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Abstract—This paper proposes refrigerated showcase fault 

detection by an autoencoder with coin betting and Maximum 

Correntropy Criterion (MCC). In actual situations, showcase 

data may include outliers which are incorrectly stored data. 

Radio frequency interference or incorrect sensor setting cause 

the outliers. When the outliers are included in learning data, the 

conventional autoencoders using least square error (LSE) may 

be influenced by the outliers. On the other hand, even when the 

outliers are included in learning data, autoencoders using MCC 

can reduce influence from the outliers. Moreover, the 

conventional artificial neural networks utilize various learning 

algorithms such as stochastic gradient descent with momentum 

(SGDM), adaptive moment estimation (Adam), adaptive 

gradient algorithm (AdaGrad). These methods have 

hyperparameters related to a learning rate. Since the 

hyperparameters affect learning strongly, it is required to tune 

the hyperparameters appropriately and the tuning requires 

engineering costs. On the other hand, coin betting can 

automatically tune a learning rate appropriately while learning. 

Therefore, the coin betting is expected to reduce the engineering 

costs for parameter tuning. Practicability of the proposed 

method is verified by comparison with an autoencoder with 

SGD and LSE, an autoencoder with SGDM and MCC, an 

autoencoder with Adam and MCC, and an autoencoder with 

AdaGrad and MCC. The results are verified by the Friedman 

test, a post hoc test using the Wilcoxson signed-rank sum test 

with the Holm correction, and parameter sensitivity analysis. 

Keywords— refrigerated showcase, fault detection, 

hyperparameter tuning, coin betting, outlier treatment, Maximum 

Correntropy Criterion 

I. INTRODUCTION  

In convenience stores and supermarkets, refrigerated 
showcases are utilized to keep food and drinks fresh and 
display them. Circulating cooled air keeps the refrigerated 
showcases cool. In the refrigerated showcases, faults such as 
refrigerant leakage and frost formation may occur. The faults 
may cause the refrigerated showcases to be unable to be cool 
and deterioration of food quality. The food whose quality has 
deteriorated must be discarded. Consequently, by the faults, 
sales opportunities may be lost. Therefore, for supporting 
customer service, detection of the refrigerated showcase faults 
with high accuracy is necessary.  

Fig. 1 shows an example of a supposed showcase fault 
detection system. The system has three processes. In the first 
process, showcase data are gathered in a data center. In the  
second process, fault detection models are constructed offline 
in the data center using the gathered showcase data. In the 

third process, showcase conditions are estimated online using 
the fault detection models in the data center.  In this estimation,  
online showcase data are utilized. If this system is put to 
practical use, faults occurring in the refrigerated showcases 
around the world can be detected online. 

Satisfaction of five requirements except detecting the 
refrigerated showcase faults with high accuracy is necessary 
for detecting the refrigerated showcase faults practically. The 
requirement one is to be able to construct a fault detection 
model using only refrigerated showcase data without any 
specialist knowledge. In the world, huge number of the 
refrigerated showcases are utilized in various places such as 
supermarkets and convenience stores. The refrigerated 
showcases have different characteristics in response to places 
where they are utilized. Therefore, adjustment of  the fault 
detection method for each refrigerated showcase by specialists 
is not practical. The requirement two is to be able to construct 
a fault detection model treating nonlinear correlation data 
because nonlinear correlation data are included in refrigerated 
showcase data [1]. The requirement three is to be able to 
construct a fault detection model even when the refrigerated 
showcase data include outliers. The outliers are data storing 
values differing from actual values. The outliers may be 
included in the refrigerated showcase data by various reasons 
such as radio frequency interference and incorrect sensor 
setting. The outlies affect fault detection accuracy. Therefore, 
for detection of the refrigerated showcase faults with high 
accuracy, elimination of the outliers in advance is required. 
However, for elimination of the outliers, huge engineering 
costs are required. The requirement four is to be able to a 
construct fault detection model using only normal refrigerated 
showcase data. The refrigerated showcase faults rarely occur. 
Therefore, it is difficult to obtain enough fault data of the 
refrigerated showcases. It is also difficult to utilize fault data 
of the refrigerated showcases for learning. The requirement 
five is to be able to tune hyperparameters easily. In machine 
learning, the hyperparameters affect fault detection accuracy 
strongly. Therefore, they are required to tune appropriately in 
advance and the tuning may require huge engineering costs.  

 
Fig. 1 An example of a supposed showcase fault detection system. 
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Conventionally, fault detection methods of the refrigerated 
showcases and air conditioning equipment are categorized 
into physical model based methods [2,3], classical artificial 
intelligence based methods [4,5], and machine learning based 
methods [6,7]. The fault detection methods using the physical 
model and the classical artificial intelligence require specialist 
knowledge and adjustment of the fault detection method for 
the refrigerated showcases at each store. Therefore, the 
requirement one is not satisfied by these methods. The 
conventional machine learning based fault detection methods 
require normally measured data not including the outliers. 
Therefore, the requirement three is not satisfied by these 
methods. Consequently, the conventional fault detection 
methods proposed so far cannot satisfy all of the five 
requirements. 

For the refrigerated showcase fault detection, the authors 
have proposed autoencoder based methods [8,9], artificial 
neural network (ANN) with maximum correntorpy criterion 
(MCC) based methods [10-13], an ANN with the MCC and 
the adaptive kernel size tuning based method [14], and an 
autoencoder with the MCC and the adaptive kernel size tuning 
based method [15] and verified effectiveness of the methods. 
The autoencoder based methods satisfy the requirement one, 
two, and four. The ANN with the MCC based methods satisfy 
the requirement one, two, and three. The ANN with the MCC 
and the adaptive kernel size tuning based method satisfies the 
requirement one, two, three, and a part of the requirement five. 
The autoencoder with the adaptive kernel size tuning and the 
MCC based method satisfies the requirement one, two, three, 
four, and a part of the requirement five. However, the method 
has hyperparameters related to a learning rate. Therefore, the 
method does not satisfy the requirement five and requires 
engineering costs of tuning the hyperparameters related to a 
learning rate. On the other hand, coin betting was proposed in 
2017 to reduce the engineering costs to tune the 
hyperparameters related to a learning rate [16]. By applying 
the method, reducing the engineering costs of tuning the 
hyperparameters related to a learning rate can be expected.  

As a fault detection method for the refrigerated showcases 
including the outliers in measured data, this paper proposes 
refrigerated showcase fault detection by an autoencoder with 
coin betting, the MCC, and the adaptive kernel size tuning. 
The method satisfies the requirement one, two, three, and four. 
Moreover, it does not have hyperparameters related to a 
learning rate which are required to tune conventionally. 
Practicability of the proposed method is verified by 
comparison with an autoencoder with stochastic gradient 
descent (SGD) and least square error (LSE), an autoencoder 
with stochastic gradient descent with momentum (SGDM) 
and the MCC, an autoencoder with adaptive moment 
estimation (Adam) and the MCC, and an autoencoder with 
adaptive gradient algorithm (AdaGrad) and the MCC with 
refrigerated showcase actual data. The results are verified by 
the Friedman test, a post hoc test using the Wilcoxson signed-
rank sum test with the Holm correction, and parameter 
sensitivity analysis.  

II. COIN BETTING FOR LEARNING AN ARTIFICIAL NEURAL 

NETWORK 

Conventionally, various methods such as SGDM, Adam, 
and AdaGrad have been proposed for ANN learning. However, 
the methods essentially have hyperparameters related to a 
learning rate. Tuning the hyperparameters appropriately is 
required and engineering costs of the tuning are also required. 

On the other hand, F. Orabona, et. al. proposed coin betting to 
solve the challenge in 2017 [16]. The coin betting does not 
have the hyperparameters related to the learning rate. In this 
paper, for reducing the engineering costs to tune the 
hyperparameters, the coin betting is utilized for updating 
autoencoder parameters. As an example, autoencoder 
parameter update formulas in the coin betting between input 
and hidden layers are expressed with the following equations.  

𝑔𝑖𝑗(𝑡) = −
𝜕𝐿𝐹𝑑

𝑊𝑖𝑗(𝑡)
                             (𝑖 = 1, … , 𝑁𝑖 , 𝑗 = 1, … , 𝑁ℎ)  (1) 

𝐿𝑖𝑗(𝑡) = max(𝐿𝑖𝑗(𝑡 − 1), |𝑔𝑖𝑗(𝑡)|) (𝑖 = 1, … , 𝑁𝑖 , 𝑗 = 1, … , 𝑁ℎ) (2) 

𝐺𝑖𝑗(𝑡) = 𝐺𝑖𝑗(𝑡 − 1) + |𝑔𝑖𝑗(𝑡)|        (𝑖 = 1, … , 𝑁𝑖 , 𝑗 = 1, … , 𝑁ℎ) (3) 

𝑅𝑒𝑤𝑎𝑟𝑑𝑖𝑗(𝑡) = 

max (𝑅𝑒𝑤𝑎𝑟𝑑𝑖𝑗(𝑡 − 1) + (𝑊𝑖𝑗(𝑡 − 1) − 𝑊𝑖𝑗(1)) 𝑔𝑖𝑗(𝑡), 0) 

(𝑖 = 1, … , 𝑁𝑖 , 𝑗 = 1, … , 𝑁ℎ)   (4) 

𝜃𝑖𝑗(𝑡) =  𝜃𝑖𝑗(𝑡 − 1) + 𝑔𝑖𝑗(𝑡)        (𝑖 = 1, … , 𝑁𝑖 , 𝑗 = 1, … , 𝑁ℎ)   (5) 

𝑊𝑖𝑗(𝑡) = 𝑊𝑖𝑗(1) + ∆𝑊𝑖𝑗(𝑡)           (𝑖 = 1, … , 𝑁𝑖 , 𝑗 = 1, … , 𝑁ℎ)   (6) 

∆𝑊𝑖𝑗(𝑡) = 

𝜃𝑖,𝑗(𝑡)

𝐿𝑖𝑗(𝑡) max (𝐺𝑖𝑗(𝑡) + 𝐿𝑖𝑗(𝑡), 𝛼𝐿𝑖𝑗(𝑡))
(𝐿𝑖𝑗(𝑡) + 𝑅𝑒𝑤𝑎𝑟𝑑𝑖𝑗(𝑡)) 

 (𝑖 = 1, … , 𝑁𝑖 , 𝑗 = 1, … , 𝑁ℎ)(7) 
where 𝑔𝑖𝑗(𝑡)  is a negative partial gradient of 𝐿𝐹𝑑  with 

respect to 𝑊𝑖𝑗  at the 𝑡 th iteration, 𝐿𝐹𝑑  is a loss function 

value of the 𝑑 th data, 𝑊𝑖𝑗(𝑡) is a autoencoder parameter 

from the 𝑖 th input unit to the 𝑗 th hidden unit at the 𝑡 th 
iteration, 𝑁𝑖 is the number of input units, 𝑁ℎ is the number of 
hidden units, 𝐿𝑖𝑗(𝑡) is the maximum absolute value of the 

partial gradient of 𝐿𝐹𝑑  with respect to 𝑊𝑖𝑗  up to the 𝑡 th 

iteration, 𝐺𝑖𝑗(𝑡) is the sum of absolute values of the partial 

gradients of 𝐿𝐹𝑑 with respect to 𝑊𝑖𝑗 up to the 𝑡th iteration, 
𝑅𝑒𝑤𝑎𝑟𝑑𝑖𝑗(𝑡) is corresponding to gambler’s wealth at the 

𝑡th iteration [16], 𝜃𝑖𝑗(𝑡) is the sum of the gradients with 

respect to 𝑊𝑖𝑗 up to the 𝑡th iteration, ∆𝑊𝑖𝑗(𝑡) is an update 

value of 𝑊𝑖𝑗(𝑡) , 𝛼  is a constant value in order to limit 

autoencoder parameters at early iterations. 

Autoencoder parameter update formulas in the coin 
betting between hidden and output layers are expressed using 
almost the same equations. The coin betting is a method based 
on the optimal betting strategy of gamblers betting on coin flip 
repeatedly. The betting strategy changes a rate of betting 
money in possession for each coin flip. The rates are increased 
as long as each coin flip result is the same side of the coin. On 
the other hand, the rates are decreased in case of a coin flip 
result differing from the last result. Using the strategy, the 
betting money in each coin flip is tuned automatically. In case 
of using the coin betting for updating autoencoder parameters, 
results of the coin flip are linked to gradients of loss function. 
In fact, in case of updating the autoencoder parameters based 
on the coin betting, signs of the gradients are focused on each 
iteration. Update rates of the autoencoder parameters are 
increased as long as signs of the gradients are the same as the 
last sign of the gradients. On the other hand, update rates of 
the autoencoder parameters are decreased in case of signs of 
the gradients differing from the last sign of the gradients. 
Autoencoder parameters are updated based on the strategy. 
Therefore, in the coin betting, ∆𝑊  in (6) can be tuned 
automatically during learning without using hyperparameters 
related to a learning rate. 
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Fig. 2 shows an example of minimizing a function 𝑦 =

|𝑥 − 10| using the coin betting. 𝑥 starts from zero and update 

rates of 𝑥 are increased until the sign of the gradient differs 

from the last sign of the gradient. In the figure, the update rate 

of 𝑥 at the third update is increased because the signs of the 

first and the second gradients are the same. Similarly, the 

update rates of 𝑥 at the fourth and fifth update are increased. 

On the other hand, the update rate of 𝑥 at the sixth update is 

decreased because the signs of the fourth and fifth gradients 

are different. In this way, the update rates can be tuned 

automatically during learning. Learning algorithm by an 

autoencoder with coin betting is shown below. In the 

algorithm, 𝐷 is the number of data and 𝑇𝑚𝑎𝑥  is the maximum 

iteration number. 

Step.1 Create initial autoencoder parameters with uniform 

random numbers. Learning data number 𝑑 = 1 . 

Iteration number 𝑡 = 1. 

Step.2 Calculate a loss function value for the 𝑑th learning 

data. 

Step.3 Update autoencoder parameters using (1) to (7). 

Step.4 If 𝑑 = 𝐷 , go to Step.5. Otherwise, 𝑑 = 𝑑 + 1 and 

return to Step.2.  

Step. 5 If 𝑡 = 𝑇𝑚𝑎𝑥 , go to Step.6. Otherwise, 𝑡 = 𝑡 + 1 , 

𝑑 = 1 and return to Step.2.  

Step. 6 Output an autoencoder model. 

III. FUALT DETECTION BY AN AUTOENCODER WITH COIN 

BETTING AND MAXIMUM CORRENTOROPY CRITERION 

A. Maximum Correntorpyp Criterion 

For conventional autoencoders, least square error (LSE) 
has been usually utilized as a loss function for learning. The 
LSE in autoencoders is expressed with the following equation: 

min 𝐿𝐹𝑑 =
1

𝑈
∑(𝑖𝑑𝑢 − 𝑜𝑑𝑢)2

𝑈

𝑢=1

    (𝑑 = 1, … , 𝐷)               (8) 

where 𝑈 is the number of units in input and output layers, 
𝑖𝑑𝑢 is an input value of the 𝑢th input unit in the 𝑑th data, 
𝑜𝑑𝑢 is an output value of the 𝑢th output unit in the 𝑑th data. 

Fig. 3 shows an example of the loss function by the LSE. 
For learning, the LSE utilizes a whole error range. The larger 
error values become, the larger loss function values become 
using the LSE. The LSE minimize the sum of square errors 
between input and output values of the autoencoder. Therefore, 
the autoencoder using the LSE focuses to make large errors 
smaller. In actual store data, the outliers may be included in 

the refrigerated showcase data. In case of including the 
outliers in learning data, errors for the outliers become large. 
Therefore, the large errors are focused and reduced by 
learning in the autoencoder using the LSE. This may cause to 
decrease fault detection accuracy. In order to tackle the 
challenge, W. Liu, et al. proposed the MCC in 2006 [17]. The 
MCC in autoencoders is expressed with the following 
equation: 

max 𝐿𝐹𝑑 =
1

𝑈
∑

1

√2𝜋𝜎2
exp (−

(𝑖𝑑𝑢 − 𝑜𝑑𝑢)2

2𝜎2 )

𝑈

𝑢=1

              

(𝑑 = 1, … , D)        (9) 

where 𝜎 is a kernel size. 

The MCC utilizes a limited error range for learning using 
a Gaussian kernel function. Fig. 4 shows an example of the 
loss function by the MCC. When error values become large, 
loss function values become close to zero by the MCC. 
Therefore, the autoencoder using the MCC can learn without 
affection by the outliers. As shown in Fig. 4, only data with 
errors within plus or minus three are utilized for learning and 
data with errors greater than plus or minus three are ignored 
and not utilized for learning. As described before, in case of 
including the outliers in learning data, errors of the outliers 
become large. Therefore, the large errors are ignored for 
learning in the autoencoder using the MCC. 

Fig. 5 shows decision boundaries at learning and test 
stages by autoencoders using the LSE and the MCC when the 
outliers are included in learning data. The autoencoder using 
the LSE focuses the outliers which have large errors and learns 
to reduce the errors. Therefore, the autoencoder using the LSE 
learn to fit not only normal measured data but also the outliers 
which have large errors. This may cause an incorrect decision 
boundary for fault detection of the refrigerated showcases. 
Consequently, in case of including the outliers in learning data, 
the refrigerated showcase faults cannot be detected with high 
accuracy for test data by the autoencoder using the LSE 
(Fig.5(a)). On the other hand, the autoencoder using the MCC 
utilized a limited error range. Therefore, even in case of 
including the outliers in learning data, the autoencoders can 
learn without affection by the outliers which have large errors. 
This may cause a correct decision boundary for fault detection 
of the refrigerated showcases. Consequently, even in case of 
including the outliers in learning data, the refrigerated 
showcase faults can be detected with high accuracy for test 
data by the autoencoders using the MCC (Fig.5(b)). 

 
Fig.3 An example of the loss function by the LSE. 

 
Fig. 4 An example of the loss function by the MCC. 
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Fig. 2 An example of minimizing a function 𝑦 = |𝑥 − 10| using the coin 
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B. An Algorithn of the Proposed Method 

For the refrigerated showcases, an algorithm for 

generating a fault detection model by an autoencoder with 

coin betting, the MCC, and the adaptive kernel size tuning is 

shown below. In the algorithm, the adaptive kernel size 

tuning method can be found in [15].  

Step.1 Create initial autoencoder parameters with uniform 

random numbers. Set an initial 𝜎. 𝑑 = 1. 𝑡 = 1. 

Step.2 Calculate a loss function value for the 𝑑th learning 

data using (9). 

Step.3 Update autoencoder parameters using (1) to (7). 

Step.4 If 𝑑 = 𝐷 , go to Step.5. Otherwise, 𝑑 = 𝑑 + 1 and 

return to Step.2. 

Step.5 Update the kernel size in (9) using the following 

equations [15]: 

𝜎(𝑡) =
𝐸𝑜𝑟𝑑𝑒𝑟(𝐷𝑂𝑁(𝑡))

2√2
                                        (10) 

𝐷𝑂𝑁(𝑡) = 𝑟𝑜𝑢𝑛𝑑𝑢𝑝(𝑅(𝑡) × 𝐷)                          (11) 

𝑅(𝑡) =
 𝑅𝑚𝑎𝑥

 𝑇𝑚𝑎𝑥

× 𝑡                                                     (12) 

 where 𝜎(𝑡)  is the kernel size at the 𝑡 th iteration, 

𝐸𝑜𝑟𝑑𝑒𝑟(𝑎) is the 𝑎th absolute error of learning data 

between input and output values in a descending 

order vector, 𝐷𝑂𝑁(𝑡) is a descending order number 

of the 𝐸𝑜𝑟𝑑𝑒𝑟(𝑎) at the 𝑡th iteration, 𝑟𝑜𝑢𝑛𝑑𝑢𝑝(𝑟) is 

a function to round up a real number 𝑟 to an integer, 

𝑅(𝑡) is a rate of a top percentage of errors to be 

utilized to tune the kernel size at the 𝑡th iteration, 

𝑅𝑚𝑎𝑥 is the final rate of the top percentage of errors 

to be utilized to tune the kernel size. 

Step.6 If 𝑡 = 𝑇𝑚𝑎𝑥 , go to Step.7. Otherwise, 𝑡 = 𝑡 + 1 , 

𝑑 = 1 and return to Step.2. 

Step.7 Output an autoencoder model and check test data 

whether a fault occurs at the refrigerated showcase 

or not using the model. 

IV. SIMULATION 

A. Simulation Conditions 

The proposed autoencoder with coin betting and MCC (the 
proposed method), an autoencoder with SGD and LSE (the 
comparative method 1), an autoencoder with SGDM and 
MCC (the comparative method 2) [15], an autoencoder with 
Adam and MCC (the comparative method 3), and an 

autoencoder with AdaGrad and MCC (the comparative 
method 4) are applied for the refrigerated showcase fault 
detection with actual refrigerated showcase data. Fault 
detection results of the above four methods are compared. 
Simulation conditions are shown below.  

• Initial autoencoder parameters are changed 30 times. 

• 10-fold cross validation is performed. 

• The outliers are set to include 10% in learning data 
randomly (outlier rate: 10%). 

• Learning data consist of 70% of data under normal 
conditions. 

• Test data consist of all data under fault conditions and 
30% of data under normal conditions.  

• As autoencoder activation functions, sigmoid function 
are utilized. 

Hyperparameters of the proposed and comparative 
methods are shown below.  

•  Common hyperparameters of all methods: 

- The number of hidden layers : 1, The number of 
hidden layer units : 2, 𝑇𝑚𝑎𝑥  : 1000, 𝑅𝑚𝑎𝑥 : 5 (for 
0% outlier rate) and 15 (for 10% outlier rate) 

• A hyperparameter of the proposed method: 

- 𝛼 : 100 (a default value) 

• Hyperparameters of the comparative method 1: 

- 𝜂 : 0.01,  where 𝜂 is a learning rate 

• Hyperparameters of the comparative method 2: 

- 𝜂 : 0.01, 𝑐 : 0.01 

The following equations are utilized for updating 
autoencoder parameters by SGDM [15].  

𝑊𝑖𝑗(𝑡) = 𝑊𝑖𝑗(𝑡 − 1) + ∆𝑊𝑖𝑗(𝑡)                                (13) 

∆𝑊𝑖𝑗(𝑡) = 𝜂
𝜕𝐿𝐹𝑑

𝜕𝑊𝑖𝑗(𝑡 − 1)
+ 𝑐∆𝑊𝑖𝑗(𝑡 − 1)              (14) 

where ∆𝑊𝑖𝑗(𝑡)  is an update value of 𝑊𝑖𝑗  at the 𝑡 th 

iteration, 𝑐 is a momentum coefficient. 

• Hyperparameters of the comparative method 3: 

- γ : 10−4, 𝛽1 : 0.9, 𝛽2 : 0.999, ε : 10−8 

 
(a) Decision boundaries at a learning stage (left) and a test stage (right) by an autoencoder using the LSE in case of including the outliers in learning data. 

 
(b) Decision boundaries at a learning stage (left) and a test stage (right) by an autoencoder using the MCC in case of including the outliers in learning data. 

Fig. 5 Decision boundaries at a learning stage and a test stage by autoencoders using the LSE and the MCC in case of including the outliers in learning data. 
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The following equations are utilized for updating 
autoencoder parameters by Adam [18]. 

𝑊𝑖𝑗(𝑡) = 𝑊𝑖𝑗(𝑡) − γ(𝑡)
𝑚(𝑡)

(√𝑣(𝑡) + 𝜀)
                   (15) 

γ(𝑡) = γ

√1 − 𝛽2
𝑡

1 − 𝛽1
𝑡                                                      (16) 

𝑚(𝑡) = 𝛽1𝑚(𝑡) + (1 − 𝛽1)
𝜕𝐿𝐹𝑑

𝜕𝑊𝑖𝑗(𝑡)
                     (17) 

𝑣(𝑡) = 𝛽2𝑣(𝑡) + (1 − 𝛽2) (
𝜕𝐿𝐹𝑑

𝜕𝑊𝑖𝑗(𝑡 − 1)
)

2

        (18) 

where γ(𝑡) is a step size at the 𝑡th iteration, 𝑚(𝑡) is 
a biased first moment estimate at the 𝑡th iteration, 
𝑣(𝑡) is a biased second raw moment estimate at the 
𝑡th iteration, 𝛽1 is an exponential decay rate for 𝑚, 
𝛽2  is an exponential decay rate for 𝑣 , 𝜀  is a small 
positive number, γ is a step size coefficient. 

• Hyperparameters of the comparative method 4: 

- 𝜂 : 0.07, ε : 10−8 

The following equations are utilized for updating 
autoencoder parameters by AdaGrad [19]. 

𝑊𝑖𝑗(𝑡) = 𝑊𝑖𝑗(𝑡 − 1) +
𝜂

√ℎ𝑖𝑗 + ε
 

𝜕𝐿𝐹𝑑

𝜕𝑊𝑖𝑗(𝑡 − 1)
            (19) 

ℎ𝑖𝑗 = ℎ𝑖𝑗 + (
𝜕𝐿𝐹𝑑

𝜕𝑊𝑖𝑗(𝑡 − 1)
)

2

                                            (20) 

 where ℎ𝑖𝑗 is sum of squared gradients with respect to 𝑊𝑖𝑗. 

As evaluation indicators for the refrigerated showcase 
fault detection, “accuracy” and “recall” are utilized. The 
accuracy is a rate of correct detection results for all test data 
(Acc.). The recall is a rate of correct detection results for fault 
test data. In actual situations, store personnel find the 
refrigerated showcase faults lately if a specific refrigerated 
showcase is in fault conditions but the fault is undetected. This 
may cause deterioration of food quality and sales 
opportunities may be lost. Since it is important to detect the 
refrigerated showcase faults correctly as fault, the recall is 
considered more important than the accuracy. 

B. Simulation Results 

Table I shows average accuracy and recall values by the 
proposed method and comparative method 1, 2, 3 and 4, and 
p-values by the Friedman test using the comparative method 
2, 3, 4 and the proposed method. It is confirmed that the 
accuracy value by the comparative method 1 is extremely 
worse than those by other methods when learning data include 
the outliers (bold number). Therefore, since the comparative 
method 1 is affected by the outliers largely, the method using 
the LSE is not suitable for the refrigerated showcase fault 
detection that may include the outliers. It is confirmed that the 
other methods except the comparative method 1 can detect the 
refrigerated showcase faults with almost the same accuracy 
even when the outliers are included in learning data. Therefore, 
the methods using the MCC are suitable for the refrigerated 
showcase fault detection that may include the outliers. In both 
cases of including and not including the outliers in learning 
data, the recall values of the comparative method 2 are the 
highest and those of the proposed method are the second 

highest. The Friedman test is applied for revealing a 
significant difference among four suitable methods (the comp. 
2, 3, 4, and the proposed methods). As a result of the Friedman 
test, according to p-values in both cases, it is confirmed that 
there are significant differences at a significance level of 5% 
among the three suitable comparative methods using the MCC 
and the proposed method for the recall values.  

In the Friedman test, significant differences between the 
specific two methods are not clear when three or more 
methods are compared. Therefore, revealing a significant 
difference between the specific two methods, a post hoc test 
using the Wilcoxson signed-rank sum test with the Holm 
correction is applied to all combinations of the proposed 
method and the comparative method 2, 3, and 4. Table II and 
III show p-values by the post hoc test for the recall values with 
and without the outliers in learning data. As a result of the post 
hoc test, when the outliers are not included in learning data, it 
is confirmed that there are significant differences at a 
significance level of 5% between any two methods. Moreover, 
when the outliers are included in learning data, it is confirmed 
that there are significant differences between the proposed 
method and all comparative methods. Consequently, from the 
recall point of view, it is clear that recall of the comparative 
method 2 is the highest, and recall of the proposed method is 
the second highest. 

Although there are significance differences at a significant 
level of 5% between the proposed method and the 
comparative method 2, the differences of the recall values 
with and without the outliers are small (italic numbers). 
Actually, the differences of the recall values between the 
comparative method 2 and the proposed method are 4.016E-
05 without the outliers, and 4.017E-05 with the outliers. 
Moreover, the comparative method 2 has two 
hyperparameters related to a learning rate. Fig.6 shows 

TABLE I. AVERAGE ACCURACY AND RECALL VALUES BY THE THE 

PROPOSED METHOD AND COMPARATIVE METHODS 1, 2, 3, AND 4, AND P-
VALUES BY THE FRIEDMAN TEST USING THE COMPARATIVE METHOD 2, 

3, 4, AND THE PROPOSED METHOD. 

OUTLIER RATE 0[%] 10[%] 

EVALUATION [%] ACC. RECALL ACC. RECALL 

M
E

T
H

O
D

 

COMP.1 85.02 98.35 62.75 98.78 

COMP.2 84.44 99.56 86.34 99.85 

COMP. 3 86.68 99.47 85.36 99.82 

COMP. 4 86.90 99.41 84.71 99.81 

THE 

PROPOSED 

METHOD 

85.36 99.55 82.24 99.84 

P-VALUE 9.7E-19 9.1E-14 

 
TABLE II. P-VALUES BY THE POST HOC TEST FOR THE RECALL WITHOUT 

THE OUTLIERS IN LEARNING DATA (OUTLIER RATIO:0%). 

 

THE 

PROPOSED 

METHOD 
COMP. 2 COMP. 3 

COMP. 2 0.02   

COMP. 3 4.1E-07 5.1E-08  

COMP. 4 0 9.4E-15 3.0E-03 

 
TABLE III. P-VALUES BY THE POST HOC TEST FOR THE RECALL WITH 

THE OUTLIERS IN LEARNING DATA (OUTLIER RATIO:10%). 

 

THE 

PROPOSED 

METHOD 

COMP. 2 COMP. 3 

COMP. 2 8.0E-07   

COMP. 3 8.0E-10 7.0E-03  

COMP. 4 1.1E-10 1.5E-04 0.20 
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parameter sensitively analysis of the comparative method 2. It 
is confirmed that the comparative method 2 cannot detect the 
refrigerated showcase faults correctly as faults when the two 
hyperparameters are getting larger. Therefore, it is required to 
tune the hyperparameters appropriately for each showcase to 
detect the refrigerated showcase faults with high recall values 
using the comparative method 2. On the other hand, the 
proposed method has a hyperparameter 𝛼  which limits 
autoencoder parameters at early iterations. Fig.7 shows 
parameter sensitively analysis of the proposed method. It is 
confirmed that the proposed method can detect the 
refrigerated showcase faults correctly as faults with almost the 
same correctness even if the hyperparameter 𝛼  is getting 
larger. Therefore, it is not required to tune the hyperparameter 
𝛼 for each showcase for detection of the refrigerated showcase 
faults with high recall values using the proposed method. 
Since huge number of  refrigerated showcases are utilized in 
the world, the proposed method is suitable for the refrigerated 
showcase fault detection according to high recall values and 
no need for hyperparameter tuning. Consequently, the 
proposed method is a more practical refrigerated showcase 
fault detection method than the comparative methods from the 
requirement five, namely, tuning hyperparameters easily, 
point of view. 

V. CONCLUSIONS 

This paper proposes refrigerated showcase fault detection 
by an autoencoder with coin betting and MCC. Practicability 
of the proposed method is verified by comparison with an 
autoencoder with SGD and the LSE, an autoencoder with 
SGDM and the MCC, an autoencoder with Adam and the 
MCC, and an autoencoder with AdaGrad and the MCC. The 
results are verified by the Friedman test, a post hoc test using 
the Wilcoxson signed-rank sum test with the Holm correction, 
and parameter sensitivity analysis. 

As future works, for improvement in accuracy and to 
achieve more efficient hyperparameter tuning, various 
learning methods will be investigated.  
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(a) Parameter sensitivity analysis of 𝜂. 

 
(b) Parameter sensitivity analysis of 𝑐. 

Fig. 6 Parameter sensitivity analysis of the comparative method 2. 

 
Fig. 7 Parameter sensitivity analysis of the proposed method. 
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