
Results on the Empirical Design of a Residual

Binary Multilayer Perceptron Architecture

Agustín Solís Winkler

UAP Tianguistenco

Universidad Autonoma del Estado de

Mexico

Tianguistenco, México

asolisw@uaemex.mx

ORCID [0009-0009-6063-9977]

Asdrúbal López Chau

CU Zumpango

Universidad Autonoma del Estado de

Mexico

Zumpango, México

alchau@uaemex.mx

ORCID [0000-0001-5254-0939]

Santiago Osnaya Baltierra

UAP Tianguistenco

Universidad Autonoma del Estado de

Mexico

Tianguistenco, México

sosnayab@uaemex.mx

ORCID [0000-0003-0335-6662]

Abstract—Binary neural networks have emerged as an

efficient solution for resource-constrained devices due to their

reduced computational, memory, and storage requirements.

However, binary neural networks often suffer from decreased

accuracy compared to floating-point models. In this study, we

propose a binary residual multilayer perceptron architecture

that mitigates the degradation caused by binarization through

the incorporation of normalization layers and residual

connections. By leveraging design recommendations from

state-of-the-art binary architectures, we aim to create a user-

friendly model that can be easily implemented without

requiring extensive neural network design expertise. This

paper presents the empirical results of our proposed

architecture, demonstrating its effectiveness in reducing

degradation and improving performance for hardware-

constrained devices.

Keywords—binary neural network, multilayer perceptron,

model compression, quantization, binarization, residual

connection

I. INTRODUCTION

Despite the impressive performance of state-of-the-art
deep learning models in laboratory settings, their size and
resource requirements make them impractical for real-world
applications [1]. The need to reduce the requirements of
these models especially for resource-constrained devices has
led to the development of the field of neural network
compression [2]. Within this field, quantization [3] and
binarization [4], [5] have gained significant interest due to
the simplicity and potential for reducing storage, memory,
and processing needs.

Binarization can be described as a quantizing neural
network (NN) parameters to a precision of one bit [5], [6].
This technique offers savings by replacing floating-point
(FP) operations with logical and bit-counting operations [7]
[8], [9].

Regardless their appeal, binary neural networks (BNNs)
suffer from accuracy degradation compared to their FP
counterparts [9], [10]. To address this challenge various
approaches and techniques have been developed, including
reducing quantization errors, improving cost function and
gradient approximation, employing specific training

strategies, and designing architectures for binary operation
[5].

Although a formal mathematical explanation of the
functioning of BNNs is still lacking [11], it is known that
NNs are universal approximators of continuous functions
[12]. Moreover, it has been demonstrated the universal
function approximation capability of three-layer BNNs [13],
suggesting the potential for designing a binary multilayer
perceptron capable of approximating problem solutions with
convenient accuracy.

With the potential benefits mentioned above in mind, this
study focuses on the empirical development of a residual
binary multilayer perceptron architecture. Additional layers
and residual connections are incorporated to assess whether
these architecture modifications can effectively address the
information loss caused by binarization. The objective is to
determine if the resulting accuracy can compensate for the
loss and if the precision achieved is comparable to that of a
FP multilayer perceptron, all while reducing computational
costs.

II. RELATED WORK

Several works have been developed to improve the
precision and accuracy of BNNs since their introduction in
2015. The initial models, BinaryConnect [6] and BinaryNet
[4], proposed different approaches to binarizing weights and
activations. Subsequent models, such as XNOR-NET [7] and
Binarized Neural Network [4] [14], incorporated scaling
factors and probabilistic approximations to address
information loss and improve efficiency. DoReFa-Net [15]
introduced varying precision and width, but did not show
significant improvement. In terms of architecture, Binary
DenseNet [16] and MeliusNet [17] introduced shortcut
connections and Dense Blocks, respectively, to enhance
information flow and feature capacity. These advancements
collectively aim to overcome limitations and improve the
precision of binary neural networks.

III. BINARY NEURAL NETWORK BASICS

A. Binary neural network

A binary neural network is a specific type of NN model
where the input and output layers are represented using FP

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1366

values, while the hidden layers employ binary values for
weights and activations [4]. The concept behind binarization
is to constrain the weights and activations to +1 and –1
during training. This enables the substitution of FP
multiplication and accumulation operations with faster 1-bit
XNOR and POPCOUNT operations, which outperform the
32-bit counterparts in terms of computational speed [8].

B. Binarization

The sign function (1) is used both to binarize the inputs
and as an activation function, transforming FP values into
binary values [4].

 ()

C. Backpropagation

The problem of applying backpropagation with gradient
descent to binarized neural networks poses a challenge,
because of the non-differentiability of the binarization
function. To overcome this, the Straight-Through Estimator
(STE) technique (2) is utilized to train a network with
binarized weights using the sign function [18].

 ()

Where bw represents the binary weights tensor w.

To binarize activations, the sign function is also applied
to them, and the STE is used during the backward pass,
similar to how weights are binarized. If the input to the
activation function is very large, the gradient is canceled
during the backward pass using (3) according with [8].

 ()

Where L is the loss at the output,  is the real valued

input of the activation function and b is the binary output of
the activation function.

This allows for the effective use of binary values in the
training process.

IV. IMPLEMENTATION AND TESTING

A. Multilayer perceptron

Fig. 1. Depicts a multilayer perceptron with three hidden
layers. Each layer is fully connected meaning all processing
units in a particular layer have a connection with all artificial
neurons of the preceding one [19], [20]. This is the NN base
model, whose binary equivalent used as starting point for the
proposed architecture.

Fig. 1 Multilayer perceptron

B. Building block

For the development of the residual binary multilayer
perceptron, the recommendations presented by [16], [21],
[22] for binary neural networks were taken into account.

The input and output layers are kept in FP format, while a
building block consisting of an ordered sequence of the
following layers: dropout layer, binary dense layer, and batch
normalization layer, is used as shown in Fig. 2. This block is
repeated according to the number of hidden layers in the base
model. If the perceptron has more than one hidden layer, a
shortcut connection is added, but its width is adjusted to
match that of the last hidden layer.

Fig. 2. Building block

C. Residual connection

The function of the shortcut is to restore the information
flow at the end of the network [23], where it is combined
with the output of the last hidden layer to contribute to the
calculated value of the output layer, it takes the input layer as
input and outputs the shape as the last hidden layer.

Typically, residual connections are implemented using
convolutional layers with 1x1 filters, but for the proposed

model, different methods for the implementation of shortcuts
were tried including:

• Dense layer with no activation function.

• Quantized dense layer with no activation function. 8-
bit quantization was used to reduce the memory
required by the shortcut to one-fourth of the input
layer.

• One-dimensional max pooling layer. This one
requires an additional dense layer to adjust to the
size of the last hidden layer when the width of that
layer does not exactly match the output of the
pooling layer.

D. Proposed model

Using the building block and the shortcut connection,
which is added with the last hidden layer, a residual binary
multilayer perceptron is obtained, as shown in Fig. 3.

As can be observed, the proposed architecture replaces
each hidden layer of a standard multilayer perceptron with a
block consisting of a dropout layer, a binary dense layer, and
a batch normalization layer [24]. For the conducted tests,
widths of the binary dense layers are kept the same as that of
the base perceptron, to allow confirming that the accuracy
improvements are due to the addition of layers rather than an
increase in their width. However, in real-world applications,
a scaling factor can be used to improve representativeness.

E. Model size anlysis

When implementing a model with quantized layers, k bits
are used to represent each value. For binary networks k = 1,

1367

and the size of the input is equal to the number of
parameters.

Fig. 3. Binary residual multilayer perceptron with 2 blocks

However, since the output is computed in floating point
with m bits, the size S of the binary perceptron in bits is
calculated as shown in (4). Fig. 4. Illustrates the basics for
layer size calculation [25]:

 ()

Where |V| represents the width of layer V [26], t is the
current layer, t–1 is the previous layer and T is the number of
hidden layers.

Normalization layers use floating point representation
and the same number of inputs and outputs. Therefore, if m
is the number of bits used to represent a FP value, the size
required for a normalization layer SN is determined by (5):

 ()

Dropout layers do not store any values; therefore, they
don’t require any storage.

Considering the three different implementations for
shortcut connections described earlier, the residual
connection size SA will be calculated as (6):

 ()

Where:

k – is the number of bits used for quantizing the input
layer. If k = 32, a FP shortcut is used; if k = 1 we have a
binary layer, and k = 8 represents an 8-bit quantized layer.

m – is the number of bits used to represent a FP number,
which defaults to 32,

p – pool size for shortcuts based on pooling layers, if
p = 1, no pooling layer is used.

Combining the 3 previous equations, the max size of the
proposed model when T normalization layers are used is
fully calculated using (7) combined with the shortcut size
from (6):

()

Selecting the values for k, m, and p, allows for model size
tunning according with requirements and storage restrictions.

V. TESTING

A. Dataset and hyperparameters

Three balanced datasets were used for the experiments:
MNIST, IMDB, and CIFAR10, aiming to showcase the
flexibility of the multilayer perceptron in image and text
classification tasks, both binary and categorical. Table I
summarizes the characteristics of the selected datasets.

Fig. 4. Base for layer width calculation

To keep the focus on the accuracy change when
modifying the network architecture, a similar set of values
for hyperparameters was used for all cases. In particular [11]
suggests using small batch sizes, so in our case, we used 32.
The values of the hyperparameters are shown in Table II.

TABLE I DATASETS USED FOR EPERIMENTS

Dataset Objects Input Classes Training

instances

Test

Instances

MNIST 28x28, 8 bits

graysc. images

784 10 60000 10000

IMDB Movie reviews 10000 2 25000 25000

CIFAR10 32x32, 24 bits

color images

3072 10 50000 10000

B. Perceptron variants labeling

Each variant is identified using the following notation:

 (M – DxN, DxN, DxN, S, N, Ds) ()

Where:

M – model type (F) floating-point, (B) binary

D – dropout layer before a dense layer

x – hidden dense layer width

N batch normalization after dense layer or shortcut

Ds – dropout layer before the output layer

S – shortcut (F) floating-point, (P) pooling, (Q) quantized

1368

TABLE II. HYPERPARAMETER SETTINGS

Parameter Value

Epochs 10

Batch 32

Learning rate 0.001

Dropout rate 0.05

Quantization 8 bits

Pool size 8

C. Results description

To evaluate a specific architecture of a residual binary
multilayer perceptron model, comprehensive tests were
conducted, generating various combinations of dropout
layers, normalization layers, and shortcuts based on a
predefined base design. The resulting models underwent
training and evaluation to measure accuracy and size.

Memory requirements are influenced by layer selection,
quantity, and the type of residual connection employed (refer
to section IV.E).

In quantized and FP shortcuts, the parameter count equals
the product of the input layer's width and the last hidden
layer's width. However, if an 8-bit representation is utilized,
the quantized shortcut requires only one-fourth of the
memory compared to the FP shortcut. Pooling-based
shortcuts reduce parameter count based on the chosen pool
size.

These considerations allow for a priori insights into
architecture size, even before construction. Furthermore,
dropout layers enhance accuracy without increasing model
size when used in conjunction with normalization layers.

The subsequent tables present average accuracy achieved
by each layer for the tested datasets. Multivariable regression
analysis supports these values. For reference, the first three
rows of each table compare accuracy among FP base models,
equivalent binary models, and the best-performing variant of
the proposed model. Additionally, a second table compares
size and accuracy across different model variants, including
FP, pooling, quantized, and the best-performing variants,
with the binary equivalent model listed last.

D. Results with MNIST and CIFAR10

Tests with the MNIST dataset show that normalization
layers N1, N2, N3, lead to better accuracy of the models, and
that is improved with the use of pooling shortcuts P. Table
III shows the best performing variants outperform the Binary
equivalent and get close the FP architecture.

Table IV displays that the binary equivalent is 0.04 size
of the FP models, however we can observe best performing
variants growing up to 0.16.

It is worth noting that the CIFAR10 dataset exceeds the
classification capabilities of perceptrons, which can achieve
a maximum accuracy of 0.59 for this dataset only when
extensive preprocessing is applied to the input, including
feature augmentation and image cropping [93]. However,
this case is presented without using preprocessing to
showcase the benefits of the proposed architecture.

TABLE III. AVERAGE ACCURACY FOR MNIST

For CIFAR10, shortcuts based on pooling layers, provide
best results as shown in Table V. 3-layer model outperforms
the original FP model. Again, best accuracy models stay
under 0.15 from the FP model.

TABLE IV. ACCURACY VS RELATIVE SIZE FOR MNIST

E. Results with IMDB

Table VI shows again that normalization layers improve
the perceptron´s accuracy, and for this dataset quantized and
FP residual connections work to improve the result. It can be
observed that best variant outperforms the original FP
perceptron.

For the IMDB dataset, the best performing models grow
up to 0.28 of the original architecture with a remarkable 3-
layer model that outperforms the original perceptron with
0.09 of its size. As can be seen on Table VII.

VI. DISCUSSION

The experimental investigation conducted in this study
centered on the development of the proposed residual binary
multilayer perceptron architecture. The results obtained
convincingly demonstrate that models adhering to the
proposed building block consistently outperform their binary

1369

counterparts. Remarkably, certain model variants even
surpass the performance of floating-point (FP) models. This
noteworthy outcome can be ascribed to the salutary impact
of normalization layers in augmenting the binary model's
accuracy.

TABLE V. ACCURACY VS RELATIVE SIZE FOR CIFAR10

Moreover, the influence of residual connections is
distinctly beneficial, as visually depicted in Figure 5
(depicting individual contributions of normalization layers)
and Figure 6 (clearly illustrating the positive influence of
residual connections on overall results).

TABLE VI AVERAGE ACCURACY FOR IMDB

The empirical evidence garnered from the conducted
experiments strongly suggests that the incorporation of
normalization layers and shortcuts within a binary multilayer
perceptron constitutes an effective strategy for enhancing its
performance and accuracy.

It is pertinent to note that, for models handling real-
valued inputs, such as images, th implementation of a
residual connection achieved by combining a maximum
pooling layer followed by a dense FP layer proves to be the
best choice. In contrast, for text datasets employing one-hot
encoding, quantized shortcuts exhibit superior performance.

Fig. 7. shows how the performance of the best variant of
the developed perceptron outperforms the original FP
perceptron in two and three-layer models, and in all cases, it
is better than the equivalent binary perceptron.

TABLE VII ACCURACY VS RELATIVE SIZE FOR IMDB

Table VIII provides an overview of the changes in model
size compared to the FP perceptron. The binary equivalent
model has a size of 0.04, while the FP shortcuts result in a
size of 0.78. It is worth noting that the Quantized and
Pooling-based shortcuts offer more favorable options in
terms of size.

Fig. 5. Normalization layer contribution

VII. CONCLUSIONS

In summary, this study demonstrates that the modifying
the architecture of a binary multilayer perceptron can
significantly improve its performance in terms of accuracy,
while preserving a compact model size. The the inclusion of
normalization layers and residual connections is an effective
strategy to achieve this objective, therefore, it is
recommended that this technique be judiciously integrated
into forthcoming developments of machine learning systems
focused on resource-constrained devices, particularly those
founded upon multilayer perceptrons.

1370

VIII. FUTURE WORK

The current study does not conduct parameter tuning to
solely showcase the benefits of normalization layers and
residual connections. However, it's crucial to explore
hyperparameters like learning rates, batch sizes, and
optimization for extensive model fine-tuning, identifying
optimal configurations across diverse datasets and scenarios.

Fig. 6. Shortcut contribution to accuracy

A second direction involves further exploration in the
binaryization of other deep learning models. This exploration
will delve into techniques that enable the replacement of
normalization layers with alternative methods that require
fewer computations, as well as the investigation of the
utilization of binary optimizers aiming to further reduce the
floating-point operations required for both model training
and inference.

Fig. 7. Accuracy comparing floating-point, binary and proposed

TABLE VIII. RELATIVE SIZE ACCORDING WITH SHORTCUT USED

REFERENCES

[1] S. Pokhrel, “4 Popular Model Compression Techniques

Explained,” Xailient, Jan. 19, 2022. https://xailient.com/blog/4-
popular-model-compression-techniques-explained/ (accessed

Mar. 01, 2023).

[2] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A Survey of Model
Compression and Acceleration for Deep Neural Networks,” Oct.

2017, [Online]. Available: http://arxiv.org/abs/1710.09282

[3] P. E. Novac, G. B. Hacene, A. Pegatoquet, B. Miramond, and V.
Gripon, “Quantization and deployment of deep neural networks

on microcontrollers,” Sensors, vol. 21, no. 9, May 2021, doi:

10.3390/s21092984.

[4] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y.

Bengio, “Binarized Neural Networks: Training Deep Neural

Networks with Weights and Activations Constrained to +1 or -1,”
Feb. 2016, [Online]. Available: http://arxiv.org/abs/1602.02830

[5] C. Yuan and S. S. Agaian, “A comprehensive review of Binary

Neural Network,” Artificial Intelligence Review 2023, pp. 1–65,
Oct. 2021, doi: 10.1007/S10462-023-10464-W/METRICS.

[6] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect:

Training Deep Neural Networks with binary weights during
propagations,” Nov. 2015.

[7] M. Rastegari, V. Ordonez, J. Redmon, and Farhadi Ali, “XNOR-

Net: ImageNet Classification Using Binary Convolutional
Networks,” 2016.

[8] T. Simons and D. J. Lee, “A review of binarized neural

networks,” Electronics (Switzerland), vol. 8, no. 6. MDPI AG,
Jun. 01, 2019. doi: 10.3390/electronics8060661.

[9] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary

Neural Networks: A Survey,” Mar. 2020, doi:
10.1016/j.patcog.2020.107281.

[10] J. Bethge, H. Yang, M. Bornstein, and C. Meinel, “Back to

Simplicity: How to Train Accurate BNNs from Scratch?,” Jun.

2019, [Online]. Available: http://arxiv.org/abs/1906.08637

[11] M. Alizadeh, J. Fernández-Marqués, N. D. Lane, and Y. Gal, “An

empirical study of binary neural networks’ optimization.,” in
International Conference on Learning Representations, 2018.

[12] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesus,

Neural Network Design, 2nd ed. 1996.
[13] A. J. Redfern, L. Zhu, and M. K. Newquist, “BCNN: A Binary

CNN With All Matrix Ops Quantized To 1 Bit Precision,” 2021.

[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y.
Bengio, “Quantized Neural Networks: Training Neural Networks

with Low Precision Weights and Activations,” 2018.

[15] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-
Net: Training Low Bitwidth Convolutional Neural Networks with

Low Bitwidth Gradients,” Jun. 2016, [Online]. Available:

http://arxiv.org/abs/1606.06160
[16] J. Bethge, H. Yang, M. Bornstein, and C. Meinel,

“BinaryDenseNet: Developing an Architecture for Binary Neural
Networks,” 2019. [Online]. Available: https://github.com/hpi-

xnor/BMXNet-v2

[17] J. Bethge, C. Bartz, H. Yang, Y. Chen, and C. Meinel,
“MeliusNet: Can Binary Neural Networks Achieve MobileNet-

level Accuracy?,” Jan. 2020.

[18] C. Yuan and S. S. Agaian, “A comprehensive review of Binary
Neural Network,” Feb. 2022, [Online]. Available:

http://arxiv.org/abs/2110.06804

[19] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[20] C. Aggarwal, Artificial Intelligence. A textbook, 1st ed.

Swtzerland: Springer Nature Switzerland AG, 2021.
[21] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein,

“Training quantized nets: A deeper understanding.,” Adv Neural

Inf Process Syst, pp. 5811–5821, 2017.
[22] H. Kim, K. Kim, J. Kim, and J.-J. Kim, “Reducing gradient

mismatch in binary activation network by coupling binary

activations.,” 2020.
[23] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng, “Bi-

real net: Enhancing the performance of 1-bit cnns with improved

representational capability and advanced training algorithm.,” in
Proceedings of the European conference on computer vision

(ECCV), 2018.

[24] A. Solis Winkler, J. L. Tapia Fabela, and S. Osnaya Baltierra,
“Diseño empírico de una arquitectura de perceptrón multicapa

binario residual,” Research i, no. In press, 2023.

[25] Google, “Keras: the Python deep learning API,” keras.io, 2023.
https://keras.io/ (accessed Feb. 19, 2023).

[26] S. Shalev-Shwartz and S. Ben-David, Understanding Machine

Learning: From Theory to Algorithms, First. New York:
Cambridge University Press, 2014. [Online]. Available:

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

1371

