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Abstract—Many-task optimization problems (MaTOP) involve
more than three tasks, which can be solved simultaneously via
knowledge transfer by utilizing complementary information of
different tasks. Due to the biases between tasks, relevant tasks
are usually selected for knowledge transfer to avoid negative
effects. There are two challenging issues, i.e., source task selection
and inter-task knowledge transfer. To address these issues, this
paper proposes an adaptive geodesic flow kernel transfer method
(AGFKTM) for MaTOP. In AGFKTM, multiple source tasks
are selected based on both the similarity between tasks and the
performance of tasks. In this way, similar and well-performed
tasks are selected with a high priority. In addition, an adaptive
geodesic flow kernel is constructed to implement knowledge
transfer, in which the adopted subspaces along the geodesic
flow path are adaptively controlled. Particularly, the transferred
solutions are used to generate new ones using mutation operators.
Integrating the AGFKTM into differential evolution, a new
algorithm named AGFKT-DE is put forward. Experimental
results on GECCO20MaTOP benchmark show that the new
algorithm outperforms state-of-the-art algorithms.

Index Terms—evolutionary computation, many-task optimiza-
tion, knowledge transfer, geodesic flow kernel, differential evolu-
tion

I. INTRODUCTION

With the successful applications of evolutionary algorithms
to real-world multitask optimization problems, e.g., resource
scheduling in cloud computing [1] and topology optimization
[2], evolutionary transfer optimization has become popular in
recent years [3]. Evolutionary transfer optimization usually
utilizes the searching experience of some tasks (source tasks)
to assist the optimization of other tasks (target tasks). This is
called knowledge transfer between tasks. Knowledge transfer
can leverage the information of different tasks to help evolu-
tionary algorithms to improve optimization performance [4].

Multiple knowledge transfer methods are developed for
multitask optimization. With the emergence of big data, many-
task optimization problems (MaTOP) become a significant
problem, which involve more than three tasks [5]. Due to the
increase of task number, knowledge transfer between tasks is
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more challenging. Especially, it is critical to select appropriate
source tasks for a specific target one from a large number of
tasks [6]. In addition, since the tasks usually have a different
landscape and global optimum, alignment between source and
target tasks is important to avoid negative transfer.

Since tasks have different domain biases, relevant tasks are
usually selected as source tasks for knowledge transfer. For
example, the mean discrepancy value between a task and a
target one is measured, and the task with a smaller maximum
mean discrepancy value is regarded as a relevant task [6].
However, some tasks are similar to the target task but may
perform poorly, which are not appropriate choices. Based on
this observation, some task selection methods consider the
performance of tasks. For example, source tasks are selected
based on the fitness improvement of a task [7], or the number
of candidate solutions that successfully update individuals [8].
There is work to combine the advantages of task similarity
and task performance. For example, source tasks are selected
according to the similarity based on shift invariance and the
ranking of tasks [7]. However, the method only simply shares
the parameter settings of several DE solvers.

Based on the selected source tasks, knowledge transfer
is often performed using crossover or mutation operators
[8]. Considering the differences between tasks in terms of
global optima and landscapes, solutions from different tasks
are aligned for knowledge transfer using multiple methods,
e.g., the subspace alignment methods and domain adaptation
methods. For example, sample geodesic flow is adopted to
sample an intermediate subspace along the geodesic flow path
between source and target domains for transfer [9]; subspace
alignment methods transfer solutions from a source subspace
to a target subspace [10]. However, these methods use a limited
number of subspaces only and donot well exploit the subspaces
between source and target domains.

According to the above discussion, this paper proposes
differential evolution based on adaptive geodesic flow kernel
transfer (AGFKT-DE) for MaTOP. In AGFKT-DE, a new
source task selection method is developed to select multiple
source tasks based on the similarity between tasks and the
performance of tasks. In addition, an adaptive geodesic flow
kernel transfer method is proposed for knowledge transfer
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using multiple mutation strategies. Particularly, an adaptive
geodesic flow kernel is constructed for solution alignment, in
which the adaptive parameter controls the endpoint of geodesic
flow transfer path. In this way, the subspaces between source
and target domains can be better exploited. Experimental
studies are carried out on GECCO20MaTOP benchmark. The
results show that AGFKT-DE is significantly better than state-
of-the-art MaTOP algorithms in terms of solution optimality
and convergence speeds.

The remainder of this paper is organized as follows. Section
II gives the background. Section III presents the proposed
method in detail. Experimental results are presented in Section
IV. The conclusion is drawn in Section V.

II. BACKGROUND

A. Many-Task Optimization Problem

A MaTOP contains more than three tasks. Given a MaTOP
with NT single-objective optimization tasks {fk : x→ R|k =
1, · · · , NT}. Denote the k-th task as tk, the optimal solution
of tk as x∗k, and the search space of tk as Γk ⊆ RDk , where
Dk is the dimensionality of Γk. Each task tk can be formulated
as:

x∗k = arg min
xk∈Γk

fk(xk),

s.t. x∗k ∈ Γk, ∀1 ≤ k ≤ NT.
(1)

Optimization algorithms aim to find the optimal solutions of
all tasks simultaneously. Since the search spaces of multiple
tasks may be different, the solutions of each task are usually
encoded into a unified search space.

B. Related Work

Multiple algorithms are developed to solve MaTOP. One of
the most representative algorithm is multifactorial evolutionary
algorithm (MFEA) [11]. Inspired by the biocultural models
of multifactorial inheritance, MFEA generates offsprings by
assortative mating in a unified search space and evaluates
offsprings via vertical cultural transmission.

There are two key issues, i.e., the source task selection and
the knowledge transfer strategy, to address. For source task
selection, improvements brought by other tasks are measured
so as to control the information flow between tasks [12]. To
measure the similarity between tasks, a bi-objective measure-
ment is proposed to evaluate the differences between tasks
in terms of global optima and landscapes [13]. Similarly, the
Kullback-Leibler divergence between populations is adopted
to measure the task similarity [5]. The task similarity can
also be measured based on shift invariance, which are used
as features for task grouping using K-means clustering [7].
The gradient information and location of the best solution
are combined to measure the task similarity [14]. In addition,
anomaly detection model is constructed to select candidate
transferred individuals [15].

Based on the selected source tasks, a reasoning strategy is
designed to improve the diversity of knowledge and utilize the
complementarities of different tasks based on the Bayesian
method [16]. The denosing autoencoder [17] and linearized

domain adaptation [18] are also adopted to learn the linear
mapping between tasks for explicit knowledge transfer. Fur-
thermore, a kernelized autoencoder is designed to construct
nonlinear mapping between tasks [19]. Similarly, transfer
component analysis is applied to reduce differences between
distinct domains and learn a shared subspace between source
and target domains [20]. Moreover, an ensemble method is
proposed to take the advantages of multiple domain adaptation
methods for knowledge transfer [21]. Specifically, for tasks
with different dimensions, the knowledge transfer is imple-
mented using dimension supplement strategy based on RBF
neural network and dimension reduction strategy based on
dynamic principal component analysis [14].

III. THE PROPOSED METHOD

A. Source Task Selection

A MaTOP contains multiple tasks with a different bias. To
avoid negative knowledge transfer, it is pivotal to select appro-
priate source tasks for a specific target task. It is necessary to
consider both the similarity between tasks and the performance
of tasks. Thus, we propose a new selection strategy based
on the similarity and performance of tasks, named SPS. In
SPS, the similarity between two task are measured using
the Wasserstein distance [22] between their populations. In
addition, the performance of a task is evaluated using the
successful update times of individuals during the evolutionary
procedure, denoted as ST . The ST values of all tasks are
calculated and the median value is denoted as STm.

Given a target task with a high ST value (ST ≥ STm), top
n1 tasks (with smallest WD values) similar to the target one
are selected first. Then, n2 (n1 ≥ n2) tasks with largest ST are
selected from the n1 tasks as source tasks. In contrast, given
a target task with a relatively low ST value (ST < STm), n2

tasks are selected via roulette wheel selection. The selection
probability of j-th task is denoted as pj and calculated by

pj =
1

2
(

1

NT − 2
·
∑NT
k 6=iWDik −WDij∑NT

k 6=iWDik + ε
+

STj∑NT
k 6=i STk + ε

)

(2)
where NT is the number of tasks in a MaTOP, i is the index of
the target task, WDik is the Wasserstein distance between the
target task and k-th task, STk is the performance of k-th task
evaluated using the successful update times of individuals, and
ε > 0 is a small value to avoid division by zero. Particularly,
the sum of the probabilities of all tasks equals to 1. The
proposed strategy tends to maintain the good performance of
target tasks by selecting similar and well-performed tasks.
Besides, diversified tasks are selected to help performance
improvement for poorly-performed tasks.

B. Knowledge Transfer between Tasks

1) Geodesic Flow Kernel: The basic assumption of
geodesic flow is that data can be embedded in a low-dimension
subspace. To construct geodesic flow, principal component
analysis (PCA) [23] is applied to establish the linear subspaces
of source and target domains. Denote the dimensionality of
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Algorithm 1 AGFKT-DE
Input: The parameters for source task selection n1, n2, NT

optimization tasks {t1, t2, · · · , tNT }.
Output: NT solutions {x∗k|k = 1, 2, · · · , NT} for NT tasks.

1: Initialize subpopulations {popk|k = 1, 2, · · · , NT}.
2: g ← 1, FE ← 0, STs ← zeros(NT ), α ← {αk|αk =
randint(1, 9)/10, k = 1, 2, · · · , NT}.

3: while FE ≤ maxFE do
4: Compute geodesic flow kernel transfer matrices

{G∗j→i(αi)|i, j = 1, 2, · · · , NT and i 6= j} between
every two tasks by Eqs. (3), (7)-(9).

5: for each task ti do
6: S ← ∅.
7: Select source tasks by SPS.
8: for each individual xk in popi do
9: if rand() < rmp then

10: Randomly choose one mutation operator from
Eqs. (10)-(13) to generate mutant vector uk.

11: else
12: Generate uk by individuals from popT .
13: end if
14: Generate trial vector vk by binomial crossover.
15: S ← S ∪ vk.
16: end for
17: S ← S ∪ popi.
18: Select the best half of solutions from S to update popi

and count the number n of selected trial vectors.
19: STi ← STi + n, update FE.
20: end for
21: Adjust α of each task by Eq. (5).
22: g ← g + 1.
23: end while

original search space as D and the dimensionality of subspace
as d, where d < D. Denote the subspaces of source and target
tasks are PS ∈ RD×d and PT ∈ RD×d, respectively. The
orthogonal complement to PS is denoted as RS ∈ RD×(D−d),
s.t. RTSPS = 0, where RTS is the transpose of RS . Note that
d ≤ D/2, since the size of orthogonal matrix U2 ∈ R(D−d)×d

obtained by the SVD of RTSPT ∈ R(D−d)×d should satisfy
D − d ≥ d. On the manifold, the geodesic flow Φ(t), where
Φ(0) = PS and Φ(1) = PT , connecting the subspaces of
source and target domains can be parameterized as Φ(t) =
PSU1Λ(t) − RSU2Ω(t), where t is in a range of (0, 1). By
setting t to be a specific real number t0, Φ(t0) represents a
corresponding subspace on the geodesic flow. U1, U2, Λ and Ω
are matrices obtained by singular value decomposition (SVD):

PTS PT = U1ΛV T , RTSPT = −U2ΩV T (3)

where U1 ∈ Rd×d and U2 ∈ R(D−d)×d are orthogonal
matrices, Λ and Ω are d×d diagonal matrices, and we simply
denote them as Λ = diag(cosθk) and Ω = diag(sinθk),
where 0 ≤ θk ≤ π/2 are principal angles between PS ,
k = 1, 2, · · · , d.

Instead of sampling a finite number of subspaces in the
parameterized geodesic flow [9], this paper adopts geodesic
flow kernel [24] to concatenate infinite projections of individ-
uals into an infinite-dimensional feature vector z∞. For two
D-dimensional solutions xi and xj , the geodesic flow kernel
is defined by inner product between the feature vectors:

< z∞i , z
∞
j >=

∫ α

0

(Φ(t)Txi)
T (Φ(t)Txj)dt = xTi Gxj (4)

where α = 1 represents the endpoint of the geodesic flow path
for transfer, and G ∈ RD×D is a geodesic flow kernel matrix.

2) Adaptive Geodesic Flow Kernel: Since α is related to the
subspaces adopted for knowledge transfer, the impact of α is
investigated. Taking an instance I5 in the GECCO20MaTOP as
an example, we report the average value and standard deviation
of the results over 20 runs in Table I. As show in Table I, a
smaller α improves the algorithm performance and different
problems require different α values. Based on the observation,
we propose an adaptive geodesic flow kernel to diversify the
transferred solutions by adaptively adjusting α according to
the performance of a target task. Specifically, 0 < α ≤ 1
is parameterized to adaptively control the subspaces used for
domain adaptation. In addition, adapting control parameters
can improve algorithm diversity [25].

In the adaptive geodesic flow kernel, αi is adaptively
controlled for each task ti. For the i-th task, αi is randomly
initialized as αi = randint(1, 9)/10, where randint(1, 9) is
a random integer in a range of [1, 9]. In every generation, αi
is adjusted according to STi as

αi =

{
β ∗ αj + (1− β) ∗ αi, if STi > STm,

γ ∗ αi, otherwise,
(5)

where β is the learning rate and γ is the decay coefficient.
Particularly, for a task with a high STi value (larger than
STm), αi is updated by learning from a random task tj with
STj ≥ STi; otherwise, αi is slightly reduced by multiplying
a decay coefficient to improve optimization performance.

To compute the geodesic flow kernel matrix G, Eq. (4) is
derived as follows:

G ∝
∫ α

0

Φ(t)Φ(t)T dt

∝
∫ α

0

[
diag( 1+cos(2θkt)

2 ) diag(− sin(2θkt)
2 )

diag(− sin(2θkt)
2 ) diag( 1−cos(2θkt)

2 )

]
dt

∝

[
diag(α2 + sin(2θkα)

4θk
) diag( cos(2θkα)−1

4θk
)

diag( cos(2θkα)−1
4θk

) diag(α2 −
sin(2θkα)

4θk
)

] (6)

where the sign “∝” represents “proportional to”. Denote the
above diagonal matrices as:

Σ1 = diag(
α

2
+
sin(2θkα)

4θk
),

Σ2 = diag(
cos(2θkα)− 1

4θk
),

Σ3 = diag(
α

2
− sin(2θkα)

4θk
).

(7)
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TABLE I
STATISTICAL RESULTS OF GFKTM WITH DIFFERENT SETTINGS OF α ON

17 RASTRIGIN TASKS, 17 GRIEWANK TASKS AND 16 WEIERSTRASS TASKS
IN I5

α 17*rastrigin 17*griewank 16*weierstrass

1.0 mean 4.03E+02 7.08E-02 3.28E+00
std 1.37E+01 1.25E-02 6.34E-01

0.8 mean 3.88E+02 2.28E-02 2.65E+00
std 1.63E+01 3.47E-03 2.52E-01

0.6 mean 3.78E+02 1.84E-02 2.57E+00
std 2.28E+01 6.65E-03 5.13E-01

0.4 mean 3.76E+02 9.55E-03 2.24E+00
std 2.33E+01 4.01E-03 1.04E+00

0.2 mean 3.90E+02 7.32E-03 2.11E+00
std 1.67E+01 3.96E-03 1.13E+00

Similarly, the geodesic flow kernel matrix G(α) with an
adaptive parameter α is computed by

G(α) =
[
PSU1 RSU2

] [Σ1 Σ2

Σ2 Σ3

] [
UT1 P

T
S

UT2 R
T
S

]
. (8)

Since the the geodesic flow kernel is defined by inner
product, the transfer matrix, denoted as G∗ ∈ RD×D, is the
square root of the matrix G, i.e.,

G(α) = G∗(α)G∗(α). (9)

A solution x ∈ R1×D from the subpopulation of a source
task can be transformed into a D-dimensional space between
source and target domains related to α, i.e., y = xG∗(α),
where y ∈ R1×D is the transferred solution.

3) Knowledge Transfer along the Geodesic Path: To per-
form knowledge transfer, the solutions from source tasks are
transferred along the geodesic path by the transfer matrix
G∗(α). In AGFKT-DE, three common mutation strategies,
i.e., DE/rand/1, DE/current-to-rand/1 and DE/rand-to-best/1
[26], are adopted to generate diversified solutions for every
individual in the subpopulation of target task. Denote the
subpopulation of target task as popT , the subpopulations of
n2 selected source tasks are combined to form a population
popS , and popT and popS are combined together to form a
new population popST = popS ∪ popT .

uk = xr1,T + F (x̃r2,S − x̃r3,S)G∗, (10)
uk = xk,T + F (x̄r1,STG

∗ − x̄k,T ) + F (x̃r2,S − x̃r3,S)G∗,
(11)

uk = xr1,STG
∗ + F (xbest,T − xk,T ) + F (x̃r2,S − x̃r3,S)G∗,

(12)
uk = xr1,ST + F (xr2,S − xr3,S), (13)

For k-th individual xk,T from the target task ti, knowledge
transfer is performed with a random mating probability (rmp).
If knowledge transfer is performed, a mutation operator is
randomly selected to generate a mutant vector uk by Eqs.
(10)-(13), where F is a scale factor, r1, r2 and r3 are three
distinct random integers, and G∗ is the shorthand form of
the transfer matrix G∗j→i(αi) (j is the index of a specific
source task related to a solution that is transferred to i-th

task). The sign x̃ is the resulting solution of x normalized to
zero-mean and unit-variance, and x̄ is the solution centered by
subtracting the subpopulation center. The subscripts T , S and
ST represent that the individual is selected from popT , popS
and popST , respectively, and the ranges of random integers
r1, r2 and r3 are determined according to the size of the
population from which the individual is selected. Specifically,
a mutation operator in source domain Eq. (13) directly uses the
individuals in the source domains to generate mutant vector
to help increase solution diversity.

If knowledge transfer is not performed, a mutant vector uk
is generated by three individuals which are randomly selected
from popT using DE/rand/1 operator.

After the mutant vector uk is generated, a trail vector
vk is generated via binomial crossover. The trail vectors
and all the individuals of the target subpopulation are stored
in a set S. The half of individuals in S with best fitness
values are selected to update the target subpopulation. The
complete algorithm is presented in Algorithm 1. FE is the
number of function evaluations, and maxFE is the maximum
number of function evaluations. The algorithm stops until
FE > maxFE, and outputs NT solutions for all optimization
tasks.

IV. EXPERIMENTS

A. Experimental Settings

1) Test Problems: The widely used GECCO20MaTOP1

benchmark is taken to test the performance of the proposed
algorithm. The benchmark contains ten 50-task problems I1-
I10, which are constructed based on 7 different basic func-
tions. In each problem, tasks are rotated and shifted, and the
dimensionalities of all tasks are 50.

2) Competing Algorithms: To verify the performance of
AGFKT-DE, seven typical and state-of-the-art MaTOP algo-
rithms are selected for comparisons, i.e., differential evolution
(DE), many-task algorithm based on biocoenosis through
symbiosis using DE solver (DE/rand/1, F = 0.5, CR =
0.7) (EBSDE) [12], multifactorial DE based on adaptive
intertask coordinate system (GFMFDE) [9], multitask evo-
lutionary algorithm based on anomaly detection (MTEA-
AD) [15], multitask optimization with adaptive knowledge
transfer (AEMTO) [8], evolutionary many-task optimization
based on multisource knowledge transfer (EMaTO-MKT) [6],
and a two-stage transferable adaptive differential evolution
(TRADE) [7]. These methods adopt different strategies for
task selection and knowledge transfer, making the comparisons
comprehensively and convincing.

3) Parameter Settings: The parameter settings of all com-
peting algorithms are set the same as in the original papers. In
the proposed AGFKT-DE, the population size is set to 50 for
each task, F is set to 0.5, CR is set to 0.7, the dimensionality
d of subspaces is set to 20, rmp is set to 0.3, γ is set to 0.9,
β is set to 0.1, n1 and n2 are set to 6 and 3, respectively.

1http://www.bdsc.site/websites/MTO competition 2020/MTO Competition GECCO 2020.html
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TABLE II
COMPARATIVE RESULTS BETWEEN AGFKT-DE AND ITS VARIANTS

NOSPS, NOAGFK AND NOMSD ON GECCO20MATOP

AGFKT-DE vs noSPS noAGFK noMSD
Problems W/T/L W/T/L W/T/L

I1 50/0/0 + 4/45/1 = 50/0/0 +
I2 50/0/0 + 13/37/0 + 50/0/0 +
I3 45/5/0 + 50/0/0 + 50/0/0 +
I4 50/0/0 + 12/34/4 + 50/0/0 +
I5 50/0/0 + 17/2/31 - 50/0/0 +
I6 34/9/7 + 18/26/6 + 36/13/1 +
I7 50/0/0 + 17/17/16 = 50/0/0 +
I8 38/11/1 + 12/30/8 = 48/2/0 +
I9 34/14/2 + 19/30/1 + 40/10/0 +
I10 29/20/1 + 16/34/0 + 30/18/2 +
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Fig. 1. Box plot of errors using AGFKT-DE with different d on 17 Sphere
tasks, 17 Rosenbrock tasks and 16 Ackley tasks in I4.

In all experiments, the maximum number of function eval-
uations maxFE is set to 2500000 for fair comparisons,
and each algorithm runs 20 times independently on each
problem. On each task, wilcoxon rank-sum tests are carried
out between the proposed AGFKT-DE and each competing
algorithm at a significance level of 0.05. The symbols “W/T/L”
(Win/Tie/Lose) indicate that AGFKT-DE is significantly better
than, equal to, and significantly worse than the competing
algorithm on one task, respectively. If the number of “W”
is larger than the number of “L” by 5 (10% of 50 tasks),
AGFKT-DE is said to be better than the competing algorithm
on a MaTOP following [7]. We use the signs “+”, “=” and
“-” to represent AGFKT-DE is better than, equal to and worse
than the competing algorithm on a MaTOP.

B. Parameter Investigation

The dimensionality d of subspaces is investigated in this
subsection. Taking I4 instance as an example, we test the
algorithm performance by setting d = 10, 15, 20, 25. The
statistical results are presented in Fig. 1. As shown in Fig. 1,
d = 10 gets the worst performance on tasks constructed by
sphere and ackley functions, showing that AGFKT-DE with a
too low d value can not preserve enough information of the
source populations for transfer. In contrast, d = 20 achieves
the best performance on both sphere and ackley functions.
Meanwhile, different d values get a similar performance on
rosenbrock tasks. Therefore, d = 20 is a good choice.

C. Effects of Components in AGFKT-DE

To verify the effectiveness of components, i.e., source task
selection strategy based on the similarity and performance of
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Fig. 2. Convergence curves of AGFKT-DE and competing algorithms on 2
tasks of problems I4 and I5.

tasks, adaptive geodesic flow kernel, and mutation in source
domains, three variants of AGFKT-DE, i.e., noSPS, noAGFK,
and noMSD, are compared with AGFKT-DE. Specifically,
noSPS selects n2 source tasks randomly, noAGFK performs
knowledge transfer by using the transfer matrix with a fixed
α = 1, and noMSD abandons the mutation in source domains
Eq. (13). The statistical results are reported in Table II. As
shown in Table II, AGFKT-DE performs better than noSPS and
noMSD on all problems. It shows that the proposed source task
selection strategy can choice good source tasks for transfer.
In addition, mutation in source domains can also improve
algorithm performance. Compared with noAGFK, AGFKT-
DE performs better on 6 out of 10 problems and worse on
1 problem only. It shows that the adaptively control of α in
geodesic flow kernel can improve algorithm performance. In
general, the results indicate that all the three components are
necessary for AGFKT-DE.

D. Compared with Other Algorithms

The statistical results of AGFKT-DE and competing al-
gorithms are reported in Table III. As shown in Table
III, AGFKT-DE is significantly better than DE, EBSDE,
GFMFDE, MTEA-AD, AEMTO, and EMaTO-MKT on all
problems. In addition, AGFKT-DE performs significantly bet-
ter than TRADE on 8 out of 10 problems, whereas worse on
0 problem. Compared with GFMFDE using sample geodesic
flow, the better performance of AGFKT-DE indicates that
the adaptive geodesic flow kernel is more effective by using
multiple intermediate subspaces along the geodesic flow.

To further investigate the convergence performance of all
algorithms, taking I4 and I5 as examples, two different tasks
are selected for observing the convergence curves of all
algorithms. As shown in Fig. 2, among all algorithms, AGFKT-
DE converges towards better results quickly on t1 of I4 and
t2 of I5. Thus, the proposed method has better performance
and a faster convergence speed.

V. CONCLUSION

This paper proposes an adaptive geodesic flow kernel trans-
fer method to solve MaTOP. Integrating the adaptive geodesic
flow kernel transfer method and differential evolution, a new
algorithm named AGFKT-DE is put forward. In AGFKT-
DE, the source task selection is conducted to select multiple
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TABLE III
COMPARATIVE RESULTS BETWEEN AGFKT-DE AND OTHER COMPETING ALGORITHMS ON GECCO20MATOP

AGFKT-DE vs DE EBSDE GFMFDE MTEA-AD AEMTO EMaTO-MKT TRADE
Problems W/T/L W/T/L W/T/L W/T/L W/T/L W/T/L W/T/L

I1 50/0/0 + 50/0/0 + 50/0/0 + 50/0/0 + 50/0/0 + 45/5/0 + 50/0/0 +
I2 50/0/0 + 50/0/0 + 50/0/0 + 50/0/0 + 50/0/0 + 50/0/0 + 46/4/0 +
I3 50/0/0 + 50/0/0 + 50/0/0 + 50/0/0 + 50/0/0 + 46/0/4 + 50/0/0 +
I4 50/0/0 + 50/0/0 + 36/14/0 + 50/0/0 + 35/15/0 + 50/0/0 + 24/26/0 +
I5 50/0/0 + 50/0/0 + 34/0/16 + 50/0/0 + 34/1/15 + 50/0/0 + 32/2/16 +
I6 50/0/0 + 50/0/0 + 50/0/0 + 41/9/0 + 50/0/0 + 34/8/8 + 36/14/0 +
I7 50/0/0 + 50/0/0 + 32/2/16 + 47/3/13 + 27/10/13 + 50/0/0 + 19/15/16 =
I8 50/0/0 + 40/8/2 + 39/1/10 + 49/0/1 + 47/3/0 + 49/0/1 + 18/17/15 =
I9 50/0/0 + 42/7/1 + 42/0/8 + 35/12/3 + 49/1/0 + 42/0/8 + 27/12/11 +
I10 50/0/0 + 40/9/1 + 40/2/8 + 46/3/1 + 50/0/0 + 40/0/10 + 35/5/10 +

+/=/- 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 8/2/0

source tasks, which are similar to the target task and also
perform well. In addition, the knowledge transfer is performed
along the geodesic path between source and target tasks,
in which an adaptive geodesic flow kernel is constructed
according to the performance of tasks. Experimental results
on the GECCO20MaTOP benchmark show that AGFKT-DE
is significantly better than state-of-the-art algorithms on most
problems. The proposed algorithm can well transfer knowl-
edge between tasks to improve optimization performance.
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