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Abstract—The robot task allocation is a crucial problem in
logistics and distribution where robots are required to perform
an array of tasks, with differing locations and numbers. As a
result, optimally allocating tasks to available robots to minimize
associated costs has become a challenging but essential opti-
mization problem. This paper presents a Graph Convolutional
Network (GCN) based Ant Colony Optimization (ACO) denoted
as GCN-ACO, to solve the robot task allocation problems, which
are formulated as the Travelling Salesman Problems (TSP) and
Vehicle Routing Problems (VRP). The GCN-ACO algorithm
comprises two stages. In the first stage, a GCN model is trained to
predict a heatmap, which represents the probability of each edge
belonging to the optimal route within the graph. In the second
stage, we integrate the predicted heatmap into ACO to guide the
ant colony to select edges with greater potential during the search
process. We evaluate our approach’s performance through testing
on standard TSP and VRP datasets. The experimental results
demonstrate that our proposed method has a faster convergence
rate and a higher quality of solutions compared to the baseline
approaches.

Index Terms—Graph Convolutional Network (GCN), Ant
Colony Optimization (ACO), Robot Task Allocation

I. INTRODUCTION

With the development of artificial intelligence technology,
utilizing robots to execute tasks can better meet the demands
of rapidly changing tasks, make appropriate adjustments in
a short period of time, thereby ensuring execution efficiency
and enhancing resource utilization [1]. In order to arrange the
task execution sequence accurately, robots require efficient and
reasonable task allocation during execution.

According to the number of robots, the robot task allocation
problem can be divided into single-robot and multi-robot task
allocation [2], which constitutes a challenging optimization
problem. [3]. Mathematically speaking, a multi-task allocation
problem for a single robot can be deemed identical to the
Travelling Salesman Problem (TSP) [4]. TSP is a complex
challenge that involves determining the shortest route for vis-
iting a given set of destinations. Similarly, multi-task allocation
for multiple robots can be modelled as a vehicle routing
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problem (VRP) where a team of robots is required to complete
a set of tasks that are scattered throughout the environment and
subsequently return to the depot in such a way that the total
cost is minimized while also satisfying capacity constraints
[5]. Such combinatorial optimization problems have been
extensively studied. Researchers have employed exact methods
such as mixed integer programming (MIP) [6], and heuristic
algorithms like Lin–Kernighan–Helsgaun (LKH) [7], as well
as meta-heuristic methods [8]. Due to the task allocation
problem being an NP-hard problem, heuristic algorithms such
as ant colony optimization (ACO) have advantages in terms
of computational efficiency [9].

Ant colony optimization (ACO) [10] is a popular opti-
mization technique inspired by the behavior of ant colonies
in finding the shortest path between their nest and food
source. It is a meta-heuristic algorithm that can be applied to
solve various optimization problems, including task allocation
problems [11]. The pheromone trails of ACO are used to guide
the search process of ants towards the optimal solution. The
initial uniform distribution of pheromones does not provide
clear guidance, resulting in a blind search during the early
stages and requiring numerous iterations to converge to an
optimal or sub-optimal solution.

To address the aforementioned issues, this paper presents a
new approach that integrates Ant Colony Optimization (ACO)
and Graph Convolutional Network (GCN) [12] to solve the
task allocation problem. GCN possesses the capability to learn
the relationships among nodes and the topological structure of
a graph to extract rich features for edge prediction. Hence, we
employ the predicted probabilities from GCN in conjunction
with pheromones as guidance for ant colony search. We
evaluate our approach on a set of benchmark problems and
compare it with existing algorithms. The results demonstrate
that our method has significant advantages over traditional
ACO in solving the task allocation problems.

The main contributions of this work are as follows:
• We proposes a hybrid ant colony optimization based on

graph convolutional network (GCN-ACO) for quickly
solving robot task allocation problems.

• GCN-ACO exhibits superior generalization, enabling fast
discovery of optimal solutions even when task locations
or quantities are modified, thus avoid searching from
scratch.
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• The experiments indicate that GCN-ACO proposed in
this paper has a faster convergence speed and can de-
tect higher quality solutions compared to traditional ant
colony optimization algorithms and other baselines.

The structure of the remaining sections of this paper is out-
lined as follows. In Section II, we introduce a brief overview
of related work. In Section III, we formulate the robot task
allocation problems as TSP and VRP problems. Section IV
provides a detailed description of the proposed GCN-based
ACO algorithm. The experimental results are provided in
Section V, and an elaborate discussion is presented on the
effectiveness of the proposed methods. Finally, in Section VI,
we conclude the paper and discuss future work.

II. RELATED WORK

The robot task allocation problem has been recognized
to be an NP-hard problem, and has thus been extensively
investigated by the academic community. In general, the
task allocation problem can be modeled as a combinatorial
optimization problem, such as TSP or VRP [13]. At present,
there are numerous methods that can be used to solve this type
of problem, including exact methods and heuristic algorithms.
When using exact methods to solve combinatorial optimization
problems, they are typically formulated as mixed-integer linear
programs (MILPs), in which case branch-and-bound is the
exact method of choice [14]. Although exact methods can
provide the precise optimal solution, they need a significant
amount of time. Conversely, heuristic algorithms can balance
solution quality and computational efficiency, allowing for
optimal or near-optimal solutions to be found in less time.
Therefore, numerous heuristic methods have been proposed
for solving task allocation problems, such as ant colony
optimization [15], particle swarm optimization [16], genetic
algorithms [17], and so on.

Ant colony optimization was initially developed to solve the
classic travelling salesman problem, by taking inspiration from
ants’ ability to find the shortest path between food sources and
their nests [18]. The algorithm gradually constructs feasible
solutions using a probability model, and searches for the
optimal solution through pheromones and positive feedback
mechanisms. However, traditional ant colony algorithms often
require multiple iterations to converge and are susceptible to
getting trapped in local optima. Therefore, researchers have
proposed several corresponding improved methods. For exam-
ple, MAX-MIN Ant System (MMAS) [19], one of the most
effective variants of ACO, restricts the value of pheromones
within a certain range to balance the exploration-exploitation
behavior of ants and prevent them from becoming stuck in
local optima. In [20], an ant colony optimization with a warm-
up process is proposed, whereby ant colony’s iteration process
is simulated based on the cost of the edges to initialize the
pheromone matrix so as to achieve the same or even better
results in fewer iterations. However, this method is still prone
to falling into local optimal solutions.

In recent years, there has been an increasing interest in
integrating machine learning techniques into meta-heuristic

algorithms, such as ant colony optimization, to solve combi-
natorial optimization problems [8]. A parallel Kmeans-Elistist
ACO approach was proposed in [21] to solve TSP/mTSP
problems. The algorithm is performing parallel computations
on a GPU for faster processing and comprises three stages:
clustering the given dataset’s points with K-means clustering,
using elite ant colony optimization to find the shortest path
in each cluster, connecting each cluster at the closest point to
the other. [22] proposed an ML-ACO algorithm for solving
the orienteering problems. The algorithm begins by mapping
points from orienteering problem instances with known op-
timal solutions to a feature space. It then trains an SVM
model to learn the decision boundary in the feature space for
predicting the probability of edges in the graph belonging to
the optimal path. Predicted probability values are then used as
the initial pheromone matrix for the ant colony optimization to
enhance its performance. However, using this method requires
designing feature extraction formulas manually and different
feature extraction methods can lead to vastly different results.

III. PRELIMINARY

A. Single Robot Task Allocation

In the scenario where there is only one robot operating
in a given environment, the task allocation could be rep-
resented using the mathematical Travelling Salesman Prob-
lem (TSP) framework [2]. The problem can be described
as follows: There is a robot R in the depot, which needs
to perform a series of tasks T = {T1, T2, . . . , Tn}. The
depot and task points form a fully-connected weighted graph
G = (V,E), where V0 indicates the location of the depot,
Vi represents the position of the task Ti(i = 1, 2, . . . , n),
E = {eij = (Vi, Vj) | 0 ≤ i, j ≤ n, i ̸= j}, and the Euclidean
distance of edge eij is dij(i, j ∈ V, dij = dji). The robot
must travel from depot V0 to all other task points, visiting
each location only once and returning to the starting point.
The objective is to find an optimal traversal route V ′ ={
V ′
0 , V

′
1 , . . . , V

′
n, V

′
n+1

}
with V ′

0 = V0 and V ′
n+1 = V0, which

minimizes the total cost of the robot. The cost is given by
Equation (1):

cost(V ′) =

n∑
i=0

dV ′
i V

′
i+1

(1)

B. Multiple Robots Task Allocation

Considering a scenario in which multiple robots are located
in a depot, with each robot required to complete a series of
assigned sub-tasks while adhering to its maximum capacity
limits. Such a scenario can be modelled as a vehicle routing
problem (VRP), and its mathematical model can be described
as follows [23]: the depot and each task are represented as
vertices V in a fully-connected weighted graph G = (V,E),
where edges E = {eij = (Vi, Vj) | 0 ≤ i, j ≤ n, i ̸= j} rep-
resent connections between nodes. R represents the number
of robots, T = {T1, T2, ..., Tn} is the task set, and C is the
maximum capacity of each robot. If eij is included in the route
of robot r, xr

i,j equals 1, otherwise, xr
i,j equals 0. cri represents
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Fig. 1. Overview of GCN-ACO. Given a fully-connected graph as input (a), the GCN model outputs a heatmap (b) that represents the probability of each
edge belonging to the optimal path. The ACO is then used to search for a solution (c) based on the heatmap and pheromone.

the remaining capacity of the robot r after completing task Ti,
while mj indicates the demand of task Tj . The objective is to
minimize the total cost of all robots as illustrated in Formula
(2), where dij represents the cost of eij .

minimize
∑
r∈R

∑
{i,j}∈E

xr
i,jdi,j (2)

s.t.
∑
r∈R

∑
j∈V

xr
i,j = 1, i ∈ T, j ̸= i (3)∑

r∈R

∑
i∈V

xr
i,j = 1, j ∈ T, i ̸= j (4)∑

r∈R

∑
j∈T

xr
0,j = R (5)∑

r∈R

∑
i∈T

xr
i,0 = R (6)

crj =

{
cri −mj , if xr

i,j = 1, {i, j} ∈ E, j ̸= 0
C, if j = 0

(7)

mj ≤ cri ≤ C, if xr
i,j = 1, i ∈ V, j ∈ T (8)

xr
i,j ∈ {0, 1}, {i, j} ∈ E (9)

Equations (3) and (4) indicate that each task can only be
executed once. Constraints (5) and (6) ensure that each robot
departs from and ultimately returns to the depot. Equation (7)
demonstrates the update process of the remaining capacity of
robot r. Constraint (8) ensures that the remaining capacity of
the vehicle does not fall below the demand of the next task
Tj and does not exceed the maximum capacity C of the robot
r. Constraint (9) guarantees that xr

i,j is binary.

IV. GRAPH CONVOLUTIONAL NETWORK BASED ANT
COLONY OPTIMIZATION

In this section, we will introduce the basic ant colony
optimization followed by proposing a novel ant colony op-
timization based on graph convolutional networks to address
the robot task allocation problems.

A. Basic Ant Colony Optimization

The ant colony optimization was initially proposed to solve
the TSP problem, in which the goal is to find the shortest route

to link a series of cities. The Ant System applied to the TSP
can be described as follows:

Suppose the number of ants is m, the number of cities is n,
the distance between cityi and cityj is dij(i, j = 1, 2, ..., n).
The pheromone concentration on the connection path between
cityi and cityj at time t is τij(t). At the initial moment, m ants
are randomly placed in n cities, and pheromone on each path
is the same τij(0) = τ0. Then antk decides the next city to
visit based on the pheromone and heuristic information along
the path between cities. The probability of antk transferring
from cityi and cityj at time t is shown in formula (10).

pkij(t) =


[τij(t)]

α·[ηij(t)]
β∑

s∈Jk

[τis(t)]α·[ηis(t)]β
, j ∈ Jk

0, other
(10)

In the formula (10), ηij(t) = 1
dij

is the heuristic function,
expressed as the reciprocal of the distance between cityi and
cityj . Jk represents a set of cities to be visited for antk. α and
β indicate the relative importance of the pheromone and the
heuristic function respectively. When all ants have completed
their search during one iteration, the pheromone on each path
needs to be updated according to formula (11).

τij(t+ 1) = (1− ρ)τij(t) +

m∑
k=1

∆τkij , 0 < ρ < 1 (11)

where ρ represents pheromone evaporation coefficient along
the path, ∆τkij denotes the pheromone of the antk left on the
edge edgeij between cityi and cityj in this iteration, which
is given by:

∆τkij =

{
Q
Lk

, if antk passed edgeij

0, other
(12)

where Q is a hyperparameter, Lk is the path length of the antk
in this iteration.

B. Graph Convolutional Network based Ant Colony Optimiza-
tion

Fig. 1 presents the framework of the proposed GCN-ACO
algorithm which comprises two stages. Firstly, we train a
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GCN model to predict the probability of each edge in the
graph of TSP and VRP problem instances belonging to the
optimal route. Subsequently, the predicted probability values
are leveraged to enhance the performance of ACO in finding
high-quality solutions.

In the first stage of the proposed GCN-ACO algorithm, we
utilize the GCN model outlined in [24]. Each model comprises
30 graph convolutional layers and 3 layers in the MLP with
hidden dimension h = 300 for each layer. Separate training,
validation, and testing datasets are created for TSP problems
with 20, 50, and 100 nodes, as well as VRP problems with
100 nodes. For TSP instances, n nodes are randomly sampled
within the unit square and nodei is represented by coordinates
(xi, yi). The solutions produced by the exact solver Concorde1

are used as the ground-truth solutions. For the VRP instances,
appropriate modifications are made to the model presented
in [24]. In addition to randomly sampling n nodes within
the unit square, a special depot node dep is included [25].
Each node nodei has an extra feature di that represents the
required capacity for nodei, in addition to its coordinates,
where di ≤ C and ddep = 0. For the VRP model, training
labels from example solutions generated by LKH [7] are used,
although these solutions are sub-optimal, they still provide
valuable information during the training process. Within the
sample labels, edges present in the optimal path are marked
as “1”, while absent edges are labeled as “0”. Consequently,
GCN models can be trained using these labels. The resulting
model is capable of predicting the probability heatmap h,
which represents the probability (ranging from 0 to 1) that each
edge belongs to the optimal route. Fig. 1 (b) demonstrates that
the darkness of each edge’s color indicates a higher probability
of belonging to the optimal path.

The pheromone matrix τ is a crucial component of ACO,
upon which the search quality of ACO heavily hinges. In
traditional ACO, τ values are typically initialized uniformly
and evolve with the iterations of the ACO. Therefore, in the
second stage of our approach, we incorporate the probability
values h predicted by the GCN model into the ACO search
process to enhance its performance. Firstly, we consider ini-
tializing the τ values in the AS directly using the predicted
probability heatmap h from the model, i.e., τ0 = h. This
approach can provide good guidance for the ant colony during
its initial stage, preventing blind searching and hastening its
convergence rate. However, in the above approach, the solution
quality of ACO heavily hinges on the accuracy of the network
model prediction, which can sometimes mislead it to converge
to local optima and only be effective at the initial stage. As
a result, we explore a hybrid approach that combines the
predicted probability h and pheromone τ , as shown in formula
(13). In addition, we also explore the method of combining
GCN with other variants of ant colony optimization such
as MMAS, referred to as GCN-MMAS, which restricts the
pheromone values τ and predicted probabilities h within the

1https://www.math.uwaterloo.ca/tsp/concorde/

range of [τmin, τmax].

pkij(t) =


[τij(t)]

α·[hij(t)]
γ ·[ηij(t)]

β∑
s∈Jk

[τis(t)]α·[his(t)]γ ·[ηis(t)]β
, j ∈ Jk

0, other
(13)

V. EXPERIMENTS

A. Experimental Environment

All algorithms were implemented using python 3.9 in py-
torch. During the first stage, the GCN model was trained on a
server equipped with a GeForce RTX 3090 GPU, and inference
and testing were conducted on a PC desktop equipped with
a GeForce RTX 3060 GPU, Intel Core i5-11500 @ 2.70GHz
CPU, and 32GB memory.

B. Experimental Parameters

For better comparison of algorithm performance, we set
the basic parameters in all ACO and its variants involved in
the experiment to be the same. The number of ants m is 20,
the number of ant colony iterations n is 20, α is 1, β is 3,
γ is 1, the pheromone evaporation factor ρ is 0.3, and the
hyperparameter Q is 0.1. The initial pheromone τ0 is set to 1
in traditional ACO, while in MMAS, τmin is 0.01 and τmax

is 1.

C. Experimental Setup and Results

(1) Effectiveness of GCN-ACO
To validate the effectiveness of the proposed algorithm,

it is tested on TSP problems with node numbers of 20, 50
and 100, as well as on VRP problems with a node number
of 100, which are represented as TSP20, TSP50, TSP100
and VRP100 respectively. To assess the predictive accuracy
of the GCN model, we adopted a greedy strategy based
on the GCN predictions to generate an optimal solution. At
each step, it selected the edge with the highest probability
value, enabling to construct a complete solution named as
GCN-Greedy. Additionally, we investigated three approaches
to integrate GCN with ACO, which are shown as follows:

• GCN-AS-1: using the probability values predicted by
GCN as the initial pheromone of AS;

• GCN-AS-2: incorporating the probability values pre-
dicted by GCN into the probability transition formula of
AS;

• GCN-MMAS: combining the probability values predicted
by GCN with MMAS.

During the testing process, 100 test instances were ran-
domly generated for each problem, and all algorithms were
independently run 10 times on each test case. Concorde’s
solutions were selected as the optimal values (Lopt) for the
TSP problems (with LKH’s solutions used as the optimal
values for VRP problems). Our proposed algorithms were
compared with AS, MMAS, and ACOWU [20] in terms of the
best path length (Best), the average path length (Avg) and
the standard deviation (Std) across ten trials, the gap (Gap)
between the average path length and the optimal value (as
shown in Equation (14), where Lm is the average path length

988



TABLE I
RESULTS OF DIFFERENT METHODS IN SOLVING TSP20, TSP50, TSP100, AND VRP100 TEST INSTANCES.

Problem Metric Opt AS MMAS ACOWU GCN-Greedy GCN-MMAS GCN-AS-1 GCN-AS-2

TSP20

Best 4.1313 4.1537 4.1313 4.1313 4.1313 4.1313 4.1313 4.1313
Avg 4.1313 4.1746 4.1592 4.1313 4.2807 4.1313 4.1313 4.1313
Std 0 0.0395 0.0167 0 0.3148 0 0 0
Gap 0.00% 1.05% 0.67% 0.00% 3.62% 0.00% 0.00% 0.00%

Iteration - 12.7 14.2 12.6 - 2.7 1.8 3.2
Time(s) 0.036 0.1748 0.1898 0.1776 0.0227 0.0361 0.0248 0.0444

TSP50

Best 5.7543 6.2759 6.2319 6.1888 6.2882 5.7591 5.7566 5.7543
Avg 5.7543 6.4533 6.4127 6.3192 7.185 5.8017 5.8155 5.7561
Std 0 0.1693 0.0864 0.0904 0.6362 0.0349 0.0554 0.0009
Gap 0.00% 12.14% 11.44% 9.82% 24.86% 0.82% 1.06% 0.03%

Iteration - 17.4 18.1 16.1 - 7.0 4.0 5.1
Time(s) 0.08 1.3419 1.4026 1.4265 0.0293 0.5896 0.3101 0.4884

TSP100

Best 7.8393 9.2199 9.1668 8.3292 10.4463 8.1801 8.4101 8.0828
Avg 7.8393 9.6063 9.4577 8.9967 11.143 8.6342 8.7511 8.3136
Std 0 0.2037 0.2073 0.2725 0.6003 0.2293 0.1848 0.1584
Gap 0.00% 22.53% 20.64% 14.76% 42.14% 10.13% 11.63% 6.04%

Iteration - 18.6 19.1 18.3 - 12.7 13.4 13.6
Time(s) 0.36 6.9343 6.609 6.1878 0.0427 4.2525 4.657 5.0124

VRP100

Best 16.6204 20.6786 19.4028 19.8536 21.1906 19.1627 19.6601 18.445
Avg 16.6204 21.1713 20.5195 20.227 23.0409 19.767 19.9274 19.113
Std 0 0.3451 0.4009 0.2459 1.0361 0.3027 0.2242 0.2741
Gap 0.00% 27.38% 23.45% 21.69% 38.62% 18.93% 19.89% 14.99%

Iteration - 17.1 16.1 15.8 - 13.4 11.4 9.8
Time(s) 4.6874 5.5735 5.2781 5.0479 0.0479 3.9887 3.3324 2.9567

(a) TSP20 (b) TSP50

(c) TSP100 (d) VRP100

Fig. 2. The convergence curves of different methods on TSP20, TSP50,
TSP100, and VRP100 test instances.

of other methods), convergence iteration times (Iteration),
and computation time (Time). Here, the models used in
GCN are trained on datasets corresponding to the size of the
problems.

gap =
Lm − Lopt

Lopt
× 100% (14)

1) Comparisons with the traditional methods: Table I
presents the quantitative results of various metrics for solving
TSP20, TSP50, TSP100 and VRP100 test instances with
different methods. Based on the table, it is evident that the
AS and MMAS methods still have a slight gap with the
optimal solution for the TSP20 problem, while the GCN-
ACO methods (GCN-AS-1, GCN-AS-2, and GCN-MMAS)
always find the optimal solution. For larger TSP instances
such as TSP50 and TSP100, the gaps between the solutions
found by different methods and the optimal solution tend to
increase as the problem size grows. However, GCN-ACO still
significantly outperforms traditional ACO and its variants. Due
to the complexity of the VRP100 problem, AS, MMAS, and
ACOWU all have gaps of over 20% compared to the optimal
solution, while GCN-ACO has gaps below 20%. In particular,
the gap for GCN-AS-2 is as low as 14.99%, which is 12.39%
less than AS. Fig. 2 presents the convergence curves on a
test case of the four problems for these methods. It can be
observed that our proposed method is capable of finding a
better solution from the beginning and converging to a better
solution with fewer iterations.

2) Comparisons between different integration methods:
The differences between the three integration methods pro-
posed can be observed from the last three columns in Table
I. GCN-MMAS achieves better results than GCN-AS-1 be-
cause it constrains both the predicted probability values and
pheromone values within a certain range, avoiding the situation
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TABLE II
RESULTS OF AS AND GCN-AS-2 BASED ON VRP100 MODEL IN SOLVING VRP INSTANCES.

Instance Opt
AS GCN-AS-2

Best Avg±Std Gap Best Avg±Std Gap

A-n32-k5.vrp 784 838.63 885.69±15.46 12.97% 834.95 836.85±1.58 6.74%
A-n45-k7.vrp 1146 1289.18 1307.11±13.19 14.05% 1223.7 1246.97±6.47 8.81%
A-n60-k9.vrp 1354 1524.35 1545.32±15.11 14.13% 1465.64 1486.01±4.81 9.75%

A-n80-k10.vrp 1763 2041.24 2057.04±11.64 16.67% 1923.77 1970.85±11.01 11.79%
E-n101-k8.vrp 815 1010.89 1040.56±20.98 27.67% 912.13 934.23±13.35 14.63%

M-n151-k12.vrp 1015 1347.51 1362.63±10.96 34.24% 1188.58 1202.87±15.03 18.51%

TABLE III
RESULTS OF GCN-AS-2 BASED ON DIFFERENT MODELS IN SOLVING TSP INSTANCES.

Instance Opt
TSP20 Model TSP50 Model TSP100 Model

Best Avg±Std Gap Best Avg±Std Gap Best Avg±Std Gap

Bays29.tsp 2020 2020 2030.51±0.0053 0.52% 2020 2037.68±0.0413 0.87% 2037.42 2051.4±0.0499 1.55%
Att48.tsp 10628 10879.24 11052.64±0.0652 3.99% 10670.07 10810.45±0.0579 1.70% 10791.78 10973.79±0.0651 3.25%

berlin52.tsp 7542 7644.73 7824.08±0.0804 3.74% 7542 7598.96±0.0387 0.75% 7542 7687.63±0.0804 1.93%
St70.tsp 675 737.97 759.67±0.1491 12.54% 699.75 732.05±0.1515 8.45% 700.33 719.19±0.1519 6.54%

kroA100.tsp 21282 21578.12 22785.23±0.2536 7.06% 22009.42 22523.62±0.1195 5.83% 21282 22000.66±0.1908 3.37%
Ch130.tsp 6110 6710.47 6904.34±0.2027 13.00% 6585.19 6836.63±0.1859 11.89% 6541.45 6694.29±0.1131 9.56%

where there is too much or almost no pheromone on certain
edges. According to the results, GCN-AS-2 outperforms the
other two methods. The reason may be that it does not
solely rely on the GCN predicted probabilities as the initial
pheromone values, but instead, it combines them with the
pheromone. This approach is particularly beneficial for large-
scale problems, where the GCN predicted probabilities may
not be accurate enough, potentially leading the ants astray.
By incorporating the predicted probabilities of GCN with the
pheromone, the combined method reduces the error and is
more robust.

3) Ablation analysis: To further demonstrate the signif-
icance of probability heatmaps in ant colony optimization,
we conducted an ablation analysis of our proposed method.
GCN-AS-2 combines probability heatmaps and pheromone of
AS. Table I shows that using only probability heatmaps and
employing a greedy approach to search for solutions results in
considerably worse solutions than the optimal ones in a very
short time. On the other hand, AS without heatmaps yields
solutions that are relatively closer to the optimal ones, but it
requires a much longer time to search. Therefore, GCN-AS-2
combines the strengths of both approaches, enabling it to find
better solutions in a shorter time.

(2) Generalization of GCN models

The ability of an algorithm to generalize over problems
of varying sizes is a crucial performance indicator. Since the
GCN model parameters are independent of problem size, we
can theoretically apply the trained model to problems of any
size. Consequently, we evaluated the generalization ability of
the model by conducting the following experiments.

1) Generalization to problems of various scales: To evalu-
ate the model’s generalization ability on problems of varying
sizes, we tested GCN-AS-2 which utilizes a GCN model
trained on VRP100 dataset on several VRPLIB benchmarks2,
where n and k represent the number of nodes and vehicles
respectively. Based on the experimental results presented in
Table II, it was observed that GCN-AS-2 performed better
than AS on problems of different sizes, with the difference
between their performances increasing as problem size in-
creased. Furthermore, experiments have indicated that models
trained on small-scale datasets can be useful in solving large-
scale problems. For instance, GCN-AS-2, employing VRP100
model, achieved a 15.73% reduction compared to AS for M-
n151-k12.vrp instance with 151 nodes.

2) Generalization of different models: Additionally, we
conducted tests on standard TSPLIB instances3 to explore
the relationship between different models and problem sizes
using models trained on various TSP datasets. The digits in the
instance names represent the number of nodes. As presented in
Table III, GCN-AS-2 with models trained on TSP20, TSP50
and TSP100 datasets (labeled as TSP20 Model, TSP50 Model
and TSP100 Model respectively) were tested on TSP instances
ranging from 29 to 130, with each test case being executed 10
times. The experimental results demonstrate that the models
trained using different datasets were effective in solving these
instances. Specifically, the best results were obtained when the
size of the models was close to the size of the problems.

2http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
3http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
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VI. CONCLUSIONS

In this paper, we propose a hybrid ant colony optimization
based on graph convolutional networks which guides ant
colony search using predicted heatmaps to address the robot
task allocation problems, which are formulated as the TSP and
the VRP. Experimental results demonstrate that the proposed
method significantly outperforms traditional ACO in terms
of its convergence speed and solution quality. Moreover, we
investigate three different combinations and test the gener-
alization capability of the proposed approach on problems
of different scales. Future work will further explore more
effective ways to combine GCN and ACO to apply our
proposed method to larger-scale problems.
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