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Abstract—Driver behavior plays a crucial role in mitigating
traffic accidents. Unlike previous studies focusing on drivers’
actual maneuvers, our study examines actions preceding a
maneuver or those not manifest in conventional maneuvers.
We gathered data from a car-sharing service frequented by
university students, scrutinizing the frequency of pedal changes
via foot camera images. These data were compared with the
pedal depression measurements from Controller Area Network
(CAN) bus data to discern instances of potentially reduced safety
due to cognitive load. We identified locations with high pedal
change frequency, even in the absence of any recorded pedal
operation in the CAN bus data. This result suggests the existence
of unrecorded driver behaviors that could precipitate traffic
accidents. Our findings, therefore, bear substantial implications
for enhancing traffic safety measures.

Index Terms—Active safety, Foot tracking, Intelligent vehicle,
Intelligent driving assistance, Driving maneuver

I. INTRODUCTION

In recent years, the number of fatalities due to traffic
accidents in Japan has been on a downward trend since its
peak in 1992. This reduction has been attributed to factors
such as passive safety technology, strengthening international
automobile safety standards, and developing emergency med-
ical care. However, the number of traffic accidents remains
high, with approximately 340 thousand accidents recorded in
20201, underlining the need for further efforts to reduce traffic
incidents.

The concept known as the “Heinrich Triangle” states that in-
dustrial accidents consist of major accidents, minor accidents,
and a much higher occurrence of near-misses. Traditionally
applied in industrial safety, this principle can be extrapolated
to traffic accidents. In such a context, major and minor acci-
dents would correspond to actual traffic incidents, while near-
misses would denote situations requiring emergency braking
or steering. In Japan, police authorities routinely analyze and
disclose information about the locations and times of traffic
accidents. Moreover, efforts are underway to identify high-
risk locations using probe data for near-miss incidents [1].
Figure 1a provides a summary of traffic safety information
for Aizu-Wakamatsu City in Japan, focusing on the vicinity of
the University of Aizu. This includes locations of emergency
braking (red), sudden steering (blue), and traffic accidents
(yellow) that occurred between 2018 and 2020. However,
determining the underlying cause or patterns of such incidents

1Road Safety Annual Report 2021: Japan.
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Fig. 1: Panel (a) depicts high-risk locations identified us-
ing conventional methods: emergency braking (red), sudden
steering (blue) observed by the CAN bus system in the
experimental vehicles, as well as traffic accident locations
disclosed by police (yellow). Conversely, Panel (b) displays
risk estimations based on our proposed method, which utilizes
drivers’ foot movements. Sites, where a high cognitive load is
estimated are indicated by reddish dots.

is a challenge based solely on the spatial distribution of
recorded locations. While these incident maps can shed light
on high-risk areas, their ability to accurately estimate potential
risk in areas with lower incident rates or even no recorded
incidents is limited.

Our study aims to estimate drivers’ cognitive load that could
lead to non-safety states—situations one level below near-miss
states—by analyzing foot movements between accelerator and
brake pedals. We capture these movements using a camera
installed in the driver’s footwell. This allows us to observe
‘preliminary’ actions, which are the driver’s preparatory steps
before executing a specific maneuver, such as depressing the
accelerator or brake. The accepted model of driving behavior
comprises three stages: perception, judgment, and operation
[2]. While in-vehicle sensors capture the operation stage,
a comprehensive understanding of the preceding perception
and judgment processes requires an analysis of the driver’s
implicit behaviors, such as these foot movements. Our study
juxtaposes actual maneuvers recorded by the Controller Area
Network (CAN) bus system with non-explicit driver move-
ments observed from foot video footage. We hypothesize
that the frequency of pedal shifting and the nature of foot
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Fig. 2: Flow of our data analysis: Three data sources—the
GPS, CAN bus system, and footwell camera—are integrated
to create a risk map to illustrate areas of high cognitive load.

movements can reveal insights into the driver’s cognitive load.
Our approach is rooted in the belief that frequent pedal shifting
may reflect stressful driving scenarios, increasing cognitive
load. Similarly, foot movements between the accelerator and
brake pedals, which do not result in actual depressions, could
signal cognitive strain due to ambivalence or hesitance in
decision-making. Though these movements do not directly
influence vehicle control, they may capture subtle shifts in
cognitive strain and serve as potential precursors to increased
driving risk. In our work, we delve beyond observable driving
maneuvers, scrutinizing these non-explicit driver behaviors
as possible indicators of cognitive load and driving risk.
Finally, we visualize discrepancies between foot movement
data and CAN bus data on a map (Fig. 1b), facilitating further
explorative analysis. The flow of this analysis is depicted in
Fig. 2.

The paper is structured as follows: Section 2 reviews the
existing literature in the field and distinguishes the unique con-
tribution of this study. Section 3 describes the data collection
and preprocessing methods utilized for our analysis. Section 4
outlines the experiment, detailing the methodologies deployed
and key findings achieved. Following a discussion in Section
5, we conclude Section 6.

II. RELATED WORK

Prior research on cognitive load during driving has pre-
dominantly focused on the driving scene and the impact of
in-vehicle tasks on the driver. For instance, Lian et al. em-
ployed the Gray correlation method to scrutinize the factors
influencing workload and performance during highway driving
[3]. They validated their findings by comparing them with
actual traffic accident data. In another innovative approach,
Nakayama et al. developed the so-called steering entropy
method to gauge the smoothness of steering operation [4].
This method was utilized to assess the driver’s workload
when they were tasked with additional responsibilities such as
conversations with fellow passengers. However, these studies
focusing on drivers’ cognitive load are primarily centered on
behavioral analysis without considering the impact of regional,
spatial, and traffic environmental factors within their scope of
investigation.

Understanding driving behavior, including cognitive load,
under specific situations traditionally involves experiments
using driving simulators and test courses [5]. While these
approaches guarantee high reproducibility of experimental
conditions, they face challenges mimicking natural road en-
vironments and gathering many participants. Recent studies
have addressed these issues by harnessing data from vehicles
equipped with telematics devices driven by the general public
[6]. Our study extends this approach, sourcing data from a
car-sharing service to study everyday drivers in real-world
conditions.

The ‘human as a distributed sensor’ concept capitalizes
on collective intelligence and individual sensing capabilities.
For instance, Aichinger et al. identified collision risk hotspots
using smartphone GPS and motion sensor data [1]. Chen et
al. estimated traffic accident risks through a deep learning
approach, leveraging traffic accident data and GPS records
from millions of users [7]. Similarly, Lee et al. identified high-
risk locations by collating data from traffic accident statistics,
road information, and user comments [8]. These studies share
our natural state data collection approach, which minimizes
experimental awareness. Unique to our study is incorporating
behavioral data derived from novel foot placement analysis
into the risk evaluation process.

Creating risk maps by aggregating traffic data has been a
common approach in traffic safety research. For example, He
et al. and Vandenbulcke et al. used various data sources to
predict accident probabilities, highlighting the value of high-
resolution mapping and resourceful use of limited data [9],
[10]. In contrast, our study utilizes in-vehicle data from a
shared car service to investigate how specific traffic situations
may induce cognitive load in drivers, leading to states of
decreased safety awareness or responsiveness. We use foot
camera images to monitor pedal changes and CAN bus data
to record pedal depressions. By associating areas where pedal
change frequency and its discrepancy from actual maneuvers
are high with heightened cognitive load, we offer a unique per-
spective on traffic safety, bridging the gap between traditional
risk mapping techniques and granular behavioral data.

III. DATA

A. Data acquisition

The data utilized in this study were sourced from a car-
sharing service provided at the University of Aizu from
December 2019 to February 2022. In this service, participants
who registered were allowed to reserve one of the two experi-
mental vehicles (Fig. 3a) at their convenience, and their driving
time, purpose, destination, and route were left up to them. Out
of 47 university students who registered for the service, we
selected 39 subjects who had used the service for more than
10 hours. These 39 subjects were all males aged between 19
and 24, with less than five years of driving experience. All
subjects were informed about the purpose of the study.2

2The approval of the experiment was obtained from the university’s research
ethics review committee.
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(a) Experimental vehicle (b) Cockpit side camera

(c) Front camera (d) Foot camera

Fig. 3: (a) Appearance of an experimental vehicle: Two of
these four-seat sedans were used in the experiment. (b) (c)
(d) Still frames captured by the cameras mounted on the
experimental vehicle. (c) and (d), in particular, are used in
the present study.

This study mainly deals with two types of data: CAN bus
data, which captures actual driving operations, and footwell
video images, which record implicit foot movements. To
ensure that the driver’s behavior was as natural as possible,
all the installed sensors and cameras were discreetly placed
to minimize any perception of the vehicle as an experimental
unit. The CAN bus data comprise the amount of depression
in accelerator and brake pedal operations, steering angle, and
speed, as well as GPS data that recorded location information.3

In this study, we use, in particular, the amount of depression
in accelerator and brake pedals, speed, and GPS data from the
CAN bus data. In addition, five cameras were installed in the
vehicle, including a front camera, face camera, foot camera,
front seat camera, and rear seat camera as in Fig. (3b), (3c),
and (3d). The frame rate of the camera images was downsam-
pled from 15 to 10 frames per sec (FPS) to synchronize with
the frequency of the CAN bus data. The sampling interval for
GPS data is 0.5 seconds, 2 FPS, which is used as is. One
trip is defined as the duration of driving from the moment a
subject enters the car until they exit. The dataset encompasses
437 trips undertaken in Aizu-Wakamatsu City between April
2020 and November 2021. This amounts to approximately 3.8
million records, corresponding to roughly 105 hours of video
footage for each camera with 640× 480 pixels.

B. Estimation of foot movements

We analyze foot movements using video images captured
from the footwell. Our goal here is to assign each CAN
bus data record a corresponding foot position label—either
‘Accelerator,’ ‘Brake,’ or ‘Neutral’—for each time frame.

3We also recorded temperature, humidity, and CO2 levels as environmental
factors inside the vehicle. Although this information could potentially inform
an analysis of the driver’s stress level, it is beyond the scope of the present
study.

(a) Foot is on the accelerator. (b) Foot is on the brake

(c) Foot is in the neutral position.
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Fig. 4: Detection of foot movements. The position of the
foot—whether on the accelerator, brake, or in a neutral state—
is determined by evaluating the overlap between the bounding
boxes of the foot and each pedal area.

Traditional video analysis methods for estimating foot pedal
operation, such as optical flow or frame-by-frame comparison,
have limitations [11]. Specifically, they struggle with changes
in video brightness, which can compromise accuracy under
varying light conditions, for instance, when a vehicle emerges
from a tunnel. To circumvent these issues, we adopted the
YOLOv5 model [12], fine-tuning it for our experiment. This
custom model effectively identifies feet in camera images,
enabling the estimation of the foot’s relative position to the
accelerator and brake pedals.

We trained our model on a dataset of 500 images depicting
various shoe types under different lighting conditions. These
images were independent of the actual driving experiment. As
illustrated in Fig. 4, the model identifies shoes by enclosing
them within purple bounding boxes, each annotated with a
confidence score in white.4 We assigned operational zones to
different areas within the foot camera image: an accelerator,
a brake, and a neutral position corresponding to the red, blue,
and green areas, respectively. Determining the foot’s position
involves identifying which area—either accelerator or brake—
has the most overlap with the bounding box of the foot. If the
foot’s overlap with either area is less than 5% of the bounding
box, we categorize the foot position as neutral. As a simple
error correction, any transient change in the foot position label
immediately followed by a return to the original label is treated
as a detection error; in such cases, we preserve the initial
label. Comparing the actual pedal depressions recorded by
the CAN bus data with the foot placements estimated by our
model, discrepancies or errors accounted for only 7% of the
total driving time. This modest error rate, combined with the
post-processing for error correction mentioned above, supports

4For reference, the model achieved a mean Average Precision (mAP@
[.5:.95]) of 0.739, a comprehensive metric for evaluating object detection
models.
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TABLE I

Time stamp Latitude Longitude Velocity (km/h) α β λ

2021-09-10 15:32:10.140 37.524317 139.939787 0 0 0 Brake
...

...
...

...
...

...
...

2021-09-10 15:34:31.940 37.51934 139.942558 57.91 41 0 Accelerator
2021-09-10 15:34:32.040 37.51934 139.942558 57.91 0 0 Brake
2021-09-10 15:34:32.140 37.51934 139.942558 57.69 0 3 Brake

...
...

...
...

...
...

...
2021-09-10 15:40:58.140 37.504927 139.938748 0 0 0 Brake

An example of preprocessed data for a typical trip. Variables α and β denote the degrees of depression for the accelerator and brake pedals
from the CAN bus data. λ represents the label for the foot position from the foot camera. Each record, sampled at 10 FPS, with location
sampled at 2 FPS, is consolidated into a single data frame per trip.

the practical applicability of our approach, enabling reliable
analysis of foot positions.

We integrate the CAN bus data and the time series of foot
position into a single time series for each trip, as shown
in Table I. Each data record corresponds to one frame at
a 10 FPS rate, meaning that the unit time for the series is
0.1 seconds. Finally, we exclude special pedaling activities
related to parking, starting, and stopping to focus our analysis
on standard driving operations. Therefore, we only consider
operations performed at speeds ranging between 20 km/h and
60 km/h.

IV. EXPERIMENT

We propose to compare the frequency of pedal changes
as captured by a foot camera to those measured via pedal
depressions in CAN bus data. This approach aims to assess
the cognitive load from driving situations or environments by
quantifying alterations in pedal depression. If the count of
pedal changes, based on actual foot movements, diverges from
those recorded by the CAN bus system at specific locational
points, this discrepancy could indicate unaccounted driving
risks there that the conventional system may overlook, as
mentioned in Section I

A. Map discretization

We begin by discretizing the area of interest into a grid,
where each unit grid corresponds to a 10-meter square.
The area of analysis, located within Aizu-Wakamatsu City,
covers the region traversed by the shared cars. This region
forms a rectangle defined by the coordinates of its southwest
edge (37.3525, 139.8461) and its northeast edge (37.5813,
140.0439). Each 10-meter grid within this area is assigned a
unique index, denoted by i. We then assign each record to the
corresponding grid using the data records, as shown in Table
I. The number of data records and unique users within each
grid is represented by ni and ui, respectively. We found that
around 33,000 grids, which cover an area of 3.3 km2, contain
at least one data record.

B. Frequency of pedal operations

We define a pedal change based on both foot camera
data and CAN bus data, as illustrated in Fig. 5. From the

Time

Accelerator Brake

Pedal depression

Foot position Accelerator

+1 +1

Pedal change detected
by foot camera
Pedal change detected
by CAN bus system

Brake

+1

Accelerator pedal depression

Brake pedal depression

No operation

+1

Fig. 5: Example of pedal change counting. The foot camera
records three pedal changes in the above scenario, while the
CAN bus data records only one.

foot camera’s perspective, a pedal change is deemed to have
occurred when the driver’s foot moves from the ‘Accelerator’
to the ‘Brake’ or vice versa. However, since the camera
cannot quantify the actual extent of pedal depression, such
measurements are not taken into account in this context.
Meanwhile, the CAN bus data records a pedal change when
the depression level of one pedal (either the accelerator or
brake) surpasses that of the other from one frame to the next.
This definition implies that foot shifts without actual pedal
depressions are not considered pedal changes.

In grid i, we calculate the number of pedal changes as
recorded by both the CAN bus data and the foot camera,
denoting these counts as mCAN

i and mFoot
i , respectively. We

then use these counts to define the frequency of pedal changes
within grid i: µFoot

i = mFoot
i /ni and µCAN

i = mCAN
i /ni. To

ensure the statistical reliability and robustness of our findings,
we focus only on grids with a substantial amount of data,
setting a threshold of ni ≥ 10. Using this criterion, we identify
3,670 grids that meet this requirement. Figure 6 depicts a
histogram of µi constructed from 3,670 valid grids. There are
2,851 grids with µCAN

i = 0 and 1,076 grids with µFoot
i = 0.

A comparative analysis of these histograms reveals that at
nearly all points, the distribution of µFoot

i predominates over
that of µCAN

i . This observation validates our understanding
that the foot movements captured by the foot camera en-
compass a larger set of behaviors than the pedal depressions
recorded by the CAN bus system. Furthermore, the histograms
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reveal a pattern in which a significant proportion of grids
are associated with minimal foot activity, whereas only a few
indicate a heightened frequency of foot movements. Notably,
the histogram for µFoot

i highlights the presence of grids with
relatively larger frequencies exceeding 0.5. This indicates the
presence of specific grids or spots where foot movements
between the accelerator and brake pedals occur in over half
of the recorded instances.

C. Characteristic features revealed by the foot camera

We calculate the discrepancy between the frequency of
pedal changes as captured by the CAN bus data and the
foot camera. This discrepancy, denoted as ξi, is defined as
the ratio µFoot

i /µCAN
i . A grid with ξi = 1 signifies that the

frequency of pedal changes exactly matches the frequency of
foot movements within that grid. In other words, each observed
foot movement corresponds to an actual pedal alteration and
vice versa. Although we expect ξi ≥ 1 (since the CAN bus
system only captures a subset of foot movements), instances
of ξi < 1 can occur due to data loss or errors in foot position
estimation. These grids, likely to contain less reliable data, are
excluded from our analysis.

Figure 7 shows the histogram of ξi derived from 3,670 valid
grids. There are 1,123 grids where ξi = 1, indicating a high
degree of comparability between the pedal operations recorded
by the CAN bus system and the foot camera across most
grids. However, some grids show notably high ξi values. In
these particular areas, a significantly higher frequency of foot
movements does not translate to actual pedal operations. This
finding suggests that the traffic environment within these areas
may possess certain characteristics that trigger such implicit
foot movements.

In Fig. 8 and Table II, we highlight with red and green cir-
cles several specific spots that exhibit high ξi values (ξi ≥ 8).
The red circles indicate locations of previous traffic accidents
or near-miss incidents, as well as specific areas that, based
on our local knowledge, could intuitively be anticipated as
likely to induce cognitive load. For instance, Intersection (a)
is the busiest traffic area in Aizu-Wakamatsu City. It reports

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Fig. 7: Histogram of ξi—the discrepancy between µCAN
i and

µFoot
i . On the x-axis, log2 ξi of 4 signifies µFoot

i is 16 times
larger than µCAN

i .

the highest traffic accidents in Japan, earning a government
designation as an accident-prone area. Locations (d) and (e)
depict driving routes on the University of Aizu campus:
Location (d) is near the campus entrance, a spot where drivers
need to pay attention to pedestrians and other vehicles, while
(e) is close to cones that drivers must circumvent. Location (h)
represents a heavily trafficked T-junction. These spots could
be readily identified as high-risk areas using conventional
approaches.

On the other hand, our analysis revealed some unique spots
represented by green circles—these were situated farther from
busy intersections or without nearby traffic lights and had
previously shown no signs of being ‘special’ regarding fre-
quent foot movements. Location (b), for instance, is positioned
just before Intersection (a), a spot we found prone to traffic
queues during rush hour. The area near (c) features a straight,
well-visible road with no traffic lights, aside from a roadside
alone restaurant. Location (f) is a straight road adjacent to the
university, where traffic typically moves at high speeds. Spot
(g) marks an exit from a narrow side road onto the main road.
Finally, location (i) represents an exit of a back road commonly
used as a detour near the junction of this back road and the
main road.

V. DISCUSSION

Our study was predicated on the hypothesis that the fre-
quency of pedal shifting could reflect cognitive load during
driving. We substantiated our hypothesis by examining actual
driving scenarios captured by front camera videos and lever-
aging our local knowledge of the area around the university
campus. Indeed, we discovered a positive association between
locations with high ξi values and real-world driving situations
that induce cognitive stress. These situations mainly occur in
areas subjected to heavy traffic, such as busy intersections and
locations congested during rush hour. In future research, high-
performance object recognition using front camera images
could quantitatively and automatically assess this relationship.
This approach could benefit cognitive load estimation not
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Fig. 8: Highlighted spots labeled from (a) to (i) represent areas
where ξi ≥ 8. Details about each spot are in Table II.

only through foot-movement detection but also by enhancing
conventional methods like the steering entropy method.

Yet, there were locations where contributors to an increase
in ξi remained elusive, such as those marked green in Fig. 8.
While this might initially seem like a drawback, it paradoxi-
cally highlights a potential area of exploration. For instance,
we observed spot (f) and found that it was occasionally ille-
gally parked. It is possible that such illegal parking may have
led to increased pedal activity on an otherwise fast, straight
road. By focusing on these locations and re-examining them
through front-camera imagery or on-site fieldwork, we can
strive to understand better the unidentified factors contributing
to cognitive load in drivers.

In addition to the ample number of data points for each
spot highlighted in Sec. IV, the range of unique users at these
locations—typically between 10 and 30, according to Table
II—suggests that our results possess a degree of generaliz-
ability. The high average ξi values observed at these spots
likely indicate a typical response to specific road conditions or
driving scenarios among the subjects. However, our participant
pool was limited to young male students with less driving
experience. Expanding this pool to include a broader range
of demographics could offer further insights into the impact
of cognitive capacity on driving behavior, thereby paving the
way for future research.

TABLE II

Spot ni ui mFoot
i mCAN

i µFoot
i µCAN

i ξi

(a) 72 20 14 1 0.19 0.01 14.0
(b) 86 26 9 1 0.10 0.01 9.0
(c) 58 24 12 1 0.21 0.01 12.0
(d) 18 6 11 1 0.64 0.05 11.0
(e) 48 19 9 1 0.18 0.02 9.0
(f) 50 21 9 1 0.17 0.01 9.0
(g) 39 13 16 1 0.41 0.02 16.0
(h) 48 13 16 1 0.33 0.02 16.0
(i) 48 14 8 1 0.17 0.02 8.0

Details of extracted spots. µi values are rounded to two decimal places.

VI. CONCLUSION

In this study, we endeavored to elucidate the drivers’ unsafe
states induced by cognitive load. We utilized foot camera
footage to track pedal changes and correlated this with the
frequency of pedal depressions recorded in the CAN bus data.
Our analysis successfully revealed areas of high pedal change
frequency, indicating elevated cognitive load, even when these
areas did not correspond to pedal operations captured by
the CAN bus system. Significantly, we developed a practical
map displaying the spatial distribution of cognitive load, as
estimated through our foot placement analysis. The map was
found to align well with our local knowledge and intuitively
interpretable scenarios, thus assisting in identifying potential
high-risk zones and contributing to efforts to enhance driving
safety.
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