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Abstract—Diversifying asset allocation is a crucial aspect of
building a profitable portfolio. The resiliency of the portfolio
depends on the optimization techniques as well as algorithms
used in the asset allocation. Clustering techniques would help
in designing a diversified portfolio. This study investigates the
resiliency of different traditional and recently proposed data-
driven portfolio techniques in conjunction with four clustering
techniques under varying market conditions. The novelty of
the study is to present a resilient portfolio optimization using
DBSCAN and Affinity Propagation clustering techniques.

Index Terms—Portfolio Diversification, Resilience, Clustering,
DBSCAN, Affinity Propagation

I. INTRODUCTION

The global financial crisis of 2008 posed a challenge to
the risk management abilities of market participants and
raised concerns about portfolio risk management methods and
practices [1]. Resiliency in portfolio construction is very im-
portant in averting such drastic economic collapse. The Mean-
Variance Optimization (MVO) model [2] is widely accepted
as the standard for assessing portfolio performance. MVO
enables the creation of an efficient portfolio that strives to
achieve the highest return for a unit of non-systematic risk
or the lowest non-systematic risk for a unit of return. Linear
programming is used to find the optimal weights in Sharpe
ratio Optimization(SRO). Perold [3] focused on optimizing
big-scale portfolios and implemented a fundamental structured
model that incorporated variables such as transaction costs
and the covariance matrix to achieve a reasonably accurate
estimation. Wang and Aste [4] have implemented the Inverse
Covariance Clustering (ICC) technique to identify market
states. They have incorporated these states into a dynamic
approach to tackle the challenge posed by the constant fluctu-
ations in the market.

ML algorithms are extensively investigated in this domain.
The study of ML and DL algorithms, in conjunction with the
Markowitz portfolio model, aims to determine optimal port-
folio weights for efficient portfolio construction. Awoye [5]
investigated the use of machine learning techniques to enhance
portfolio returns by applying the minimum variance model of
Markowitz. Chen et al. [6] employed the XGBoost algorithm
and Firefly algorithm in conjunction with the MVO model to
forecast and identify high-performing stocks for the purpose of

resilient portfolio optimization. Du [7] has employed a compa-
rable methodology, utilizing ML algorithms like Support Vec-
tor Machine (SVM) and Long Short-Term Memory (LSTM)
for stock price prediction, followed by the application of MVO
to construct portfolios. There is an ongoing exploration in
portfolio construction regarding the utilization of deep learning
(DL) algorithms, including Autoencoder and LSTM models
[8] [9]. Nevertheless, a significant limitation lies in the fact
that the majority of asset returns do not adhere to normal
distributions. Hence, the utilization of sample percentiles is
for studying portfolio optimization using Value-at-Risk (VaR)
as a risk metric [10]. Addressing this constraint involves the
utilization of a data-driven algorithm for generating random
weights (RWA) and employing a portfolio return distribution
based on sign correlations in the context of fuzzy portfolio
optimization.

Diversifying asset allocation is a critical aspect of construct-
ing a robust portfolio. Choueifaty and Coignard [11] intro-
duced the concept of the ’diversification ratio’ to quantify the
level of diversity in a portfolio. Ibanez [12] proposed a portfo-
lio construction technique that emphasizes diversification. This
approach employs singular value decomposition to identify
underlying factors and utilizes hierarchical agglomerative clus-
tering to address implementation challenges associated with
the method. Clustering algorithms can be used in diversifying
financial assets and constructing risk-averse portfolios. Li [13]
applied K-means clustering to enhance the performance of the
global minimum variance (GMV) portfolio. The approach also
incorporates regularization within the autoregressive shrinkage
model. Aslam et al. [14] have incorporated a three-factor
analysis to cluster stocks and identify clusters comprising the
best-performing stocks for portfolio construction. Pranata et al.
[15] employed clustering techniques such as the k-means and
DBSCAN clustering algorithms to cluster the IDX (Indonesia
Stock Exchange) companies. These clustering techniques are
commonly employed in stock forecasting and recommendation
systems [16] as well as to optimize portfolio construction and
risk management [17].

Thavaneswaran et al. [18] introduced a data-driven approach
for portfolio risk assessment to overcome the limitations pf
traditional techniques. Building upon prior work, Bowala and
Singh [19] introduced a data-centric method for composing a
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portfolio comprising conventional stocks and cryptocurrencies
(cryptos). They explored statistical risk measures and put for-
ward a range of statistical correlations for assessing portfolio
composition utilizing these metrics.

The current study investigates the effectiveness of four
distinct clustering algorithms in facilitating diversification
within portfolio construction. The study encompasses both
traditional portfolio construction techniques, including MVO,
CPO, and SRO, as well as the Data-Driven approach or
portfolio construction. The objective of this research is to
enhance portfolio optimization methodologies through the
utilization of diversification via clustering techniques. This
study also aims to enhance the performance of data-driven
portfolio construction by incorporating diversification through
the utilization of clustering techniques. Additionally, it inves-
tigates less explored clustering algorithms, namely Density-
based spatial clustering of applications with noise (DBSCAN)
and affinity propagation, in the context of portfolio optimiza-
tion. By applying clustering algorithms to enhance portfolio
diversification, valuable insights are obtained regarding the
performance of different algorithms under varying market
conditions. The study incorporates stock market data from
multiple sectors, such as technology, consumer goods, bank-
ing, energy, automobiles, and pharmaceuticals. The findings
of this study primarily focused on assessing the efficacy of
diverse clustering algorithms in identifying profitable portfolio
returns amidst volatile market conditions.

In Section II, the document outlines clustering algorithm
methodologies and portfolio construction approaches, encom-
passing both traditional and data-driven methods. Section
III encompasses the detailed experimental procedures and
outcomes, while Section IV offers closing remarks and con-
clusions.

II. METHODOLOGIES

Conventional portfolio optimization techniques such as
Mean-Variance Optimization (MVO) and Sharpe Ratio Op-
timization (SRO) aim to strike a balance between risk and
return by solving specific objective functions. However, these
approaches often overlook the importance of diversification in
constructing risk-averse portfolios. Consequently, they under-
perform in volatile market conditions. This study investigates
the impact of diversification implemented through clustering
techniques across different market conditions. By applying
various clustering methods to raw financial asset data, port-
folios comprising assets from diverse clusters are constructed.
These portfolios are then evaluated using both traditional and
data-driven portfolio optimization techniques under varying
market conditions. The distinct functionalities of different
clustering techniques necessitate the identification of optimal
combinations with portfolio optimization methods to propose
a resilient diversification approach.

A. Clustering Algorithms for diversification

This study employs four different clustering techniques to
facilitate stock diversification within portfolios. Specifically,

the less extensively explored methods of DBSCAN and affinity
propagation are studied in this work. The objective is to
construct portfolios by selecting unique stocks from each
cluster, thereby enhancing diversification strategies.

a) K-means clustering algorithm: It is a prominent unsu-
pervised ML approach utilized for partitioning a given dataset
into K distinct clusters. This technique aims to minimize
the collective sum of squared distances between individual
data points and their corresponding cluster centroids. The
Within Cluster Sum of Squares (WCSS) method is commonly
employed to determine the suitable number of clusters.

b) Hierarchical Clustering Algorithm: It is an unsuper-
vised ML algorithm that groups data points into hierarchical
clusters, considering their similarity or dissimilarity. This
method establishes a hierarchical arrangement of clusters,
often represented as a dendrogram, by iteratively merging
or splitting clusters. In our study, we leveraged the elbow
plot technique, obtained by converting the dendrogram into
a dissimilarity matrix. By utilizing the WCSS criterion, we
ascertained the ideal cluster quantity essential for our cluster-
ing investigation.

c) DBSCAN: It is an unsupervised ML algorithm that
identifies clusters based on the concept of density. DBSCAN
effectively employs two crucial parameters: epsilon (ϵ), which
governs the maximum allowable distance between neighboring
points, and minPts, which specifies the minimum number of
points required to establish a dense region. The algorithm also
adeptly detects noise or outlier points, which lie in regions
of diminished density and fail to satisfy the density criteria.
In our study, we employed the Reachability distance metric
to determine the optimal value of epsilon for the DBSCAN
clustering algorithm.

d) Affinity Propagation: Affinity Propagation is an influ-
ential clustering algorithm that operates in an unsupervised
manner that effectively identifies exemplars within a given
dataset, allowing the data points to ”vote” on each other
to determine their representative exemplar. The algorithm
leverages the notion of message passing, wherein messages
are exchanged between data points to ascertain the most
suitable exemplar for each point. By iteratively updating these
messages, Affinity Propagation converges to a set of exemplars
that effectively represent the dataset. The robustness of the
algorithm lies in its capacity to autonomously ascertain the
cluster quantity without necessitating prior knowledge. The
versatility of this algorithm allows it to handle datasets with
varying cluster sizes. This algorithm has been previously used
in several applications [20] [21].

B. Traditional Portfolio Construction

Traditional portfolio optimization techniques focus on maxi-
mizing profits while minimizing risk or maximizing the Sharpe
ratio but overlook important statistical characteristics such as
the presence of non-normal market behavior.

a) Equal Weighted Portfolio Optimization (E.W) and
Inverse Volatility Weighted Portfolio Optimization (I.V.W): In
a portfolio utilizing the equal-weighted portfolio optimization
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technique, every stock is accorded uniform treatment, and an
identical proportion of weight is allocated to each individual
stock. Specifically, the weight of each stock is calculated as
Wi =

1
N .

The inverse volatility-weighted portfolio assigns weights to
assets based on the reciprocal of their volatility. Specifically,
the weight of each asset is calculated as Wi = 1

σ · 1∑
j

1
σj

.

Within this mathematical expression, σi denotes the volatility
associated with the i-th asset. We employ methodologies en-
compassing equal-weighting and inverse volatility-weighting
to compute the portfolio weights. Subsequently, the yearly
mean returns, annual risk, and diversification ratio are com-
puted.

The return from a portfolio is specified as follows: Let P
consist of assets A1, A2, . . . , AN with corresponding weights
W1,W2, . . . ,WN and R1, R2, . . . , RN representing the asset
returns. The return from portfolio, r is determined by the
summation of weighted individual asset returns, expressed as
Rp = W1R1 + W2R2 + . . . + WNRN =

∑N
i=1 WiRi. For

Ty trading days (e.g., 251 days), the annualized return of the
portfolio can be computed as RAnn =

(∑N
i=1 WiRi

)
Ty .

The portfolio’s risk, denoted by σ, is calculated as σ =√∑
i

∑
j WiWjσij .

The variance-covariance matrix of returns denoted as σij

between assets i and j is a crucial element. The annual-
ized portfolio risk in percentage, σAnn, can be calculated

as: σAnn =

√(∑
i

∑
j WiWjσij

)
Ty . Moreover, the diver-

sification index is computed using the following formula:
(σ̄W̄ ′)/(

√
W̄ΣW̄ ′). In this equation, σ̄ refers to the vector

of standard deviation,
√
W̄ represents the weights vector, and

Σ signifies the variance-covariance matrix of returns.
b) Mean-Variance Optimization (MVO): The

primary goals of MVO are to boost the anticipated
return of a portfolio and reduce its overall risk. This
model is expressed as follows: min−

∑N
i=1 WiRi +√∑

i

∑
j WiWjσij given that

∑N
i=1 Wi = 1, , 0 ≤ Wi ≤

1 where Wi is portfolio weight, Ri is the expected return of
portfolio, σij is the returns’ variance covariance, and N is
the total number of assets.

c) Constrained Portfolio Optimization (CPO): To con-
struct an optimally balanced portfolio, an investor with mod-
erate risk aversion customizes the Mean-Variance Optimiza-
tion model to create the Constrained Portfolio Optimization
model, considering specific preferences and requirements. In
this research, the CPO model is employed to calculate ideal
weights: 40% in stocks with high volatility, 60% in stocks
with low volatility, and 1% of total capital in both such
categories. Some of the assets might remain uninvested, and
the allocation of stocks with high volatility is capped at
10%. The sum of the weights is one, ensuring full capi-
tal utilization. The mathematical representation of CPO is:
min−

∑N
i=1 WiRi +

∑
i

∑
j WiWjσij when

∑N
i=1 Wi =

1, 0.01 ≤
∑

i∈LowVolatility Wi ≤ 0.6, 0.01 ≤

∑
j∈HighVolatility Wj ≤ 0.4, 0 ≤ Wi ≤ 1 (for i ∈

LowVolatility), 0 ≤ Wj ≤ 0.1 (for j ∈ HighVolatility).

d) Sharpe Ratio Optimization (SRO): The mathematical
representation for SRO is:

max
( ∑N

i=1 WiRi−Rf√∑
i

∑
j WiWjσij

)
, subject to

∑N
i=1 Wi = 1 and 0 ≤

Wi ≤ 1.
The investment strategy’s objective function contains two

parts: the numerator signifies the excess returns of the invest-
ment in comparison to an asset that is risk-free, denoted as
Rf , and the denominator denotes the risk in the investment.
The main goal is to optimize the Sharpe ratio.

C. Data Driven Portfolio Construction

In [18], two novel estimation functions are introduced,
which have smaller variances and are utilized to establish
a new portfolio risk measure that incorporates higher-order
moments. The corresponding volatility correlation (ρP,vol) and
sign correlation (ρP,sgn) are defined as follows:
ρP,sgn = Corr(Sgn(RP − µp), RP − µp) and ρP,vol =

Corr(|RP − µp|, (RP − µp)
2) where µp is portfolio expected

return.
The portfolio’s expected return is represented by µp, while

skewness is denoted by µ̃3, and κ represents kurtosis. F(x) is
the inverse of the cumulative distribution function (CDF) of
portfolio return. R̃p and σ̂P are estimates of the portfolio’s
expected return and standard deviation (SD), respectively,
based on the previous l observation. The portfolio’s mean
absolute deviation (MAD) estimate is calculated using the
following formula:
MADP = 2ρ̂P, signσ̂P

√
F (R̄P )(1− F (R̄P )).

The calculation of the portfolio volatility estimate using
volatility correlation reduction (VEV) is determined by the
following formula: VEVP =

√
1− ρ̂2P,volσ̂P

The computation of the portfolio volatility estimate using
sign correlation reduction (VES) is determined by the fol-
lowing formula: VESP =

√
1− ρ̂2P,signσ̂P . The calculation of

the portfolio volatility estimate using both sign and volatility
correlation reduction (VESV) is determined by the following
formula- VESVP =

√
(1− ρ̂2P,sign)(1− ρ̂2P,vol)σ̂P .

III. EXPERIMENTS AND RESULTS

A. Exploratory Analysis

Our findings indicate that the year 2020 exhibited substan-
tial profitability, contrasting with the year 2022 wherein a
significant proportion of stocks yielded negative mean returns.
For example TESLA (TSLA), throughout the year 2020
showed an upward trend but in 2022, it dropped continuously.

Table I summarizes the cluster number for each year using
different clustering algorithms. Different clustering algorithms
function differently resulting in varying cluster numbers for
different years. For each year we have considered two different
portfolios. From each cluster, we have selected the stock with
the highest mean return to be included in the K-01 portfolio,
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kmeans hierarchical DBSCAN Affinity Propagation
2019 12 12 13 9
2020 12 10 14 6
2021 12 12 15 8
2022 12 8 15 8

TABLE I
NUMBER OF CLUSTERS USING DIFFERENT CLUSTERING TECHNIQUES

whereas the stock with the second highest mean return is
included in the K-02 portfolio.

B. Clustering on Equal Weighted and Inverse Volatility
Weighted portfolio construction

Although diversification with clustering algorithms im-
proved the performance of simple E.W and I.V.W, they still
failed in risky years like 2022. The affinity propagation clus-
tering algorithm produced the best annual profits in 2020, but
all clustering algorithms failed to generate positive returns in
2022. Table II presents the performance of different cluster-
ing algorithms in conjunction with E.W and I.V.W portfolio
construction techniques in different years. E.W and I.V.W are
not reliable in risky years like 2022.

Year Clustering Methods Equal Weighted Inverse Volatility Weighted

K-01 K-02 K-01 K-02

Annual Risk Annual Return Annual Risk Annual Return Annual Risk Annual Return Annual Risk Annual Return
2019

kmeans

15.91% 25.90% 15.49% 23.81% 14.19% 27.14% 13.37% 23.11%
2020 38.74% 50.37% 37.75% 33.89% 36.59% 44.04% 34.84% 26.76%
2021 17.27% 48.76% 16.24% 42.48% 15.07% 43.54% 13.50% 37.12%
2022 28.87% -18.75% 29.60% -23.33% 25.02% -6.90% 26.59% -14.82%

2019

Hierarchical

15.91% 25.90% 15.36% 23.31% 14.19% 27.14% 12.96% 22.65%
2020 38.95% 63.19% 37.78% 43.59% 36.52% 55.96% 34.47% 34.80%
2021 16.64% 48.50% 15.76% 42.01% 13.90% 42.02% 13.14% 36.09%
2022 28.55% -18.02% 29.73% -24.10% 23.29% -2.47% 25.67% -12.72%

2019

DBSCAN

16.56% 27.80% 16.73% 25.70% 15.25% 29.08% 15.29% 26.17%
2020 38.56% 39.53% 38.81% 37.13% 34.75% 35.52% 34.69% 32.62%
2021 16.49% 42.30% 15.95% 40.02% 15.14% 38.76% 14.26% 36.41%
2022 27.37% -16.38% 21.95% -69.18% 24.11% -6.13% 15.02% -22.80%

2019

Affinity Propagation

17.68% 24.74% 16.99% 20.88% 15.35% 25.83% 14.68% 21.59%
2020 42.83% 85.54% 42.25% 68.44% 39.55% 77.08% 40.09% 56.36%
2021 20.54% 59.04% 20.65% 51.37% 18.46% 56.34% 16.96% 44.75%
2022 28.55% -18.02% 29.73% -24.10% 23.29% -2.47% 25.67% -12.72%

TABLE II
PERFORMANCE USING DIFFERENT CLUSTERING ALGORITHMS FOR E.W

AND I.V.W CONSTRUCTIONS

This study delves into the application of Mean-Variance
Optimization (MVO) and Sharpe Ratio Optimization (SRO) in
portfolio management. Specifically, the influence of clustering
techniques on these strategies are investigated, analyzing their
efficacy in enhancing diversification and identifying profitable
opportunities (see subsections C and D)

C. Clustering with MVO and CPO

Figures 1 and 2 showcase MVO’s effectiveness with diverse
clustering algorithms for 2020 and 2022, revealing consistent
portfolio outcomes on the efficient frontier. For 2022, the
clustering algorithms demonstrate comparable performance
characteristics.

Diverse clustering techniques notably boosted conventional
MVO performance, resulting in significant 2020 profitability.
Impressively, this diversification sustained profits even during
the high-risk year of 2022. For 2022, Figure 2 highlights
efficient frontiers using k-means clustering. Other algorithms
also display similar frontiers.

Fig. 1. MVO with different clustering algorithms for 2020

Fig. 2. MVO with kmeans clustering algorithm for 2022

1) Constrained Portfolio Optimization (CPO): CPO ex-
tends MVO by accommodating risk-averse investors’ con-
straints, shaping a customized framework. Clustering algo-
rithms showed similar performance in MVO, but CPO in-
dicated less favorability for affinity propagation, especially
during 2020 and 2022. Observations from Figure 3 highlight
suboptimal performance of CPO with affinity propagation in
2020 compared to kmeans, suggesting limited effectiveness of
affinity propagation for CPO-based portfolios.

Fig. 3. CPO with kmeans clustering algorithm(left) and Affinity Propaga-
tion(right) in 2020

The study revealed that in the tumultuous market of 2022,
portfolios created using DBSCAN and k-means clustering
algorithms outperformed those using hierarchical and affinity
propagation algorithms (Figure 4).
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Fig. 4. CPO with clustering algorithms for 2022

D. Clustering with SRO

Sharpe Ratio Optimization maximizes risk-adjusted return
using excess return to volatility ratio as a key metric. The
application of diverse clustering techniques significantly im-
proved Sharpe Ratio Optimization performance. Notably, for
2020, k-means demonstrated superior risk-adjusted profitabil-
ity compared to other clustering algorithms, as observed in
Table III.

Year Clustering Methods SHARPE RATIO OPTIMIZATION

K-01 K-02

Annual Risk Annual Return Sharpe Ratio Annual Risk Annual Return Sharpe Ratio
2019 13.77% 42.63% 2.88 14.41% 42.51% 2.74
2020 58.88% 171.31% 2.86 14.41% 42.51% 2.74%
2021 15.16% 57.62% 3.62 13.36% 51.93% 3.66
2022

kmeans

19.29% 46.57% 2.26 26.58% 38,65% 1.34

2019 13.77% 42.63% 2.88 13.26% 40.06% 2.80%
2020 58.81% 171.08% 2.83 59.99% 172.80% 2.83
2021 14.42% 55.06% 3.61 14.25% 54.97% 3.65
2022

Hierarchical

19.45% 46.92% 2.26 25.54% 36.87% 1.33

2019 14.68% 45.02% 2.86 14.91% 43.96% 2.75
2020 57.40% 166.76% 2.85 55.57% 161.31% 2.85
2021 16.07% 60.67% 3.59 14.21% 54.04% 3.65
2022

DBSCAN

19.05% 45.99% 2.26 25.01% 36.35% 1.33

2019 14.65% 44.08% 2.8 14.81% 36.87% 2.29
2020 62.33% 180.88% 2.85 59.61% 172.66% 2.85
2021 16.89% 63.45% 3.58 17.65% 55.12% 2.95
2022

Affinity Propagation

19.45% 46.93% 2.26 25.54% 36.87% 1.33

TABLE III
SRO WITH DIFFERENT CLUSTERING TECHNIQUES

E. Clustering with Data-driven(DD) approach

In traditional portfolio strategies, non-normality in financial
data is overlooked. Data-driven approaches consider this, opti-
mizing portfolios with data-centric risk metrics. This study in-
vestigates enhancing these techniques with diversification and
recommends effective clustering methods for robust portfolio
optimization, particularly in volatile markets.

1) DD without Clustering: For 2022, the data-driven ap-
proach without clustering algorithms showed limited prof-
itability, as illustrated in Figure 5 but integrating clustering
algorithms not only bolstered performance that year but also
improved overall performance across other years. This study
highlights varying effectiveness among clustering algorithms
in enhancing portfolio construction techniques, particularly
in risk-prone years like 2022, emphasizing a data-driven
assessment.

Fig. 5. Data-driven portfolio optimization without clustering

2) DD with Clustering: The integration of diversification
through various clustering techniques significantly enhanced
the profitability of the data-driven portfolio construction tech-
nique.

Fig. 6. Data-driven approach with Hierarchical (left) and Affinity Propaga-
tion(right) clustering algorithms for 2020

For 2020, the utilization of affinity propagation and hierar-
chical clustering showcased enhanced performance in diversi-
fication compared to alternative algorithms, as supported by
Figure 6, with affinity propagation particularly excelling in
constructing profitable portfolios during that year.

Fig. 7. Data-driven approach with different clustering algorithms for 2022

Figure 7 illustrates the superior performance of hierarchical
clustering and affinity propagation-based portfolio construc-
tion for 2022 within a data-driven approach, highlighting the
potential of affinity propagation for enhanced diversification
and portfolio robustness.

IV. DISCUSSIONS AND CONCLUSIONS

This study underscores the pivotal role of diversifica-
tion through clustering techniques in improving portfolio re-
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silience. Analyzing various clustering methods and portfolio
construction approaches reveals that portfolio performance is
contingent on the choice of clustering technique and prevailing
market conditions. Optimal diversification, crucial for portfo-
lio resilience, necessitates a careful selection of assets from
disparate clusters. Different clustering methods exhibit dis-
tinct strengths, with affinity propagation clustering synergizing
effectively with traditional approaches like equal-weighted
(E.W) and inverse volatility-weighted (I.V.W) optimization
during profitable periods. Mean-Variance Optimization (MVO)
demonstrates consistent effectiveness across clustering tech-
niques, while k-means clustering stands out in Sharpe Ra-
tio Optimization (SRO) during favorable market conditions.
The integration of data-driven (DD) portfolio construction
techniques, notably in conjunction with affinity propagation
clustering, remarkably enhances portfolio performance. These
insights hold pragmatic implications for both investors and
portfolio managers, emphasizing the advantages of diversi-
fication facilitated by clustering techniques in constructing
resilient portfolios. Future research should further investigate
alternative clustering methods and incorporate additional risk
metrics to provide a comprehensive understanding of resilient
portfolio construction.
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