» AC2CD

Baseline

Tuning Ablation Study

Fig. 1. Experimental method diagram.

The EC is a directed network representing an email net-
work between members of a European research institution.
According to [22], the network is formed by an edge (u,v),
where u represents the person who sends at least one email to
v. The communities in the dataset represent the departments
in the organization. There are 1,005 nodes, 25,571 edges,
and 42 communities, with the longest path being seven, and
the average clustering coefficient is 0.3994.

The HS comprises a directed network of contacts and
friendship relations between students in a high school in

Uhttps://snap.stanford.edu/data/email-Eu-core htm]
Zhttp://www.sociopatterns.org/datasets/high-school-contact-and-
friendship-networks/

Marseilles, France, in December 2013. According to [23],
the network is formed by lines with the form (ij), meaning
that the student ¢ reported a friendship with student j. And
is formed by a metadata file where each line has the form
(IDiCiGi), meaning that class C'i and gender Gi of the
student has IDi. There are 329 nodes, 45047 edges and 9
communities.

The experiments use a computer with a CPU Intel® Xeon
Gold 5220R with 48 cores, 187GB of RAM, and two GPU
NVIDIA® V100S. The operating system used is Ubuntu with
external libraries provided by the Conda project.’

A. Definitions

The AS setup uses I, the set of previously defined per-
centage variations (10%, 30%, 50%, 70%). These percent-
age variation values were based on their coverage and
the comprehensiveness they provided with the conducted
tests. We defined three HP of H for the experiments
(learn_rate, batch_size,n_games). The learn_rate (LR)
determines the extent to which an agent learns from each
sample in the environment [24]. The batch_size (BS) repre-
sents the number of samples propagated during the training
session [25]. Lastly, n_games (NG) defines the number of
episodes the agent will process.

Definition 1. HP refer to parameters set before the model is
trained, rather than estimating from learning, as they define
the model architecture [26]. They are used to configure an
ML model and specify the algorithm to minimize the loss
function, for example.

The HP and their respective values were chosen according
to the suggestion of the AC2CD architecture author, consid-
ering the previously analyzed influence of each parameter
on the developed algorithm. Therefore, the baseline values
for the execution of the experimental method regarding each
hyperparameter of H are 40, 40, and 100 for the LR, BS,
and NG, respectively.

Definition 2. Baseline is the reference for a particular ML
study [4]. In our case, it refers to the set of executions with
the default values of the HP used to compare the variations
of the selected HP.

After defining the values of HP for the baseline, the
AC2CD architecture with the memory and GPU profiler
using Scalene proceeds.* The AS execution starts, and the
matplotlib® tool to generate graphics is used for GPU and
memory analysis. This experiment aims to determine a set of
HP value for each H that minimize GPU and memory con-
sumption for the AC2CD while achieving maximum speed.
As shown in Figure 2, Scalene is chosen due to its superior
performance compared to other well-known profilers. The
results indicate its effectiveness in slowing down the program,
profiling memory and GPU usage, and providing system
time analysis. Additionally, a .json file generated by Scalene

3Conda Project available at https://docs.conda.io/en/latest/
“https://github.com/plasma-umass/scalene
Shttps://matplotlib.org/

16

allows for line-level and function-level profiling, offering
information about specific functions and lines of code, as
documented in [27].

Linesor Unmodified
wdown 3 hreads
n Code

SNENEEENENENENENEN

Austin (CPUsmen)
Scalene (CPUSGPU)
Scalene (all)

ENEN AN CN

o

Fig. 2. Comparison of profiler tools.

The executions followed the arrangement A, , = n?,
where n = card(I U baseline percentage) and p
card(H). This arrangement allowed four variations of per-
centages according to the I set. Additionally, HP could be
varied at 0%, enabling exploring the scenarios’ maximum
number. Thus, combining with LR and BS varied by 10%,
and NG by 0% (using the baseline value). Each dataset had
125 executions and six scenarios, including the baseline for a
GPU consumption comparison, memory usage, and execution
time. The selection of the six scenarios considered the lowest
GPU consumption, memory usage, and execution time. It is
important to highlight that the set of HP does not operate
individually for GPU consumption, memory, and execution
time.

Definition 3. Manual tuning of HP is a technique for
adjusting their value. We employed this method to vary four
percentages outlined in the I set (10%, 30%, 50%, 70%). We
used this approach in conjunction with the conceptualization
of AS in Section II-D to determine the optimal configuration
of GPU, memory, and time consumption of the three HP
specified in the set H.

V. RESULTS AND DISCUSSION

In this section, we present the AC2CD architecture with
I variations of 10%, 30%, 50%, 70% using EC and HS
datasets, focusing the GPU and memory usage, and run-
time execution. The results of the baseline execution for
EC were 12.092 GiB for the memory GPU usage, 1.124
GiB for memory consumption, and 1240m?24s for run-time
execution. And HS was 17.339 GiB for the memory GPU
usage, 1.006 GiB for the memory consumption, and 10m26s
for run-time execution (Figures 3 and 6).

GPU Consumption

Figure 3 presents the best results for GPU usage with
EC and HS datasets. Note that GPU consumption with EC
(i.e., blue bars) is higher for the baseline (black dotted line
with 12.092 GiB), BS(10%) (i.e., 12.025 GiB), and NG(10%)
(i.e., 11.999 GiB). For the LR(70%) (i.e., 10.911 GiB), and
LR(30%), BS(30%), NG(10%) (i.e., 10.223 GiB), both sets
of HP are adequate, but the last is the best result in terms of

GPU consumption. This figure also presents the best results
for GPU usage with HS (i.e., green bars). The baseline (red
dotted line) is the highest value with 17.339 GiB of GPU
consumption, and for this dataset, the best result is LR(70%)
and BS(70%) (i.e., 14.123 GiB).

15.0

GPU consumption (GiB)

o
°

== EC-Baseline
= = HS-Baseline
25 wm EC
m HS

LR(70%) BS(10%) NG(10%) LR(30%) LR(30%) LR(70%) LR(30%)
BS(30%) BS(30%) BS(70%) BS(50%)
NG(10%)

LR(50%)
BS(50%)
NG(10%)

LR(50%)
BS(50%)
NG(30%)

LR(70%)
BS(70%)
NG(10%)

Fig. 3. Best results in terms of GPU consumption with EC and HS datasets.

Furthermore, Figure 4 presents the Scalene interface for
LR(30%), BS(10%), and NG(10%) with the EC dataset. The
percentage of GPU consumption (i.e., 31.2% corresponds
to 10.223 GiB) is displayed using a pie graph in the GPU
utilization column (GPU util.). The GPU memory column
presents the code line memory consumption. Finally, the
function that consumes the GPU referring to the previously
shown code line appears below the FUNCTION PROFILE
column. Note that the code segment related to agent learning
(Agent.learn) for each node in the EC is the one that
consumes the most GPU in this configuration. In general,
this is the code block that consumes most of the AC2CD
algorithm. In addition, Figure 5 presents the Scalene interface
for the GPU consumption (i.e., 43.1% corresponds to 14.123
GiB) with LR(70%), BS(70%) with the HS dataset, where
the Agent.learn consumes more GPU memory.

TIME MEMORY

average

MEMORY
peak

MEMORY
timeline

MEMORY
activity

FUNCTION PROFILE (click to reset order)
/home/rf_henrique/aczcd/src/PPO2cD. py

[] T Agent learn
] 1 1 > L} GPU: inuse: 31.2% enory.generate_batches
| 21 Agent .choose_action
L ActorNetwork. forward
CriticNetwork. forward
a6 PPOMemory . store_memory
T PPOMenory .clear_memory
ActorNetwork . save_checkpoint
Agent.remember
Fig. 4. Scalene interface for LR(30%), BS(10%), NG(10%) with the EC
dataset
TIME MEMORY MEMORY MEMORY MEMORY FUNCTION PROFILE (click to reset order)
average peak timeline activity /home/rf_henrique/ac2cd/src/PP02CD. py
T Agent Learn

GPU:inuse: 43.1% rhetwork. forward
4 28 PPONenary

|

generate_batches

Critichetwork. forward
46 PPOMenary . store_nenory

PPOMenary .clear_nenory

|

49 Critichetwork. save_checkpoint

Agent. remember
Fig. 5. Scalene interface for LR(70%), BS(70%) with the HS dataset.

What is interesting in the execution of HS is that, despite
having fewer communities and being smaller than the EC
dataset, it consumes more GPU. That might occur due to the
different transformations in the dataset file for EC, where the

torch.LongTensor generates the index, transposing data by
the generated index, as seen in Listing 1. In contrast, for
the HS dataset, both the index and data are derived using
the from_networkz function, which converts a graph to a
torch_geometric.data.Data instance® as seen in Listing 2.
Another possibility for the high GPU consumption is the use
of metadata in HS, which makes the execution of this dataset
more complex, requiring more computational power. We
might note that even using other datasets, the performance
results with LR, BS, and NG HP would be similar since the
computational usage is deeply related to the dataset structure.

index torch.LongTensor (
np.vstack ((adj.row, adj.col))
)
data = Data(edge_index=torch.transpose (index ,0,1))
enconder embedding . Encoder (data ,index ,device=self

.device)

Listing 1. Code execution fragment with the EC dataset.

data from_networkx (graph)
encoder = embedding.Encoder(data,
data.edge_index ,

device=self.device

17

Listing 2. Code execution fragment with the HS dataset.

Memory Consumption

The memory consumption in Figure 6 does not exhibit
as much variation comparing the GPU consumption of the
EC dataset (Figure 3). We can attribute this behavior to the
fact that most memory allocation in the AC2CD is related to
tensors GPU stored consumption. Note BS(10%) is the best
result of memory consumption with 1.123 GiB.

For the HS dataset, the baseline consumes 1.006 GiB, and
for LR(70%), BS(70%) consumes 1.021 GiB, and LR(70%),
BS(70%), NG(10%) consumes 1.022 GiB. In relation to
LR(50%), BS(50%), NG(30%) the consumption is 1.007
GiB. Finally, LR(30%), BS(50%), and LR(50%) BS(50%),
NG(10%) represent the best results for memory consumption,
with a consumption of 1.003 GiB.

Run time Execution

Note the EC dataset in Table II, the LR(70%) is the faster
execution time with 1h19min23s. However, the execution
with LR(30%), BS(30%), and NG(10%) is the slowest com-
pared to the other five percentage variation executions taking
2hTmin3bs. This extense execution time grounds on the
influence of NG that determines the number of episodes the
agent will process.

Regarding the HS, the execution time is shorter than
the EC dataset due to having fewer nodes, edges, and
communities. The shortest time is achieved with LR(70%),
BS(70%) with 3min25s, and LR(70%), BS(70%), NG(10%)
with 4min08s also proved to be a good option. On the other
hand, the baseline showed the worst time in the execution
comparison with 10min26s.

Ohttps://pytorch-geometric.readthedocs.io/en/latest/

[
°

o
@

o
o

14
=

Memory consumption (GiB)

== EC-Baseline
| == Hs-Baseline
. EC
m HS

e
~

e
°

LR(70%) BS(10%) NG(10%) LR(30%) LR(30%) LR(70%) LR(30%)
BS(30%) BS(30%) BS(70%) BS(50%)
IG(10%)

LR(50%)
BS(50%)
NG(10%)

LR(50%)
BS(50%)
NG(30%)

LR(70%)
BS(70%)
NG(10%)

Fig. 6. Best results regarding
datasets.

memory consumption with EC and HS

TABLE II
RUN-TIME RESULTS FOR EC AND HS DATASETS.

EC hyperparameter | EC Run-time execution | HS hyperparameter | HS Run-time execution

baseline 1h40m24s baseline 10m26s
LR(70%)

LR(70%) 1h19m23s BS(70%) 3m25s
LR(30%)

BS(10%) 1h25m02s BS(50%) 4m53s
LR(50%)

NG(10%) 1h34m10s BS(50%) 7m08s
NG(10%)
LR(50%)

I;;ggz; 1h29m23s BS(50%) 8m05s
NG(30%)

LR(30%) LR(70%)

BS(30%) 2h7m35s BS(70%) 4m08s

NG(10%) NG(10%)

VI. CONCLUSION

The AS results indicate that DRL architectural structures
and HP impact GPU, memory, and run-time execution. The
dataset manipulation by the architecture also influences the
execution. We suggest the DRL developers attend to simpli-
fying the architecture layers, considering tensors, encoders,
and learning algorithms to accelerate execution.

For the EC dataset, the LR(30%), BS(30%), NG(10%),
and BS(10%) indicate optimal HP configuration considering
GPU and memory usage, respectively, and LR(70%) for
run-time execution. Regarding the HS dataset, the LR(70%)
and BS(70%) indicate optimal HP configuration for GPU
and memory usage and execution time. Although LR(30%),
BS(50%), and LR(50%), BS(50%), NG(10%) perform better
in terms of memory.

As future work, we consider implementing AS for other
AC2CD HP with automatic tuning to different datasets and
applications. Furthermore, exploring the influence of AS on
the learning phase of DRL and conducting effectiveness
and accuracy analyses of the models presents a promising
research avenue for advancing studies focusing on XAI

REFERENCES

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

Allen Newel. A tutorial on speech understanding systems. In D. R.
Reddy, editor, Speech Recognition Invited Papers Presented at the 1974
IEEE Symposium, pages 3—-54. Academic Press, CMU, USA, 1975.
Sina Sheikholeslami. Ablation programming for machine learning.
Master’s thesis, KTH Royal Institute of Technology, School of Electri-
cal Eng. and Comp. Science (EECS), SE-100 44 Stockholm, Sweden,
2019.

[2]

[3]

18

[4]

[5]

[6]

[7]
[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Isha Hameed, Samuel Sharpe, Daniel Barcklow, Justin Au-Yeung,
Sahil Verma, Jocelyn Huang, Brian Barr, and C. Bayan Bruss. Based-
xai: Breaking ablation studies down for explainable artificial intelli-
gence, 2022. arXiv:2207.05566 [cs.LG].

Aurélio Ribeiro Costa and Célia Ghedini Ralha. AC2CD: An ac-
tor—critic architecture for community detection in dynamic social
networks. Knowledge-Based Systems, 261:110202, 2023.

Vincent Frangois-Lavet, Peter Henderson, Riashat Islam, Marc G
Bellemare, et al. An introduction to deep reinforcement learning.
Foundations and Trends in Machine Learning, 11(3-4):219-354, 2018.
David Gunning and David Aha. Darpa’s explainable artificial intelli-
gence (xai) program. Al magazine, 40(2):44-58, 2019.

Michelle Girvan and Mark EJ Newman. Community structure in social
and biological networks. Proceedings of the national academy of
sciences, 99(12):7821-7826, 2002.

Rémy Cazabet and Frédéric Amblard. Dynamic Community Detection,
pages 404—414. Springer New York, New York, NY, 2014.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. Advances in Neural Inf. Proc. Sys., 14,
2001.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and
community structure in networks. Physical review E, 83(1), 2011.
Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert
Babuska. A survey of actor-critic reinforcement learning: Standard
and natural policy gradients. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 42(6):1291-1307,
2012.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in
Neural Inf. Proc. Sys., 12, 1999.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lid, and Yoshua Bengio. Graph attention networks,
2018. arXiv:1710.10903 [stat.ML].

Dabbala Rajagopal Reddy. Speech recognition: invited papers pre-
sented at the 1974 IEEE symposium. Elsevier, 1975.

Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau, and
Tobias Meisen. Ablation studies in artificial neural networks, 2019.
arXiv:1901.08644 [cs.NE].

Dongyu Fan, Haikuo Shen, and Lijing Dong. Switching-aware multi-
agent deep reinforcement learning for target interception. Applied
Intelligence, 53(7):7876-7891, 2023.

Haidlir Naqvi and Bayu Anggorojati. Ablation study of deep rein-
forcement learning congestion control in cellular network settings.
In Proc. of 25" Int. Symposium on Wireless Personal Multimedia
Communications (WPMC), pages 80-85. IEEE, 2022.

Zhenhui Ye, Yining Chen, Xiaohong Jiang, Guanghua Song, Bowei
Yang, and Sheng Fan. Improving sample efficiency in multi-agent
actor-critic methods. Applied Intelligence, pages 1-14, 2022.

Moésio Wenceslau da Silva Filho, Gabriel A. Barbosa, and Péricles
B. C. Miranda. Learning global optimization by deep reinforcement
learning. In Proc. of 11 th Brazilian Conference on Intelligent Systems
(BRACIS), page 417-433, 2022.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, et al.
Rainbow: Combining improvements in deep reinforcement learning.
In Proc. of AAAI Conf. on Artificial Intelligence, volume 32, 2018.
Lei Tang and Huan Liu. Relational learning via latent social di-
mensions. In Proc. of 15" ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, page 817-826, 2009.

Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact
patterns in a high school: a comparison between data collected using
wearable sensors, contact diaries and friendship surveys. PloS one,
10(9):e0136497, 2015.

Joshua Romoff. Decomposing the Bellman Equation in Reinforcement
Learning. PhD thesis, School of Computer Science, McGill University,
Montreal, Canada, 2021.

Brennan Shacklett, Erik Wijmans, Aleksei Petrenko, Manolis Savva,
Dhruv Batra, et al. Large batch simulation for deep reinforcement
learning, 2021. arXiv:2103.07013 [cs.LG].

Li Yang and Abdallah Shami. On hyperparameter optimization of
machine learning algorithms: Theory and practice. Neurocomputing,
415:295-316, 2020.

Emery Berger, Sam Stern, and Juan Pizzorno. Triangulating python
performance issues with scalene, 2022. arXiv:2212.07597 [cs.PL].

