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Abstract— In today’s world, sensors play a crucial role, as 
they feed information to make accurate decisions and take 
actions; therefore, making sure that sensors behave correctly is 
critical. In this work, we focus on inspecting the data provided 
by sensors, aiming at discovering any issue due to malfunction, 
misuse, or any other source of error before the issue is 
propagated through the system. To achieve that, we propose a 
novel approach based on wavelets embedded in a 
microcontroller to analyze data from sensors. The objective is to 
determine whether the sensor is issuing correct data (normal 
behavior) or not (abnormal behavior), to prevent the error from 
reaching other parts of the system.  

Keywords— discrete wavelet transform, Euclidean distance, 
Embedded Systems, anomaly behavior analysis, sensor’s fault 
detection. 

I. INTRODUCTION 

Effective communication is vital in delivering necessary 
information, particularly in critical situations requiring 
accurate actions. However, the inclusion of components like 
sensors introduces significant security challenges, as they 
expand the potential for errors through the systems, deterring 
the accurate delivery of information to end users. This paper 
introduces a methodology for constructing an Intrusion 
Detection System utilizing Anomaly Behavior Analysis to 
identify when an IoT network node with sensing capabilities 
is compromised. Our initial experimental results demonstrate 
the effectiveness of our approach in detecting both known and 
unknown anomalies caused by misuse, malfunction, or any 
other sources of sensor errors before the error is spread deep 
into the network. The experiments are conducted with the aid 
of an embedded system which represents an IoT node sending 
information through the network. The results indicate a high 
detection rate with low false alarms. 

 The paper is organized as follows. Section II gives a brief 
theoretical background about IoT applications, sensor fault, 
quality control, anomaly behavior analysis, and wavelets. 
Section III presents the methodology proposed to properly 
monitor the functioning of the sensor attached to an embedded 
system. Next, Section IV presents the experimental results of 
the proposed approach. Finally, section V provides 
conclusions and possible future works. 

II. BACKGROUND 

With the exponential use of IoT applications (e.g., 
monitoring, guidance, premises control, etc.), ensuring the 

seamless operation of all interconnected devices becomes 
increasingly challenging. Primarily, the proper functioning of 
sensors stands as a crucial element in any IoT application, 
demanding ongoing research to detect and address device 
faults. Furthermore, safeguarding data integrity and mitigating 
potential risks emerge as significant concerns for companies, 
regular users, and researchers in this domain. 

The following is a brief outline of the most common types 
of sensor fault, some of the strategies already being applied to 
tackle the issues, and the state of the art in data security 
preservation. 

A. Sensor Fault Classification 

According to Han et al., [1] sensor fault can be classified 
into two groups: 1) incipient fault, and 2) abrupt fault. 

1) Incipient fault: An incipient fault is a small amount of 
abnormal or unstable working status that develops over time, 
causing more severe faults in the long term [1]. Common faults 
in this group include sensor bias and sensor drift. 

When sensor bias occurs, data values are replaced with a 
constant value, causing a loss of accuracy in the device. 
Because it is a common fault, many solving strategies have 
been proposed. For example, in the branch of field sensors, 
Troni and Whitcomb [2] suggest using angular-rate-aided 
estimation methods that improve bias estimation in 
comparison with previous proposals by other authors. 
Similarly, Yang et al. [3] studied bias in accelerometers 
applied in the drilling process and proposed a sensor fault 
detection and isolation method that outperforms previous 
strategies.  

Sensor drift means the presence of an offset or gain 
parameter that changes slowly over time. Han et al. [4] 
created a sensor drift detection method based on discrete 
wavelet transform (DWT) and grey models, with the former 
used to decompose the signal and the latter for detrending. 
Conversely, Pereira and Glisic [5] propose detecting and 
quantifying sensor drift in temperature sensors based on 
trinomial distribution, using probabilistic neural networks 
(PNN) to estimate temperature. 

2) Abrupt fault: On the other hand, abrupt fault occurs 
when the sensor stops working suddenly because of physical 
damage, generating a fault parameter that is easy to identify 
[1]. This group includes sensor noise, short and open circuits, 
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and sensor random faults. Sensor noise can appear in two 
forms: internal (from the sensor itself and its circuit) and 
environmental (from external interference). Short- and open-
circuit faults are caused, respectively, by poor contact and 
disconnections. Finally, random sensor faults are caused by the 
complex environment of the layout, which can exceed the 
sensor requirements [1]. 

 

B. Wavelets 

Wavelets are waveforms of limited duration used for 
analyzing functions. Moreover, they allow signals with 
localized features to be broken down into different frequency 
components at different scales. Wavelet analysis involves 
decomposing signals into wavelet coefficients, which 
represent their components at different scales and positions in 
time, in contrast to similar approaches such as the Fourier 
transform [6,7]. Because of these features, wavelets are widely 
applied when solving problems associated with time-varying 
non-stationary variables. Particularly, the wavelet transform 
allows the representation of a signal as a set of basic functions 
(wavelets) obtained from the translation and scalation of a 
mother wavelet given by (1): 

 Ψ௔,௕
∗ =

ଵ

√௔
 ψ ቀ

௧ି௕

௔
ቁ , a > 0, −∞ < b < ∞ 

The continuous wavelet transform (CWT) allows the 
mapping of the properties of non-stationary signals. In the 
time-frequency representation, the coefficients 𝑊௙(𝑎, 𝑏) in (2) 
are obtained through changes in the scale and the position 
parameters of a signal [7]: 

 𝑊௙(𝑎, 𝑏) = ∫ 𝑓(𝑡)ψ௔,௕
∗ (t)dt

ஶ

ିஶ
 

There is also a discrete wavelet transform (DWT), which 
consists of the decomposition of the signal into a mutually 
orthogonal set of wavelets. This transform is expressed by (3): 

 Ψ௝,௞(𝑡) =  2ି
ೕ

మψ (2ି௝𝑡 − 𝑘) 

On the other hand, the DWT coefficients are given by (4): 

 𝑊௝,௞ = 𝑊(2௝ , 𝑘2௝) = 2ି
ೕ

మ ∫ f(t)ψ(
ஶ

ିஶ
2ି௝𝑡 − 𝑘)𝑑𝑡

The simplest wavelet is the Haar wavelet, a step function 
given in (5): 

 Ψ(𝑡) = ൞

1, 0 ≤ 𝑡 <
ଵ

ଶ

−1,
ଵ

ଶ
≤ 𝑡 < 1

0,                  else

 

Because of its simplicity, it has been extensively applied and 
improved in different scenarios [6].  

It is possible to apply an ordered fast form of the discrete 
Haar wavelet transform to analyze a discrete signal. This 
process begins with a one-dimensional array of 2௡  entries, 
followed by 𝑛 iterations of the same basic transform, which 

consists of the calculation of a sample given by two values, the 
average and the change between two points of an 
approximation function.  

Before the iteration number 𝑙, where 𝑙 𝜖 {1, … , 𝑛}, this array 
consists of 2௡ି(௟ିଵ) coefficients of 2௡ି(௟ିଵ)  step functions 
defined by (6) or (7): 

 𝜑௞
(௡ି௟)(𝑟): =  𝜑[଴,ଵ[(2௡ି௟[𝑟 − 𝑘2௟ି௡]) 

 𝜑௞
(௡ି௟)(𝑟): =  ൜ 1     if      𝑘2௟ି௡  ≤ 𝑟 < (𝑘 + 1)2௟ି௡ ,

           0       otherwise.                                               
 

After iteration l, the array will have half as many 

2௡ି௟  coefficients of 2௡ି௟  step functions 𝜑௞
(௡ି௟)  and 2௡ି௟   

coefficients of wavelets given by (8) or (9): 

 𝜓௞
(௡ି௟)(𝑟): =  𝜓[଴,ଵ[(2௡ି௟[𝑟 − 𝑘2௟ି௡]) 

 𝜓௞
(௡ି௟)(𝑟): =  ቐ

1      if      𝑘2௟ି௡  ≤ 𝑟 < (𝑘 + 1)2௟ି௡ ,

−1  if ቀ𝑘 + ቂ
ଵ

ଶ
ቃቁ 2௟ି௡ ≤ 𝑟 < (𝑘 + 1)2௟ି௡ ,

             0       otherwise.                                            

 

The calculation of the two wavelet coefficients, also called 
approximation coefficients and detail coefficients, in each 
iteration for an array of 2௡ି(௟ିଵ) values is given by (10) and 
(11): 

 𝑎௞
(௡ି௟)

: =  
௔మೖ

(೙ష[೗షభ])
ା௔మೖశభ

(೙ష[೗షభ])

ଶ
 

 𝑐௞
(௡ି௟)

: =  
௔మೖ

(೙ష[೗షభ])
ି௔మೖశభ

(೙ష[೗షభ])

ଶ
 

The  2௡ି௟pairs of new coefficients conform two arrays given 
by (12) and (13): 

 𝑎(௡ି௟): = ቀ𝑎଴
(௡ି௟)

, 𝑎ଵ
(௡ି௟)

, … , 𝑎௞
(௡ି௟)

, … , 𝑎
ଶ(೙ష೗)ିଵ

(௡ି௟)
ቁ

 𝑐(௡ି௟): = ቀ𝑐଴
(௡ି௟)

, 𝑐ଵ
(௡ି௟)

, … , 𝑐௞
(௡ି௟)

, … , 𝑐
ଶ(೙ష೗)ିଵ

(௡ି௟)
ቁ

This algorithm allows the preservation of the basic information 
of the whole array. 

C. Anomaly Behavior Analysis 

The current state of cyber-security solutions falls short of 
effectively countering the exponential increase in both the 
quantity and complexity of cyber-attacks [8], [9]. Two 
fundamental techniques for detecting such attacks are 
signature-based and anomaly-based Intrusion Detection 
Systems (IDS) [10], [11], [12]. Signature-based IDS relies on 
a database of known attack signatures or identities. However, 
these systems fail to detect new attack types or even known 
attacks with minor modifications to their signatures. On the 
other hand, anomaly detection approaches excel in 
identifying novel and emerging attacks.  

Anomaly-based IDS establishes a baseline model of the 
system's normal behavior through offline training and flags 
any activity that deviates from this model as an anomaly [11], 
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[12]. Any attack, misconfiguration, or misuse will result in 
behavior that deviates from the norm, which we classify as 
abnormal behavior. However, a significant drawback of this 
approach is the potential for generating a large number of 
false alarms. 

D. Quality Control 

Quality control in engineering is used to ensure that 
projects, products, or services meet specified quality standards. 
It involves activities such as monitoring, testing, control, and 
corrective actions to identify and rectify defects or deviations 
from quality criteria. The goal is to produce reliable and 
accurate results, minimize issues, and continuously improve 
the quality of a given output [13]. Usually, quality control is 
linked with the information provided by a device or manually 
by humans. Using multiple sensors in industrial environments 
could benefit quality control in production lines. These benefits 
include using data analytics to detect possible issues in the 
whole process, the simulation of physical production through 
real-time data, and more worker engagement [13].  

In this work, quality control is used to inspect any deviation 
of the sensor. After obtaining the limits of normal operation, 
the samples from a sensor’s wavelets are inspected to 
determine whether they are exhibiting normal behavior [14]. 

III. METHODOLOGY 

The methodology is divided into two phases: A) offline, 
and B) online. In the offline phase, the reference model is 
created, whereas in the online phase, the data obtained is 
compared against the data structure. Fig. 1 shows a general 
diagram of the proposed methodology. 

Fig. 1. General diagram for the proposed methodology.  

A. Offline Phase 

Sensors are directly connected to a NUCLEO-F411RE 
embedded system (Fig. 2). Data obtained from the sensor is 
decomposed using the DWT method as shown in Equations (1) 
to (5). In each level of the decomposition, the extracted 
coefficients are used to build a data structure (reference 
model).  

For the first part, the approximation and detail coefficients 
for 𝑛 = 3 are obtained for the signal array x[8], which stores 
the 8 most recent moisture values obtained from the sensor. 
Both coefficients are calculated through (10) and (11). Once 
the signal is decomposed, the coefficients of each level are 
aggregated in a 1-D array, which is the data structure. 

The reference model is then built offline by using normal 
measurement attributes (normal Euclidean distance) for each 
sensor data structure (see Equation (12)). Ten arrays are used 
to find the control limits for normal operation. Each array is 
compared with the rest having 80 Euclidean distances (referred 
as Euclidean samples, ES) to build control limits [13]. As 
mentioned in [14], 10 samples are enough to inspect deviation 
from nominal values in a normal distributed population. 

 𝑒(𝑟, 𝑠) = ට∑ (𝑠௜ − 𝑟௜)ଶ଼
௜ୀଵ  

In (12), si represents an element of any of the 10 sample DWTs, 
while ri represents an element of the reference DWT, obtained 
after applying the DWT to the first sample. 

The reference model is then built with the information 
about the control limits and the reference vectors. The control 
limits are computed as described in (13): 

 ē - 3σ ≤  e(r,s) ≤ ē + 3σ 

The reference model contains the control limits and a 
representative vector. 

B. Online Phase 

To illustrate the proposed approach in a real-world 
scenario, the soil moisture measurement in a Coriandrum 
sativum (i.e., coriander) plant is used. Aiming at guaranteeing 
soil moisture levels within an acceptable range and with 
smooth, minimal variations, the architecture depicted in Fig. 2 
was applied, where the soil moisture sensor represents the 
sensor element, and the actuator element is represented by a 
valve that waters the plant and two diodes (green and red) are 
used to notify of normal or abnormal behavior, respectively. 

 
Fig. 2. Methodology applied for the measurement of soil moisture in a 
coriander plant. 

1) Continuous monitoring: In the monitoring part, with 
the aid of a NUCLEO-F411RE embedded system, the sensor 
registers eight soil moisture level values every 60 seconds at 
1 second sampling rate. The small number of samples (8 
samples) will help to implement the proposed approach in 
resources-constrained embedded systems.  The sensor 
accomplishes this recording by obtaining a digital value 
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between 0 and 1023, converted into a soil moisture 
percentage. 

2) Feature extraction: This stage is similar to the wavelet 
data processing function in the offline phase. The data 
obtained is decomposed using the high-pass filter level and 
aggregating the features in a 1-D vector. This new vector will 
help to inspect the behavior of the sensor by comparing it 
against the reference model. 

3) Behavior analysis and classification: The 1-D vector 
is compared with the representative vector in the reference 
model to obtain a Euclidean Distance. The same applies to  

4) the next 10 vectors, to obtain 10 Euclidean distances. 
If any of the two conditions in (13) is met for (12) in any of 
the 10 distances, then the system is not behaving as expected 
and the most probable cause is the sensor. In the case that any 
of the conditions in (13) is not met, the data is classified as 
corrupt (wrong or bad data), then two actions will be 
triggered. The first action is conducted to stop the 
proliferation of the data and the second one is the activation 
of a visual alert.  

5) Action handling:  With the plan of action already 
decided by the classification unit, the last stage consists of 
turning on one of two indicator LEDs: a green LED to 
indicate normal functioning of the sensor according to and a 
red LED to indicate sensor fault. In case of the latter situation, 
through the NUCLEO-F411RE board, the valve will close, 
and a message indicating the necessity of changing or 
repairing the sensor will be sent.  

IV. EXPERIMENTAL RESULTS 

To accomplish the implementation of the proposed 
approach, the architecture shown in Fig. 3 was applied. As 
shown in the figure, this is an elementary communication 
network composed of three main components: a computer, an 
embedded system, and a set of sensors and actuators. 

  

Fig. 3. System’s architecture. 

 
The schematic of the testbed for the proposed approach is 

presented in Fig. 4, consisting of a 32-bit microcontroller 
embedded into a NUCLEO-F411RE board connected to a soil 
moisture sensor by the latter’s three pins: the analog output 
(AO), the ground (GND), and the voltage input (VCC). After 
setting pin A0 in the microcontroller as an analog input, D1 as 
the TX connectivity pin and D0 as the RX connectivity pin, 
sensor data were received through Algorithm 1 executed in a 
loop. 
 

 

Fig. 4. Schematic diagram of the testbed. 

Algorithm 1 Transmitting data through microcontroller 
Input Raw analog values coming from sensor. 
Output Soil moisture percentage. 
1: for k = 1 to 32 do 
2:  Analog-to-digital conversion of input. 
3:  Digital value is stored as part of an array. 
5: end for 
6: for k = 1 to 32 do 
7:  Print value stored in the array. 
8: end for 
 
Through Algorithm 1, data that enter the analog input are 
converted into digital values, which are stored in a 32-element 
array. Then, those 32 elements are printed from first to last. 
The printed values are received and plotted through Algorithm 
2, executed through Python code. 
 
Algorithm 2 Receiving data from microcontroller. 
Input Printed digital value from 0 to 1023. 
Output Plotted soil moisture values. 
1: for k = 1 to 32 do 
2:  Convert digital value to soil moisture percentage. 
3: end for 
4: plot values 
 
This code receives and splits the array sent by the 
microcontroller into 32 values, then each one of these 
quantities is multiplied by (100/1023) and subtracted from 100 
to process each value in the range of 0 to 1023 into a moisture 
percentage from 0% to 100%, where 100% is the maximum 
moisture and 0% is the minimum moisture. Fig. 5 shows the 
plot created through Algorithm 2. Such plot shows normal 
moisture levels measured right after a moderate watering of the 
plant. 

 

Computer MCU 
Proportional valve 

Red LED 

Green LED 

Soil moisture 
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Fig. 5. Plot of 32 soil moisture percentages obtained from an array. 

 
Additionally, and aiming to assess the behavior of the 

sensor, Euclidean distances of the Haar DWTs were calculated 
and plotted for 10 1D 8-element arrays. Algorithm 3 
summarizes the procedure that allowed the obtention of these 
distances. This procedure generates a pattern 1D wavelet and a 
set of additional wavelets of the same dimension.  

 
Algorithm 3 Calculation of Euclidean distances between 
DWTs 
Input Soil moisture percentage 
Output Euclidean distance between pattern and calculated 
wavelets 
1: for k = 1 to 8 do 
2: A soil moisture value is stored in an 8-element array. 
3: end for 
4: Approximation and detail coefficients are calculated for 
    pattern wavelet. 
5: for k = 1 to 10 do   
6:  for k = 1 to 8 do 
7: A soil moisture value is stored in an 8-

element array. 
8:  end for 
9:  Approximation and detail coefficients are calculated 

for wavelet. 
10: Euclidean distance between pattern and current 

wavelet is calculated. 
11: Euclidean distance is printed. 
12: end for 
 

Fig. 6 shows the plot of the 10 Euclidean distances obtained 
through Algorithm 3. As seen in this plot, all the values are 
within the range given by x̅ ± 3σ (red lines), also called 
control limits. This result indicates the sensor is properly 
measuring stable values of moisture, which is displayed with 
the activation of a green LED diode. However, if the results 
are outside these control limits, a red LED diode is activated, 
and the valve that waters the plant will close to allow the 
replacement or repairment of the sensor. These actions are 
summarized in Algorithm 4. 

 

Algorithm 4 Sensor element activation 
Input Euclidean distance between wavelets 
Output Signal to activate led and modify valve closing 
1: if x̅ - 3σ < Euclidean distance < x̅ + 3σ 
2:  turn green LED on 
3: else if Euclidean distance > x̅ + 3σ or  
    Euclidean distance > x̅ - 3σ 
4:  turn red LED on 
5: close valve 
6: end if 
 

 

Fig. 6. Plot of 10 Euclidean distances. 

The figure shows that all the values of these recent 
measurements are within the three-sigma limits from the 
mean, indicating a small distance between each value and the 
mean, hence a correct functioning of the sensor.   

Once the normal behavior has been detected, the next step is 
to tamper with the sensor to verify if the method is capable of 
detecting the issue. Fig. 7 shows the comparison between 
normal and abnormal data. The abnormality was created by 
adding a variable resistance to the sensor and moving it 
around to simulate a variety of possible errors. 

 

Fig. 7. Comparison between normal and abnormal behavior. 

V. CONCLUSIONS AND FUTURE WORK 

As seen in this experience, it is possible to constantly track 
the behavior of a soil moisture sensor through the use of DWT 
and Euclidean distances. By monitoring the proper functioning 
of this device, it becomes possible to constantly cater to the 
moisture requirements of a plant as per the latest botany 
research, ultimately resulting in healthy growth. 
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In general, the implementation of the DWT in an embedded 
system can be highly beneficial in the monitoring of its sensory 
components. In broader scenarios such as large-scale 
cultivation and care of green areas, in which hundreds and even 
thousands of sensors are working simultaneously, this is a fast 
and economical alternative to make sure devices are working 
as expected. 

Further research is the consideration of multiple variables 
in the sensing process, implying the activity of more sensors 
and the necessity of monitoring a broader scope of devices. In 
fact, besides soil moisture, light, nutrients, and temperature are 
highly relevant in the development of these living organisms, 
then sensors of these variables should receive a similar 
treatment. An area of future research is also the application of 
more complex forms of both discrete and continuous wavelet 
transform, which will probably provide more accurate 
information regarding the functioning of the sensors. 
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