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Abstract—The complexity of multi-robot systems (MRS) in-
volves the challenging task of robot coordination to achieve
the system’s goal. That indicates the necessity to integrate
automated planning to mitigate disruptions and continually
adjust the behavior of robots in the presence of failures.
Adequate architectures to integrate MRS with automated plan-
ning present a gap in the literature, indicating the necessity
for further research. To address this gap, we present the
Multi-Robot System Architecture with Plan (MuRoSA-Plan) for
mission coordination of heterogeneous robots illustrated with a
healthcare service case. This work contribution is the MuRoSA-
Plan architecture to MRS domain applications focusing on plan
recovery. The experimental results show that MuRoSA-Plan
generates runtime-adapted plans satisfying the goals of the
multi-robot coordination case mitigating mission disruptions.

Index Terms—Automated Planning, Multi-robot Systems,
Multiple Robotic Systems, Plan Recovery

I. INTRODUCTION

Multi-Robot System (MRS) is a complex system that needs
to work in real-world environments [1], [2]. However, it is
only sometimes possible to foresee environmental changes
and requirements before systems deployment. Besides, the
coordination between heterogeneous robots in the system is
challenging [3]. Automated planning is a possible solution
to handle such complexity by creating the best plan and
recovering it in case of system failures (i.e., replanning or
repairing). Thus, the plan recovery process is essential when
systems are running in dynamic environments [4]–[6].

One of the complexities of MRSs comes from the robot
coordination needed to achieve the system’s goals [7]. Like
a multi-agent system, agents’ coordination, communication,
and interaction are challenging problems [8]–[10]. A plan-
ning problem formally defined is a tuple formed by all avail-
able actions, logical propositions, the environment’s initial
state I , and the goal G. Classical planning only sometimes
considers dynamism in the real-world environment [11].
Most planning techniques assume that changes come from the
agent’s action, which is only sometimes accurate in dynamic
scenarios. The plan can become unavailable after an unex-
pected event, needing plan recovery. Such a complex scenario
is related to multi-agent planning involving coordinating the
resources and activities of multiple agents [12]–[14].

Currently, many studies focus on solutions with coordina-
tion and planning problems [15]–[20]. They create a central-
ized form of analyzing the environment’s state to coordinate
the plan execution. The works involve MRS focusing on ap-
plications with goal decomposition, task allocation strategies,

quality of attributes/plan adaptation using probabilistic and
temporal planning, interactive coordination of heterogeneous
robotic teams, relating architectures, frameworks, and robot
operating systems. But the plan’s recovery and the dynamism
in environments are only sometimes the focus. Nevertheless,
the literature presents approaches to tailor robotic mission
adaptation [21], [22], architectural design patterns to MRS in-
volving heterogeneous robots [23] and agent planning archi-
tectures [24], [25]. However, automated planning techniques
integrated into MRS architectures still need to be included.

This work focuses on the robots’ coordination team’s inte-
gration to plan recovery problems with the proposition of an
MRS architecture. We present a Multi-Robot System Archi-
tecture with Plan (MuRoSA-Plan) to allow the coordination
of heterogeneous robots incorporating plan recovery and exe-
cution in dynamic environments. We illustrate the MuRoSA-
Plan with a multi-robot mission in a healthcare service case.
This work’s main contributions are an MRS architecture
(MuRoSA-Plan) focusing on plan recovery for dynamic envi-
ronments. The design and implementation of an artifact pro-
totype for the multi-robot mission coordination case integrat-
ing the ROS2 [18] and the IPyHOP [26] planner (Hierarchical
Task Networks - HTN) with code available to promote open
science (https://github.com/CJTS/missioncontrol-planning).

The rest of the manuscript presents in Section II related
work, in Section III the MuRoSA-Plan, in Section IV the
experiments, and in Section VI conclusion and future work.

II. RELATED WORK

This section reports an outline of related work conducted
using a systematic literature review protocol [27] with the
Parsifal tool [28]. The following libraries were used as
sources to direct the search process: ACM Digital Library,
IEEEXplore, ISI Web of Science, and Scopus. The keywords
include automated planning and multi-robot systems or mul-
tiple robotic systems with years from 2020 to 2022.

Integrating automated planning to MRS, the authors in [19]
present a layered architecture with deliberation modules such
as robot actions, reactor, and scheduling for the logistics
league simulation. The work of [20] has an architecture
for integrating task planning with ROS1, a set of libraries
and tools for building robotic systems. The work of [18]
implements a task planning architecture for the recent ROS1
version (ROS2).

Although there is extensive literature on MRS and multi-
agent planning, few works focus on recovery strategies

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1668



in dynamic environments (i.e., replanning and repairing).
Although there is extensive literature on MRS and multi-
agent planning, few works focus on recovery strategies
in dynamic environments (i.e., replanning and repairing).
The result of [13] evaluates centralized and decentralized
strategies to affect decision-making in intralogistics problems
with a technique to identify the most suitable one. The au-
thors investigated how strongly connected homogeneous and
heterogeneous mobile robots are according to their nature,
conditions, and action execution effects. Results show that
robot’s nature influences the system’s performance more than
the robot’s coupling level.

Table I presents an outline of related work. Note that
there are three among ten covering MRS architecture. The
architecture of [19] focuses on deliberation layers while [18]
is more similar to MuRoSA-Plan with nodes implementing
problem domain, actions, and applications, but without a
coordinator to monitor the robot’s tasks to form robot teams
to replan and recover. Thus, MuRoSA-Plan is a component-
oriented architecture that implements MRSs for different
domain missions that can use other planners. Note that the
MuRoSA-Plan architecture is the only work that embodies
all characteristics with automated planning and plan recovery
directed to dynamic environments.

TABLE I
RELATED WORK OUTLINE.

Reference Automated
Planning

Plan
Recovery

Dynamic
Environment

MRS
Architecture

Carreno et al. (2022) [22]
Lesire et al. (2022) [15]
Martı́n et al. (2021) [18]
González et al. (2020) [19]
MuRoSA-Plan

III. PLAN RECOVERY ARCHITECTURE

This section presents MuRoSA-Plan including the health-
care case (Section III-A, the architecture (Section III-B),
failure types (Section III-C), implementation aspects (Sec-
tion III-D), and the execution process (Section III-E).

A. Healthcare Service Case

In this case, a multi-robot mission in healthcare service
uses the Lab Samples Logistics, a scenario adapted from
the RoboMax exemplars [21]. Figure 1 illustrates the hos-
pital environment with seven patient rooms (PR1-7) and the
entrance area (door), one lab room (LAB), and the path
segment with intersections where the robots navigate. In
the Lab Samples Logistics mission, robots should transport
patient samples from their rooms to the laboratory. A nurse is
responsible for collecting the samples and requesting delivery
to the laboratory, identifying the room where the collection
should take place. Robots have a securely locked drawer to
navigate to the collection room, identify the nurse, approach
her, open the drawer, await the deposit, close the drawer
and then navigate to the laboratory carrying the sample. In
the laboratory, the robotic arm picks up samples, scans the
barcode in each sample, sorts them, and loads them into the
entry module of the analysis machines.

Fig. 1. Hospital layout.

We use the GORE perspective to model the Lab Samples
Logistics. Figure 2 presents the late requirements using Tro-
pos [29] as an agent-oriented software development method-
ology based on the Intentional Strategic Actor Relationships
(I STAR or i*) modeling framework [30], developed in the
piStar tool [31]. Tropos allows modeling the functionalities
of a software application based on objectives through five
diagrams: early requirements, late requirements, architectural
design, detailed design, and implementation.

In the late requirements diagram, note that there are tasks
assigned to different agents (robots and people), including
human health professionals (ellipses), coordinators, robot
collectors, and robotic arms (cut ellipses). The -is a- link
represents the type of agents (e.g., nurse and doctor are health
professionals). The rectangles represent resources used by
agents to achieve the goals (e.g., biological samples). The
rounded-corner rectangles represent the goals (e.g., navigate
to room, receive sample). The hexagons represent the tasks
to be executed by agents, and the connection arrows point
from the issuer to the receiver.

Fig. 2. Tropos late requirements diagram of the ’Lab Samples Logistics.’

Planning allows MRSs to reach their goals. Complex cases
may have many requirements configurations to achieve soft-
ware goals. Automated planning searches for optimal plans
for high-level goals or tasks considering the state space for
a specific domain problem. To use a planner, it is necessary
to specify the problem domain (i.e., requirements) and the
current state in the planner’s notation. Listing 1 presents in
IPyHOP syntax for the robots’ pickup delivery goal in the
healthcare service problem described in Figure 2 as input to
the IPyHOP planner [26].
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from i pyhop import Methods
methods = Methods ( )

def p i c k u p a n d d e l i v e r s a m p l e ( s t a t e , r obo t , nurse
, arm ) :

i f s t a t e . sample [ n u r s e ] == True :
re turn [

( ’ m approach nurse ’ , r obo t , n u r s e ) ,
( ’ m pick sample ’ , r obo t , n u r s e ) ,
( ’ m approach arm ’ , robo t , arm , n u r s e ) ,
( ’ m unload sample ’ , robo t , arm ) ]

methods . d e c l a r e t a s k m e t h o d s (
’ m p i c k u p a n d d e l i v e r s a m p l e ’ , [

p i c k u p a n d d e l i v e r s a m p l e ] )

Listing 1. Robot’s pickup delivery goal using the IPyHOP planner syntax.

B. Architecture

Figure 3 presents the component-oriented architecture
MuRoSA-Plan that includes design time and runtime com-
ponents. Advantages of a component-oriented architecture
include but are not limited to faster development and easy
maintenance. In design time, the System Integrator is respon-
sible for creating the Problem Domain application compo-
nent as the translation from the Goal-Oriented Requirements
Engineering (GORE) model [32] (Figure 2) to the IPyHOP
planner syntax [26] (Listing 1). The design time needs
a domain expert to define the mission requirements. The
runtime Coordinator and Robot components exchange local
plan and mission properties. The Coordinator is responsible
for the mission’s control, including robot team formation
considering capabilities to solve the problem, planning, and
plan recovery.

The Coordinator component stores Mission Data needed to
perform the missions (mission, available robots, environment
state, and formed teams). With that information, the Coordi-
nator can compose the best robot team to perform the defined
mission using its Team Formation process. Then, using the
automated planner, the robot team, the environment state,
and the problem domain, the Coordinator’s Planner module
can create a mission plan with the Planning process. After
that, a planning execution cycle starts with the Coordinator
monitoring the environment for unexpected changes using the
Monitor and Sensors module and receiving feedback from the
robots. This process is called Plan Recovery.

After creating the local mission, the robots receive the plan
from the Coordinator and start the execution by perform-
ing tasks sequentially as defined in their Task Sequencing
process. The Robot’s Task module executes the current task
using their sensors and actuators devices. The Synchroniza-
tion Manager module is responsible for synchronizing tasks
performed by multiple robots. We highlight that in MuRoSA-
Plan, the plan is defined in runtime by the Coordinator com-
ponent. In the presence of failures, the Coordinator replans
the original plan to redistribute to the robots to mitigate MRS
disruptions.

C. Failure Types

Failure in automated planning considering real-world en-
vironments is a research area in itself [33], [34]. In [35],

the authors define an ontological characterization of fail-
ure, including the practical concepts to formulate causal
explanations of failure and integrated knowledge of available
resources with the capabilities of robots and other potential
cooperative agents in the environment.

This work uses two types of failure perception, reactive
and preemptive. The reactive one happens when the robot
notifies the Coordinator component whenever a task cannot
be executed (e.g., the robot cannot enter the room since
the door is closed). The preemptive failure occurs when
the Coordinator perceives a difference between the initial
plan and the current environment state through monitoring
it. The Coordinator uses the monitor’s sensors subsystem to
enable the robots’ execution task. We illustrate the MuRoSA-
Plan with both failure types happening when a door is
closed. Either the robot notifies the Coordinator that the door
is closed, or the Coordinator perceives the change in the
environment state and replans using the Planner module.

D. Implementation Aspects

The MuRoSA-Plan implementation follows a Planner-
Controller-System framework that is a basic framework for
automated planning systems [11] using ROS nodes as pre-
sented in Figure 4. The Planner-Controller-System frame-
work includes a planner layer that creates a plan based on
the problem domain and initial state and a controller layer to
operate upon the system layer that responds with observations
of the current environment state. Based on the observation
states, the controller sends the planner the execution states
of the plan. In response, the planner can replan if failures
occur.

The planner layer is composed of planner nodes that are
responsible for planning and replanning. It is detached from
the Coordinator component since planning and monitoring
can happen concurrently to improve performance. In the
controller layer are the Coordinator, the nurse (representing
a health professional), the robot, and the robotic arm nodes
(in the context described in Section III-A). The Coordinator
connects the planner to the controller and monitors the envi-
ronment for preemptive failure perceptions. The nurse, robot,
and arm nodes interact with the system. The environment
node is responsible for mimicking the environment model in
the system layer.

In the MuRoSA-Plan implementation, we use the IPyHOP
planner, written in Python using HTN to notate its plans [26].
That is important because ROS accepts Python, and the work
of [23], which inspires the MuRoSA-Plan creation, uses HTN
to define their plans.

We chose the ROS operating system for inter-process
communication since it includes a set of software libraries
and tools that help to build robot applications [36]. ROS
works by creating a graph of nodes. Each node can be
implemented with C++ or Python, designed to be responsible
for a single functionality. Nodes can communicate with each
other based on different protocols like Publisher/Subscriber
or Service/Client.
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Fig. 3. The MuRoSA-Plan component-oriented architecture.

Fig. 4. The MuRoSA-Plan implementation based on a Planner-Controller-
System framework.

We implemented the nodes using Python and applied the
ROS service/client communication protocol. In Figure 4, the
coordinator component of the architecture has two nodes, the
coordinator and planner nodes, while the Arm and the Robot
are only one node. All the nodes are executed in docker
containers [37] sharing a network to aid the execution. Listing
2 presents the ROS planner node function responsible for
receiving a message from the Coordinator component and
using the IPyHOP planner [26] to create a plan.
def r e c e i v e s y n c m e s s a g e ( s e l f , r e q u e s t , r e s p o n s e ) :

a c t i o n T u p l e = t u p l e ( r e q u e s t . a c t i o n . s p l i t ( ’ , ’ ) )
i f a c t i o n T u p l e [ 0 ] == ’ n e e d p l a n ’ :

p l a n n e r = IPyHOP ( methods , a c t i o n s )
p l a n = p l a n n e r . p l a n ( s e l f . s t a t e , [ (

’ m p i c k u p a n d d e l i v e r s a m p l e ’ , a c t i o n T u p l e [ 1 ] ,
a c t i o n T u p l e [ 2 ] , a c t i o n T u p l e [ 3 ]

) ] , v e r b o s e =1)
r e s p o n s e P l a n = [ ]
f o r a c t i o n in p l a n :

r e s p o n s e P l a n . append ( ’ , ’ . j o i n ( a c t i o n ) )
r e s p o n s e . o b s e r v a t i o n = ’ / ’ . j o i n ( r e s p o n s e P l a n )

re turn r e s p o n s e

Listing 2. ROS Planner node function to receive a message from the
Coordinator.

E. MuRoSA-Plan Execution Process

Figure 5 presents the execution workflow of MuRoSA-
Plan. The first step of the execution is the initial trigger. Then,

the Coordinator starts the Team Formation process. After
that, the Planning process will begin. With the information
inside the Mission Data, the Planner module creates the best
possible plan. Then, the Coordinator splits it between the
robots in the team and sends them their local mission. Each
robot starts its Task Sequencing process to complete the plan.
While the Robots are executing their tasks, the Coordinator
monitors the environment for changes that can compromise
the plan’s feasibility. If a failure happens, the Coordinator
starts the Plan Recovery process, which fixes the current state
of the environment and then replans the mission. If no failure
arises, then the plan is completed by the Robots.

Fig. 5. The MuRoSA-Plan execution process.

IV. EXPERIMENTS

This section presents the MuRoSA-Plan experiments in-
cluding the experimental method (Section IV-A), and the plan
recovery description (Section IV-B).

A. Experimental Method

The experiment’s objective is to assess the failure mit-
igation of the MuRoSA-Plan prototype when executing in
a simulated dynamic environment. Reactive and preemptive
related to the door-closed failure were analyzed in the health-
care service case with ’Lab Samples Logistics.’ We executed
five experimental scenarios performed 30 times associated
with the door-closed failure. At the end of each execution,
we analyzed the percentage of failures related to door-
closed. The scenarios present the characteristic of door-closed
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varying with 10%, 30%, 50%, 70%, and random probability
to happen. We developed a simulator to test the scenarios,
which will be better explained later. The metrics used are
plan and time completeness. We compared the experimental
results with a baseline case, the coordinators’ without the
ability to replan.

We used a simulator to replicate the environment dy-
namism to aim to test the MuRoSA-Plan prototype with the
five scenarios to assess the coordinators’ ability to complete
the plan. The simulator is implemented with Python script
to configure the docker deployment and log the simulation
results. The docker creates a container to run the ROS nodes.
The simulation dynamism comes from the lab room door. No
matter its actual state, the planner has the available informa-
tion. However, in its initialization, the ROS environment node
receives a probability that represents if the lab room door is
closed. So every time the simulation runs, it dynamically
decides if the door is open.

B. Plan Recovery Description

Figure 6 presents the replaned mission for the robots
(i.e., robot1, arm1, nurse1) using the Goal Task Network
(GTN) presentation generated by the IPyHOP planner. The
first node represents a task method to move the sample
from the nurse to the lab (m pickup and deliver sample).
The first node splits into four methods (m approach nurse,
m pick sample, m approach arm, and m unload sample).
Each method instantiates into actions to be executed
by the robots. The IPyHOP generates a totally-ordered
plan with the execution order a open door, a navto,
a approach nurse, a authenticate nurse, a open drawer,
a deposit, a close drawer, a navto, a approach arm,
a open drawer, a pick up sample, a close drawer (from
left to right). The action a open door in a green rectangle
is added in runtime by the Coordinator after a failure was
perceived to fix the initial plan.

Fig. 6. IPyHOP planner’s GTN of the mission’s replan.

V. RESULTS AND DISCUSSION

Table II presents the plan completion average time in
seconds and the plan completeness considering the door-
closed failure and . Note that, as the replan is activated,
there is a decrease in time in all scenarios except the 30%.
That could have happened because the docker simulation
environment could have delayed some communication be-
tween the nodes. Even so, the number is very similar, not
posing a problem. Note that the time improvements using

the MuRoSA-Plan prototype vary from 7% to 20%, which
can represent a gain to MRS in real-world environments.
In the fifth column is the number of cases that successfully
reached the goal for the baseline. In the sixth, the numbers
reached the goal when replan was available, and last, the
improvement from the baseline to the replan. Note that as
the replan is activated, there is an increase in success rate in
all scenarios. The success rate achieves up to 46% mitigating
mission disruptions in almost half of the cases, indicating that
MuRoSA-Plan generates runtime-adapted plans satisfying the
goals of the multi-robot coordination in the healthcare service
case.

TABLE II
PLAN SUCCESS RATE.

Plan completion average time Plan success rate
Baseline Replan Imp. Baseline Replan Imp.

Random 18s 30s 40% 2.5993 2.1574 17%
10% 24s 29s 17% 1.8088 1.4390 20%
30% 16s 27s 40% 1.3325 1.3838 -4%
50% 15 27 44% 1.8704 1.6390 12%
70% 15s 28s 46% 1.6549 1.5428 7%

Figure 7 shows the existing relation between the plan
results. In blue are the times the simulation satisfies the
goal (Success). In red are the times a failure happened,
preventing the plan to complete (Failed). In yellow are the
timeout simulation times (Timeout Error). It is important to
point up that all the times the system with replan failed,
a problem happened to the simulator (e.g., a docker node
stopped responding to requests), and not a problem of the
replan method itself.

Compared to the baseline case with 70% of door-closed,
the plan fails 12 times against 28 times of plan complete-
ness. Another thing to notice is that as the probability of
failures increases, the number of successful executions when
executing with plan recovery also increases.

Fig. 7. Plan result charts.

VI. CONCLUSION

We present in this work the MuRoSA-Plan architecture
to plan recovery that allows the development of multi-robot
mission applications in dynamic environments. The imple-
mented artifact prototype integrates ROS2 and the IPyHOP
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planner. Comparing MuRoSA-Plan to related work, it is the
only component-oriented architecture that implements MRSs
with automated planning for different missions in a dynamic
environment. It allows incorporating other planners with
problem domains and actions, where a coordinator monitors
the robot’s tasks, forms robot teams, and replans in runtime.

The experimental results show that it is possible to generate
runtime adaptation plans satisfying the goals in a dynamic en-
vironment for the case study’s expected scenario. MuRoSA-
Plan not only reduced the plan execution time from 7 to 17%
but also increased the success rate from 17 to 46% (+37% on
average), indicating a promising approach. For future work,
we intend to enhance the problem with more failures to test
the robots’ feasibility, test in different robot domain missions,
and compare it with other architectures to check the runtime
ability to recover in dynamic environments.
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