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Abstract—Binary neural networks have emerged as an 

efficient solution for resource-constrained devices due to their 

reduced computational, memory, and storage requirements. 

However, binary neural networks often suffer from decreased 

accuracy compared to floating-point models. In this study, we 

propose a binary residual multilayer perceptron architecture 

that mitigates the degradation caused by binarization through 

the incorporation of normalization layers and residual 

connections. By leveraging design recommendations from 

state-of-the-art binary architectures, we aim to create a user-

friendly model that can be easily implemented without 

requiring extensive neural network design expertise. This 

paper presents the empirical results of our proposed 

architecture, demonstrating its effectiveness in reducing 

degradation and improving performance for hardware-

constrained devices. 

Keywords—binary neural network, multilayer perceptron, 

model compression, quantization, binarization, residual 

connection 

I. INTRODUCTION  

Despite the impressive performance of state-of-the-art 
deep learning models in laboratory settings, their size and 
resource requirements make them impractical for real-world 
applications [1]. The need to reduce the requirements of 
these models especially for resource-constrained devices has 
led to the development of the field of neural network 
compression [2]. Within this field, quantization [3] and 
binarization [4], [5] have gained significant interest due to 
the simplicity and potential for reducing storage, memory, 
and processing needs.  

Binarization can be described as a quantizing neural 
network (NN) parameters to a precision of one bit [5], [6]. 
This technique offers savings by replacing floating-point 
(FP) operations with logical and bit-counting operations [7] 
[8], [9]. 

Regardless their appeal, binary neural networks (BNNs) 
suffer from accuracy degradation compared to their FP 
counterparts [9], [10]. To address this challenge various 
approaches and techniques have been developed, including 
reducing quantization errors, improving cost function and 
gradient approximation, employing specific training 

strategies, and designing architectures for binary operation 
[5].  

Although a formal mathematical explanation of the 
functioning of BNNs is still lacking [11], it is known that 
NNs are universal approximators of continuous functions 
[12]. Moreover, it has been demonstrated the universal 
function approximation capability of three-layer BNNs [13], 
suggesting the potential for designing a binary multilayer 
perceptron capable of approximating problem solutions with 
convenient accuracy. 

With the potential benefits mentioned above in mind, this 
study focuses on the empirical development of a residual 
binary multilayer perceptron architecture. Additional layers 
and residual connections are incorporated to assess whether 
these architecture modifications can effectively address the 
information loss caused by binarization. The objective is to 
determine if the resulting accuracy can compensate for the 
loss and if the precision achieved is comparable to that of a 
FP multilayer perceptron, all while reducing computational 
costs. 

II. RELATED WORK 

Several works have been developed to improve the 
precision and accuracy of BNNs since their introduction in 
2015. The initial models, BinaryConnect [6] and BinaryNet 
[4], proposed different approaches to binarizing weights and 
activations. Subsequent models, such as XNOR-NET [7] and 
Binarized Neural Network [4] [14], incorporated scaling 
factors and probabilistic approximations to address 
information loss and improve efficiency. DoReFa-Net [15] 
introduced varying precision and width, but did not show 
significant improvement. In terms of architecture, Binary 
DenseNet [16] and MeliusNet [17] introduced shortcut 
connections and Dense Blocks, respectively, to enhance 
information flow and feature capacity. These advancements 
collectively aim to overcome limitations and improve the 
precision of binary neural networks. 

III. BINARY NEURAL NETWORK BASICS 

A. Binary neural network 

A binary neural network is a specific type of NN model 
where the input and output layers are represented using FP 
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values, while the hidden layers employ binary values for 
weights and activations [4]. The concept behind binarization 
is to constrain the weights and activations to +1 and –1 
during training. This enables the substitution of FP 
multiplication and accumulation operations with faster 1-bit 
XNOR and POPCOUNT operations, which outperform the 
32-bit counterparts in terms of computational speed [8]. 

B. Binarization 

The sign function (1) is used both to binarize the inputs 
and as an activation function, transforming FP values into 
binary values [4]. 

  () 

C. Backpropagation  

The problem of applying backpropagation with gradient 
descent to binarized neural networks poses a challenge, 
because of the non-differentiability of the binarization 
function. To overcome this, the Straight-Through Estimator 
(STE) technique (2) is utilized to train a network with 
binarized weights using the sign function [18]. 

  () 

Where bw represents the binary weights tensor w. 

To binarize activations, the sign function is also applied 
to them, and the STE is used during the backward pass, 
similar to how weights are binarized. If the input to the 
activation function is very large, the gradient is canceled 
during the backward pass using (3) according with [8]. 

  () 

Where L is the loss at the output,  is the real valued 

input of the activation function and b is the binary output of 
the activation function. 

This allows for the effective use of binary values in the 
training process. 

IV. IMPLEMENTATION AND TESTING 

A. Multilayer perceptron 

Fig. 1. Depicts a multilayer perceptron with three hidden 
layers. Each layer is fully connected meaning all processing 
units in a particular layer have a connection with all artificial 
neurons of the preceding one [19], [20]. This is the NN base 
model, whose binary equivalent used as starting point for the 
proposed architecture. 

 

Fig. 1 Multilayer perceptron 

B. Building block 

For the development of the residual binary multilayer 
perceptron, the recommendations presented by [16], [21], 
[22] for binary neural networks were taken into account. 

The input and output layers are kept in FP format, while a 
building block consisting of an ordered sequence of the 
following layers: dropout layer, binary dense layer, and batch 
normalization layer, is used as shown in Fig. 2. This block is 
repeated according to the number of hidden layers in the base 
model. If the perceptron has more than one hidden layer, a 
shortcut connection is added, but its width is adjusted to 
match that of the last hidden layer. 

 

Fig. 2. Building block 

C. Residual connection 

The function of the shortcut is to restore the information 
flow at the end of the network [23], where it is combined 
with the output of the last hidden layer to contribute to the 
calculated value of the output layer, it takes the input layer as 
input and outputs the shape as the last hidden layer. 

Typically, residual connections are implemented using 
convolutional layers with 1x1 filters, but for the proposed 

model, different methods for the implementation of shortcuts 
were tried including: 

• Dense layer with no activation function. 

• Quantized dense layer with no activation function. 8-
bit quantization was used to reduce the memory 
required by the shortcut to one-fourth of the input 
layer. 

• One-dimensional max pooling layer. This one 
requires an additional dense layer to adjust to the 
size of the last hidden layer when the width of that 
layer does not exactly match the output of the 
pooling layer. 

D. Proposed model 

Using the building block and the shortcut connection, 
which is added with the last hidden layer, a residual binary 
multilayer perceptron is obtained, as shown in Fig. 3. 

As can be observed, the proposed architecture replaces 
each hidden layer of a standard multilayer perceptron with a 
block consisting of a dropout layer, a binary dense layer, and 
a batch normalization layer [24]. For the conducted tests, 
widths of the binary dense layers are kept the same as that of 
the base perceptron, to allow confirming that the accuracy 
improvements are due to the addition of layers rather than an 
increase in their width. However, in real-world applications, 
a scaling factor can be used to improve representativeness. 

E. Model size anlysis 

When implementing a model with quantized layers, k bits 
are used to represent each value. For binary networks k = 1, 
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and the size of the input is equal to the number of 
parameters.  

 

 

Fig. 3.  Binary residual multilayer perceptron with 2 blocks 

However, since the output is computed in floating point 
with m bits, the size S of the binary perceptron in bits is 
calculated as shown in (4). Fig. 4. Illustrates the basics for 
layer size calculation [25]: 

  () 

Where |V| represents the width of layer V [26], t is the 
current layer, t–1 is the previous layer and T is the number of 
hidden layers. 

Normalization layers use floating point representation 
and the same number of inputs and outputs. Therefore, if m 
is the number of bits used to represent a FP value, the size 
required for a normalization layer SN is determined by (5): 

  () 

Dropout layers do not store any values; therefore, they 
don’t require any storage. 

Considering the three different implementations for 
shortcut connections described earlier, the residual 
connection size SA will be calculated as (6): 

  () 

Where:  

k – is the number of bits used for quantizing the input 
layer. If k = 32, a FP shortcut is used; if k = 1 we have a 
binary layer, and k = 8 represents an 8-bit quantized layer.  

m – is the number of bits used to represent a FP number, 
which defaults to 32,  

p – pool size for shortcuts based on pooling layers,   if    
p = 1, no pooling layer is used. 

Combining the 3 previous equations, the max size of the 
proposed model when T normalization layers are used is 
fully calculated using (7) combined with the shortcut size 
from (6): 

() 

Selecting the values for k, m, and p, allows for model size 
tunning according with requirements and storage restrictions.  

V. TESTING 

A. Dataset and hyperparameters 

Three balanced datasets were used for the experiments: 
MNIST, IMDB, and CIFAR10, aiming to showcase the 
flexibility of the multilayer perceptron in image and text 
classification tasks, both binary and categorical. Table I 
summarizes the characteristics of the selected datasets. 

 

Fig. 4. Base for layer width calculation 

To keep the focus on the accuracy change when 
modifying the network architecture, a similar set of values 
for hyperparameters was used for all cases. In particular [11] 
suggests using small batch sizes, so in our case, we used 32. 
The values of the hyperparameters are shown in Table II. 

 

TABLE I DATASETS USED FOR EPERIMENTS 

Dataset Objects Input Classes Training 

instances 

Test 

Instances 

MNIST 28x28, 8 bits 

graysc. images 

784 10 60000 10000 

IMDB Movie reviews 10000 2 25000 25000 

CIFAR10 32x32, 24 bits 

color images 

3072 10 50000 10000 

 

B. Perceptron variants labeling 

Each variant is identified using the following notation: 

  (M – DxN, DxN, DxN, S, N, Ds)  () 

Where: 

M – model type (F) floating-point, (B) binary 

D – dropout layer before a dense layer  

x – hidden dense layer width 

N  batch normalization after dense layer or shortcut  

Ds – dropout layer before the output layer 

S – shortcut (F) floating-point, (P) pooling, (Q) quantized 
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TABLE II.  HYPERPARAMETER SETTINGS 

Parameter Value 

Epochs 10 

Batch 32 

Learning rate 0.001 

Dropout rate 0.05 

Quantization 8 bits 

Pool size 8 

 

C. Results description 

To evaluate a specific architecture of a residual binary 
multilayer perceptron model, comprehensive tests were 
conducted, generating various combinations of dropout 
layers, normalization layers, and shortcuts based on a 
predefined base design. The resulting models underwent 
training and evaluation to measure accuracy and size. 

Memory requirements are influenced by layer selection, 
quantity, and the type of residual connection employed (refer 
to section IV.E). 

In quantized and FP shortcuts, the parameter count equals 
the product of the input layer's width and the last hidden 
layer's width. However, if an 8-bit representation is utilized, 
the quantized shortcut requires only one-fourth of the 
memory compared to the FP shortcut. Pooling-based 
shortcuts reduce parameter count based on the chosen pool 
size. 

These considerations allow for a priori insights into 
architecture size, even before construction. Furthermore, 
dropout layers enhance accuracy without increasing model 
size when used in conjunction with normalization layers. 

The subsequent tables present average accuracy achieved 
by each layer for the tested datasets. Multivariable regression 
analysis supports these values. For reference, the first three 
rows of each table compare accuracy among FP base models, 
equivalent binary models, and the best-performing variant of 
the proposed model. Additionally, a second table compares 
size and accuracy across different model variants, including 
FP, pooling, quantized, and the best-performing variants, 
with the binary equivalent model listed last. 

D. Results with MNIST and CIFAR10 

Tests with the MNIST dataset show that normalization 
layers N1, N2, N3, lead to better accuracy of the models, and 
that is improved with the use of pooling shortcuts P. Table 
III shows the best performing variants outperform the Binary 
equivalent and get close the FP architecture. 

Table IV displays that the binary equivalent is 0.04 size 
of the FP models, however we can observe best performing 
variants growing up to 0.16. 

It is worth noting that the CIFAR10 dataset exceeds the 
classification capabilities of perceptrons, which can achieve 
a maximum accuracy of 0.59 for this dataset only when 
extensive preprocessing is applied to the input, including 
feature augmentation and image cropping [93]. However, 
this case is presented without using preprocessing to 
showcase the benefits of the proposed architecture. 

TABLE III.  AVERAGE ACCURACY FOR MNIST 

 

For CIFAR10, shortcuts based on pooling layers, provide 
best results as shown in Table V. 3-layer model outperforms 
the original FP model. Again, best accuracy models stay 
under 0.15 from the FP model. 

TABLE IV. ACCURACY VS RELATIVE SIZE FOR MNIST 

 

E. Results with IMDB 

Table VI shows again that normalization layers improve 
the perceptron´s accuracy, and for this dataset quantized and 
FP residual connections work to improve the result. It can be 
observed that best variant outperforms the original FP 
perceptron. 

For the IMDB dataset, the best performing models grow 
up to 0.28 of the original architecture with a remarkable 3-
layer model that outperforms the original perceptron with 
0.09 of its size. As can be seen on Table VII. 

VI. DISCUSSION 

The experimental investigation conducted in this study 
centered on the development of the proposed residual binary 
multilayer perceptron architecture. The results obtained 
convincingly demonstrate that models adhering to the 
proposed building block consistently outperform their binary 
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counterparts. Remarkably, certain model variants even 
surpass the performance of floating-point (FP) models. This 
noteworthy outcome can be ascribed to the salutary impact 
of normalization layers in augmenting the binary model's 
accuracy.  

TABLE V.  ACCURACY VS RELATIVE SIZE FOR CIFAR10 

 

Moreover, the influence of residual connections is 
distinctly beneficial, as visually depicted in Figure 5 
(depicting individual contributions of normalization layers) 
and Figure 6 (clearly illustrating the positive influence of 
residual connections on overall results). 

TABLE VI  AVERAGE ACCURACY FOR IMDB 

 

The empirical evidence garnered from the conducted 
experiments strongly suggests that the incorporation of 
normalization layers and shortcuts within a binary multilayer 
perceptron constitutes an effective strategy for enhancing its 
performance and accuracy. 

It is pertinent to note that, for models handling real-
valued inputs, such as images, th implementation of a 
residual connection achieved by combining a maximum 
pooling layer followed by a dense FP layer proves to be the 
best choice. In contrast, for text datasets employing one-hot 
encoding, quantized shortcuts exhibit superior performance.  

Fig. 7. shows how the performance of the best variant of 
the developed perceptron outperforms the original FP 
perceptron in two and three-layer models, and in all cases, it 
is better than the equivalent binary perceptron. 

TABLE VII ACCURACY VS RELATIVE SIZE FOR IMDB 

 

Table VIII provides an overview of the changes in model 
size compared to the FP perceptron. The binary equivalent 
model has a size of 0.04, while the FP shortcuts result in a 
size of 0.78. It is worth noting that the Quantized and 
Pooling-based shortcuts offer more favorable options in 
terms of size. 

 

Fig. 5. Normalization layer contribution 

VII. CONCLUSIONS 

In summary, this study demonstrates that the modifying 
the architecture of a binary multilayer perceptron can 
significantly improve its performance in terms of accuracy, 
while preserving a compact model size. The the inclusion of 
normalization layers and residual connections is an effective 
strategy to achieve this objective, therefore, it is 
recommended that this technique be judiciously integrated 
into forthcoming developments of machine learning systems 
focused on resource-constrained devices, particularly those 
founded upon multilayer perceptrons. 
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VIII. FUTURE WORK 

The current study does not conduct parameter tuning to 
solely showcase the benefits of normalization layers and 
residual connections. However, it's crucial to explore 
hyperparameters like learning rates, batch sizes, and 
optimization for extensive model fine-tuning, identifying 
optimal configurations across diverse datasets and scenarios. 

 

Fig. 6. Shortcut contribution to accuracy 

A second direction involves further exploration in the 
binaryization of other deep learning models. This exploration 
will delve into techniques that enable the replacement of 
normalization layers with alternative methods that require 
fewer computations, as well as the investigation of the 
utilization of binary optimizers aiming to further reduce the 
floating-point operations required for both model training 
and inference. 

 

Fig. 7.  Accuracy comparing floating-point, binary and proposed 

TABLE VIII. RELATIVE SIZE ACCORDING WITH SHORTCUT USED 
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