
Interpreting Restricted Boltzmann Machines From Optics Theory
Perspectives*

Ping Guo1

Abstract— Currently, lack of interpretability (or explainabil-
ity) is one of the major drawbacks for artificial intelligence (AI)
models. When we intend to build a physical artificial intelligence
(PAI) systems, the model interpretability (MI) becomes a crucial
problem. To tackle MI problem, we give the explanation
of restricted Boltzmann machines (RBM) from optics theory
perspectives in this work. Furthermore, we present a discussion
about how to implement optical learning neural network with
our developed Optics Theory and Design Methods – OTDMs.
With OTDMs, we can better understand the principle behind
the good performance of deep neural networks. OTDMs not
only give us an alternative explanation of RBM with optics
theories, but also provide the guidance on designing a reliable
PAI system also. Consequently, OTDMs pave the road to PAI
systems, and make it to become possible for realizing all-optical
learning neural network.

I. INTRODUCTION

Currently, in the research field of artificial general in-
telligence (AGI) generative pre-trained transformer (GPT)
model has attracted many researchers’ attention. While the
fundamental backbone of GPT is deep neural networks
(DNNs), which is studied extensively in past decade[1][2].
As the focus domain research of artificial intelligence (AI),
deep learning has progressed very rapidly and with many
successful applications. With an increase in deep learning-
based methods, interpretability (or explainability) of the AI
systems has recently become one of problems that most
scientists concerned.

Why is such a problem arising? using other words, why do
we need an eXplainable Artificial Intelligence (XAI)? The
reason is that in some high-stakes decision making areas such
as medical diagnosis, financial market, we should know how
the decision is made, is it reliable, trusted or responsible?
So before we trust AI, we first need to understand how
AI learns and makes decision [3]. We know that currently
highly successful AI models existed are usually applied in
a black box manner, no information is provided about what
exactly makes them how do such predictions. That is, a major
drawback of AI models is lack of transparency. It is expected
that AI models can be enable full transparency, and why each
decision is the right one morally, socially and financially with
XAI [4]. Most scientists also believe that XAI is no doubt
the next step for AI, it will improve trust, confidence and
transparency.

Because interpretability on its own is a broad, poorly
defined concept, why an interpretation is requested and how
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it is delivered may differ depending on users. In data science
and applied statistics, to interpret data means to extract
information [5], a set of methods may refer to designing
an initial experiment, or visualizing final results. Instead of
general interpretability, Murdoch et al focus on the use of
interpretations to produce insight from AI models as part
of the larger data science life cycle [5]. They define XAI
as the extraction of relevant knowledge from an AI model
concerning relationships either contained in data or learned
by the model. They think that these insights are used to guide
communication, actions, and discovery.

We believe that XAI is a very important aspect, especially
for the physical artificial intelligence (PAI) [6]. We intend
to build the Synergetic Learning Systems (SLS)[7], which is
a kind of PAI systems. In order to provide the PAI systems
design and realization methods, we will focus on AI model
interpretability problem. To understand model work principle
can help us to arise the model interpretability. With strong
model interpretability, we can better understand the principle
behind the good performance of DNNs, and guide us to
design a better PAI system.

As we known, deep belief network (DBN) is a generative
graphical model[8]. DBNs can be regarded as a composition
of simple networks such as autoencoders [9] or restricted
Boltzmann machines (RBMs) [1]. RBM is also explained
as an undirected, generative energy-based model and no
connections within layers. RBM can be considered as the
basic building block for DBN, and we regard it as one of
the simplest SLSs also [7][10]. RBM is rooted from statis-
tical physics, in the previous work, we explain the neural
network model with statistical physics approach [11]. While
in this work, we mainly focus on the deep learning based
model interpretability, and take the RBM as an example
to demonstrate how RBM is interpreted from optics theory
perspectives. In addition, we also present to implement RBM
with Optics Techniques as well as Design Methods of optical
learning neural networks, named as OTDMs. With alternative
perspective and OTDMs, it can help us to design a PAI
system, more specific, an optical learning neural network
(OLNN) system. And based on the optics theory for an
OLNN system with which the RBM is possible implemented
with optical hardware, it is no doubt the performance of PAI
systems can be speeded up greatly.

II. BACKGROUND

A. Brief Review of RBM

Initial, RBMs are a variant of Boltzmann machines, their
neurons must form a bipartite graph. And RBMs are also
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considered as a special case of Boltzmann machines and
Markov random fields, their graphical model corresponds to
that of factor analysis [12].

The energy function of RBM has the same form with
Boltzmann Machine, it is analogous to that of a Hopfield
network (also Ising model). The energy function in matrix
notation is,

E(v,h) = −aTv − bTh− vTWh. (1)

For the visible and hidden vectors v and h, the joint
probability distribution is defined in terms of the energy
function,

P (v,h) =
1

Z
e−E(v,h), (2)

where Z is defined as the sum of e−E(v,h) over all possible
configurations, it is a normalizing constant called a partition
function in statistical physics. The sum of P (v,h) over
all possible hidden layer configurations gives the marginal
probability of a visible vector,

P (v) =
1

Z

∑
{h}

e−E(v,h), (3)

and vice versa.
1) Discrete Value RBM: Since the underlying graph struc-

ture of the RBM is bipartite, for m visible units and n hidden
units, the conditional probability of a configuration of the
visible units v, given a configuration of the hidden units h,
is

P (v|h) =
m∏
i=1

P (vi|h). (4)

Conversely, the conditional probability of h given v is

P (h|v) =
n∏

j=1

P (hj |v). (5)

RBM can be assumed as not only Gaussian visible and
Bernoulli hidden units distribution, but also as Gaussian
visible and Gaussian hidden units distribution [13].

2) Gaussian–Gaussian RBM: The probability distribu-
tion of a Gaussian–Gaussian RBM is defined as follows [14]:

p(v,h) = exp

−
M∑
i=1

(hi − ci)
2

2s2i
−

N∑
j=1

(vj − bj)
2

2σ2
j

+
∑
i,j

Wij
hi
si

vj
σj

− ψ

 , (6)

where both hidden hi and visible vj take continuous values
and obey Gaussian distributions characterized by variances
s2i (i = 1, . . . ,M) and σ2

j (j = 1, . . . , N).

B. RBM Learning Algorithms
1) CD-k algorithm: Firstly, let us recall the classical

algorithm for RBM Learning. In the training RBM research
direction, the well known algorithm is the standard con-
trastive divergence (CD) algorithm proposed by Hinton et
al[14][15].

RBM is also considered as an energy based neural network
model, the CD− k algorithm (k is the number of iteration),
a stochastic learning algorithm, is used to train RBM.
CD − k algorithm not only can be applied to above

Gaussian visible and Bernoulli hidden units, but also to
Gaussian visible and Gaussian hidden units distribution [13].

2) Maximum Likelihood Estimate: The maximum likeli-
hood (ML) estimate of W is derived by minimizing the Kull-
back–Leibler (KL) divergence between the input distribution
and the model distribution[15]. In Gaussian–Gaussian RBM,
the ML Estimate becomes [13]:

τ
dW

dt
= WΣ−1CΣ−1 −W(IN −WTW)−1, (7)

where τ is a learning constant.
For continuous value neurons cases, the learning algo-

rithms are non-linear differential equations of the weight
matrix W and are difficult to solve analytically. When we
assume that the variances of the visible and hidden units are
homogeneous, and by setting dW/dt = 0 in the Eq. (7), the
equation of the equilibrium state can be obtained,

WC = σ2W(IN −WTW)−1. (8)

In [16], Decelle et al proposed to train RBM by the
singular value decomposition (SVD) spectrum of the weight
matrix W byW = UAV, where U is an M×M orthogonal
matrix, A is an M × N diagonal matrix, and V is an
N×N orthogonal matrix. This allows to write a deterministic
learning equation leaving aside the fluctuations of RBM
learning.

RBMs can be reinterpreted as deterministic feed-forward
neural networks also [17], then can be further trained by
standard supervised learning algorithms.

3) TAP Algorithm: Training RBMs via the Thouless-
Anderson-Palmer (TAP) free energy was proposed by Gabrié
et al in 2015 [18].

TAP Algorithm is a deterministic learning algorithm for
non-parametric learning of lifted RBMs, and adopts the
gradient ascent update to approximate weight W with de-
terministic iteration.

C. Neural Partial Differential Equations
We intend to interpret the RBM by constructing a thin film

cavity model, and the mathematics of the model is reviewed
as follows.

In previous work, based on the first principle of AI [19],
we proposed neural partial differential equations (NPDE)
under quasi-linear approximation[20]:

∂Ψ

∂t
= OLΨ, where (9)

OLΨ = ∇ · (A(Ψ)∇Ψ) +B(Ψ)∇Ψ+ C(Ψ).
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Where Ψ is used to stand for a system state, OL is an
elliptic operator, and ∇ is the nabla operator.

In wave optics, complex wave function has the form:

Ψ(r, t) = A(r) exp[iφ(r)] exp(i2πνt), (10)

where i is imaginary index. Under slowly varying envelope
approximation (SVEA), A(r) is adopted to express a com-
plex amplitude,

Ψ(r) = A(r) exp(ikz). (11)

A PDE for the complex envelope A(r) is

∇2
TA− i2k

∂A

∂z
= 0, (12)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian

operator. This is the SVEA of the Helmholtz equation. It
is simply called paraxial Helmholtz equation [21]. It bears
some similarity to the Schrödinger equation of quantum
physics. This equation is a hyperbolic PDE, which also
related heat equation by Wick rotation.

When using the finite differential method (along with finite
elements method) to discretize above PDEs, we can the
energy configuration of the RBM [20].

From above, we can see that current RBM learning
algorithms only are suitable for computer implementation.
In this work, we intend to provide the interpretation about
RBM from optics theory perspective, which may benefit the
implementation of the optical neural network – a specific
class of the PAI systems. Following we discuss the basic
optical element – thin-film filter.

III. INTERPRETING RBM FROM OPTICS THEORY
RESPECTIVE

Our proposed model can be explained as a cavity-like
model, which consists of layered thin-film filters.

A. Thin-film optics

In Fig. (1), we model the system as wave transmitting
through a nonlinear dispersive medium with electric permit-
tivity κi. The following notations are used for our Fabry-
Perot (FP) cavity model. The φ+

i and φ−
i stand for forward

and backward wave amplitude at layer i, respectively. This
configuration is of a FP optical cavity (also called multiple
beam interference filter) type, and input/output layers are
equivalent to mirrors.

A wave function with harmonic time dependence is used
to represent a monochromatic wave.

An optical wave is described mathematically by a real
function of time t and position r = (x, y, z), u(r, t) is known
as the wave function.

u(r, t) = φ(r)cos[2πνt+ ψ(r)],

where φ(r) is amplitude, ψ(r) is phase, and ν is frequency.
The optical intensity I(r, t), is proportional to the average

of the squared wave function

I(r, t) = 2
〈
u2(r, t)

〉
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Fig. 1: A schematic diagram for wave propagation in a cavity
notations. Fabry-Perot resonator type structure is designed,
(i− 1)th and (i+ 1)th layers are equivalent to two mirrors,
respectively.

The ⟨·⟩ means average.
Complex wave function has the form:

φ(r, t) = U(r) exp[iψ(r)] exp(i2πνt), (13)

so that

u(r, t) = Re{φ(r, t)} =
1

2
[φ(r, t) + φ∗(r, t)] (14)

The wave is expressed as complex amplitude the time-
independent factor φ(r) = U(r) exp[iψ(r)] referred to as
the complex amplitude of the wave.

When wave propagates along z direction passing through
the medium, the phase change δi is

δi = (2π/λ)Ni∆z, (15)

where Ni is the ith layer complex refractive index, κi = N2
i .

Ni = ni + ifi, ni is the real part of the refractive index,
fi is the extinction coefficient, with fi = λαi/(4πni). αi is
absorption coefficient, and λ stands for wavelength.

We use k to express the wave number, k = 2π/λ, ti and
ri stands for transmittance and reflectance coefficient at two
media interface, respectively.

ti =
2ni−1

ni−1 + ni
, and ri =

ni−1 − ni
ni−1 + ni

.

In our two-dimensional medium model, the optical inten-
sity is

I(x, zi) = ∥φ+
i + φ−

i ∥
2.

The amplitude of the electric field in the medium layers
can be calculated by using the following formula (a time
dependence of exp(iωt) is assumed, ω = 2πν is angle
frequency) [22]:(
φ+
i

φ−
i

)
=

1

ti+1

(
eiδi+1 ri+1e

−iδi+1

ri+1e
iδi+1 e−iδi+1

)(
φ+
i+1

φ−
i+1

)
.

(16)
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As we stated in the previous paragraph, φ+
i , φ

−
i represent

the amplitude of the electric field at point i propagating
in the positive and negative z direction respectively, δi =
(2π/λ0)Ni∆z, ∆z is the increment along the z axis. Ni is
a complex refractive index. And

E(x, zi) ∝ I(x, zi) = ∥φ+
i + φ−

i ∥
2,

is optical energy in the medium position (x, zi).
In Eqs. (16), U(r) = φ+ + φ−.

E(zi) = U(z)∗U(z) = (φ+
i + φ−

i )
∗(φ+

i + φ−
i )

= (φ+
i )

∗(φ+
i ) + (φ+

i )
∗(φ−

i )

+ (φ−
i )

∗(φ+
i ) + (φ−

i )
∗(φ−

i ) (17)

After some mathematics work, we can write energy as

E(zi) =

(
ri + 1

ti+1

)2 [
(φ+

i − riφ
−
i )

2 + (riφ
+
i − φ−

i )
2 (18)

+
(
(1 + r2i )φ

+
i φ

−
i − ri

[
(φ+

i )
2 + (φ−

i )
2
])

cos(2δi+1)
]

Using small phase variance approximation,

cos(2δ) ≈ 1 + 2δ (19)

Eq. (18) can be written in the following form with Eq.(19)
approximation:

E(zi) =

(
ri + 1

ti+1

)2 ([
1− ri − 2riδi+1 + r2i

]
(φ+

i )
2

+
[
1− ri − 2riδi+1 + r2i

]
(φ−

i )
2 (20)

+
[
(1 + r2i )− 4ri + 2δi+1(1 + r2i )

]
φ+
i φ

−
i

)
We can write Eq. (20) in the form

E(zi) = aφ+
i + bφ−

i + φ+
i Wφ−

i , (21)

where

a =

(
ri + 1

ti+1

)2 [
1− ri − 2riδi+1 + r2i

]
φ+
i , (22)

b =

(
ri + 1

ti+1

)2 [
1− ri − 2riδi+1 + r2i

]
φ−
i , (23)

and

W =

(
ri + 1

ti+1

)2 [
(1 + r2i )− 4ri + 2δi+1(1 + r2i )

]
. (24)

Please note that above energy equation is derived under
plane wave condition, when we assume the medium is
nonlinear, and optical intensity (energy distribution) depends
on (x, y). Then energy in this i layer should be

Ei =

∫ [
ai(x, y)φ

+
i (x, y) + bi(x, y)φ

−
i (x, y)

+φ+
i (x, y)W (x, y)φ−

i (x, y)
]
dxdy. (25)

With two dimensional approximation, and quantifying
integral into summation, omit the subscript i we have

E =
∑
j

ajφ
+
j +

∑
k

bkφ
−
k +

∑
j,k

φ+
j Wjkφ

−
k . (26)

In the above equation, the first term is named forward
energy, the second term is named backward energy, and the
third term we call it as cross energy, it is generated by optical
wave interference.

From above, we can know that Eq. (26) has the same form
as energy expression for RBM.

Based on the classical wave optics theory, we only derive
the optical energy in the cavity have the form with that
of RBM, following we discuss the energy distribution from
quantum optics perspective.

B. The Quantum Theory of Light

In classical optics theory, as φ(r) in Eq. (13) can have any
magnitude, the field energy given by Eq. (25) can have any
positive value. However, when we suppose the field U(r, t)
satisfies the harmonic oscillator equation, its energy takes
only the discrete values if this oscillator is treated quantum
mechanically rather than classically,

E(n) =

(
n+

1

2

)
ℏω, n = 0, 1, 2, 3, . . . (27)

where ℏ is reduced Planck constant, ω is the angular fre-
quency of electromagnetic wave, and (E(0) = 1/2ℏω) is
ground-state energy.

According to the quantum theory of light [23], the the
electromagnetic radiative energy can be expressed as:

ER(n) =

(
n+

1

2

)
ℏω. (28)

Here we can see that a quantum harmonic oscillator with
each mode of the field is thus the association of the essence
of the quantum theory of the radiation field.

1) Quantization of the field energy: The probability P (n)
that the mode oscillator is thermally excited to its n-th
excited state in thermal equilibrium at temperature T , is
given by the usual Boltzmann factor,

P (n) =
exp(−E(n)/kBT )∑
n exp(−E(n)/kBT )

, (29)

where kB is Boltzmann constant.
The mean number ⟨n⟩ of photons excited in the field mode

at temperature T is therefore

⟨n⟩ = 1

exp(ℏω/kBT )− 1
.

It is assumed above mean number ⟨n⟩ is position depen-
dent, so energy distribution in our model obey Boltzmann
distribution.
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2) Fluctuations in photon number: RBM is considered as
a generative stochastic neural network also, here we explain
the randomness of energy with photon number fluctuations
in the cavity.

The fluctuations of numbers of photons in each mode
of the radiation field in the cavity are caused by the oc-
currence of photon absorption and emission processes. On
a characteristic time scale the fluctuations take place, but
without any knowledge of the time scales involved, some
average properties of the fluctuations can be deduced. The
characteristic time scale of the fluctuations must clearly be
much shorter than the period over which the time average is
taken. The cavity model is regarded as a quantum well, when
photon numbers fluctuate over a certain threshold value,
the “switch” of cavity border will open (optical bistability
element) and photons will escape from the quantum well.
This can be explained at this position, “neuron” is active as
that in RBM. When photon numbers fluctuate below a certain
threshold value, photons still trap in quantum well, this state
is explained as “neuron” is inactive as that in RBM.

When make use of the ergodic property of the fluctuations
in thermal light [24], we have the probability P (n)

P (n) =
⟨n⟩n

(1 + ⟨n⟩)1+n
. (30)

It is known that photons are Gauge Bosons, while in quan-
tum statistics, Bosons are non-interacting, indistinguishable
particles, obeying Bose-Einstein statistics. In the limit of high
temperature, the Bose - Einstein distribution approaches the
Maxwell - Boltzmann distribution.

In a canonical ensemble, for any state s of the system, the
Maxwell - Boltzmann distribution can be expressed as

P (s) =
1

Z
e−E(s)/kT , and Z =

∑
s

e−E(s)/kT , (31)

where the index s runs through all micro-states of the system.
The Eq. (3) has the same form with that of Eqs. (29)

and (31), in fact, the name of RBM is from Boltzmann
distribution in statistical physics.

Here we present the explanation of RBM from optics the-
ory perspectives, this pave the way to realize optical learning
neural networks. However, to implement all optical learning
neural network is very hard task because of restriction of
off-the shelf optical devices. Next section we will present
our consideration about optical learning RBM.

IV. ELUCIDATE THE DESIGN OF OLNN

An optical neural network (ONN) is a physical imple-
mentation of an artificial neural network (ANN) with optical
components. Early ONN used a photorefractive Volume
hologram to interconnect arrays of input neurons to arrays
of output, while the synaptic weights are in proportion to the
multiplexed hologram’s strength.

All-optical deep neural network is very promising for
PAI systems, it may find applications in all-optical image
analysis, feature detection, and object classification. From

the literature, we know that some ANN that have been
implemented as optical neural networks, for example, Ko-
honen self-organizing map with liquid crystal spatial light
modulators[25]. Recently, the deep diffractive optical neural
network (D2NN) has been implemented by Lin et al [26].
In their report, all-optical deep learning framework can
perform, at the speed of light, various complex functions
that computer-based neural networks can execute. They also
admire that the inference and prediction mechanism of
the physical network is all optical, but the learning part
that leads to its design is done through a computer. They
implemented D2NN design using TensorFlow framework.
And TensorFlow based design of a D2NN architecture took
approximately 8 hours and 10 hours to train for the classifier
and the lens networks, respectively [26].

From the fact described above, it is known that all-optical
learning network is very hard to be implemented. How to
realize an OLNN all-optical is a very challengeable work,
following we will present our consideration.

A. Design of OLNN
By analyzing popular learning algorithms for RBMs, we

can know that to implement optical RBM with traditional
optical components is very difficult, and ideally requires
advanced photonic materials.

With our theory and model, the bias and weights are
formed with optical wave interference and diffraction, this
gives us a quite different viewpoint for RBM learning. By
analyzing Eqs. (22) and (23) for bias, while weights is
expressed with Eq. (24), we can implement OLNN with
proposed FP resonator cavity model.

When input field vector is encoded with a spatial light
modulator (SLM) [27], we obtain input φ+

i , which carry
on information of visible vector v. When light incite into
FP resonator, the diffraction and interference occurred of
optical wave. The output layer plays a role of mirror, which
will reflect the optical wave back to generate backward field
vector φ−

i (proportional to hidden vector h). At initial stage
optical energy distribution is unstable, photons will oscillate
in FP resonator, this is considered as learning processing.
Finally, photons in FP resonator will approach a steady state
of distribution with time elapsed. As long as FP resonator
output approach a stead state (it is similar with Laser output),
the learning processing is finished. In this time, volume
hologram materials filled in the cavity should be used to
record bias and wights information.

Following we will present the optical components needed
to implement OLNN, while details of optical circuit design
for OLNN will presented in another paper.

B. Optical Components
1) Multi-layers thin-film interference filters: The main

optical component for OLNN we considered is FP resonator,
which may be fabricated by designing a multi-layers thin-
film interference filter (MLTFIF).

If we replace mirrors with FP resonators, which is equiv-
alent to a sigmoid type activation function. With this con-
figuration, the functions of RBM learning can be realized.
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Furthermore, if we intend to implement DBN, (stacked
RBMs), multi-cavity systems may be a candidate. However,
multi-cavity systems have very complicated input-output
characteristic, even for a nonlinear three-mirror FP multi-
stability element [28], inverse design should be utilized for
OLNN.

2) Spatial Light modulators: In optical computing, SLMs
have been become most used component, since it is an object
that can make some form of spatially varying modulation on
a beam of light [27]. We can use SLMs to generate input
vectors of an OLNN, and/or used at inference stage of ONN
as part of

3) Volume Hologram: Volume holograms can be used for
recording OLNN parameters. In the case diffraction of light
from the hologram is possible only as Bragg diffraction,
after learnt, D2NN/OLNN can performance inference or
prediction by diffraction of light through the hologram.

4) Random Phase Plates: Random phase plates (RPP)
[29][30] can be utilized to generate random phase when
optical wave φ−

i is reflected from output mirror. They are not
necessary for deterministic learning of OLNN, however, if
we intend to realize stochastic learning procedure, RPPs can
be placed in front of hidden layer mirror to make that OLNN
with a random learning configuration becomes possible.

V. SUMMARY

In this work, we interpret the RBM from optics theories,
which is an alternative perspective relative to statistical
physics perspective. The energy distribution in FP cavity
is derived, and relationship connecting with RBM is es-
tablished. Based on our derived bias and weights formula
of RBM, we designed a FP filter configuration, which can
provide learning process and make the implementation of
optical learning neural network all-optical become possible.
In addition, off-the-shelf optical components for constructing
an OLNN are presented.

In the future research work, we will develop OTDMs
further, especially the Laser resonator theory by solving
paraxial Helmholtz equation. And we will investigate inverse
design method for materials engineering, explore OLNN
implementation for practical applications in image analysis,
feature detection, and object classification.
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