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Abstract—The Kriging surrogate (KS) has been widely used 

in surrogate-assisted multiobjective evolutionary algorithms 

(SAMOEAs) for solving expensive multiobjective optimization 

problems (EMOPs). Typically, when tackling an M-objective 

EMOP, a KS consists of M Kriging models, in which each model 

is used to approximate one objective function to replace the 

expensive fitness evaluation. Since such a KS is only efficient in 

solving low-dimensional EMOPs, the dimension reduction 

method has been adopted to construct the reduction surrogate 

(RS) to reduce training costs. However, both KS and RS can 

only approximate the mapping from variables to different 

objectives (i.e., objective function) but ignore the potential 

relationship between objectives. For practical applications, it is 

necessary to take into account the mapping between different 

objectives for the reliability of the surrogate. Therefore, we for 

the first time propose the concept of the conjugate surrogate (CS) 

and construct a simple CS to realize the approximated mapping 

from objectives to objectives. Different from KS or RS, all 

models in CS are conjugate symbiosis. In collaboration with RS, 

CS can not only benefit the light training cost, but also improve 

the convergence speed. Compared with five state-of-the-art 

SAMOEAs, the CS-assisted algorithm shows its effectiveness 

and competitiveness in solving EMOPs. 

Keywords—Kriging, Surrogate-assisted, Expensive 

Multiobjective Optimization, Evolutionary Computation 

I. INTRODUCTION 

After decades of development, a large number of 
multiobjective evolutionary algorithms (MOEAs) have been 
proposed for solving multiobjective optimization problems 
(MOPs) [1]-[5]. These MOEAs can find a set of well-
performed solutions from both convergence and diversity 
perspectives whereas a lot of real objective fitness evaluation 
(FE) is required to support this optimization process. However, 
such real FE in many practical multiobjective optimization 
applications is time-consuming or financially costly, and those 

MOPs whose FE has this property are called expensive MOPs 
(EMOPs) [6][7]. For these EMOPs, large amounts of FE are 
not available to support the optimization process of MOEAs. 
Surrogate-assisted MOEAs (SAMOEAs) [8][9][10] have thus 
been widely studied by scholars in recent years. 

Different from canonical MOEAs, SAMOEAs gather 
some solutions that have been real-evaluated and use them to 
train a surrogate. During the optimization process, the 
objective values of each newly generated solution are 
predicted by this surrogate to ease the reliance on real FE. 
Such a surrogate is usually composed of machine learning 
models like radial basis function network, support vector 
machine, or feedforward neural network [11]. Kriging model 
[12], which is also known as the Gaussian process, is one of 
the widely used models for building surrogates in SAMOEAs. 
This is due to the ease of building a surrogate with Kriging 
models for EMOPs. For an EMOP with M objectives, one 
Kriging model is often used to approximate each objective 
function fm, where m ∈ {1, …, M}, and the fusion of these 
Kriging models in all objectives form the surrogate. Herein, 
we call it a Kriging surrogate (KS). Therefore, each Kriging 
model ksm in a KS is the approximated regression mapping 
from all variables to objective fm, as: 

1({ ,..., })m D mks F x x f         (1) 

where F(a) → b is the mapping from a to b. 

However, many studies have shown that this KS is only 
suitable for problems with variable dimensions below 20 
[13][14], since the performance of an ideal Kriging model is 
correlated with the quantity of data, and the higher the variable 
dimension of data, the more data is required [15]. Such a large 
number of data will also increase the training time cost. 
Therefore, some studies tried to pre-process database (DB) 
through the strategy of dimension reduction [16][17]. 
Specifically, by mathematical or random means, only several 
variables are selected to participate in one Kriging model 
training, so that fewer data are required and the training time 
cost can also be reduced. Herein, the surrogate in which each 
model is trained through this dimension reduction method is 
called a reduction surrogate (RS). Each model rsm in an RS is 
the approximated regression mapping from some selected 
variables in Xm to objective fm, as: 

)(m m mrs F X f          (2) 

where Xm is a variable subset selected from all variables {x1, 
x2, …, xD} and 0 < |Xm| < D. It is worth noting that such an RS 
may suffer from misfit caused by the insufficiency of selected 
variables. Thus RS is usually not used alone. For example, in 
[16], several different RSs are adapted to form an ensemble 
surrogate to alleviate the performance deterioration. 
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As can be seen from the above introduction, all Kriging 
models in KS/RS are completely independent of each other, 
and each of them can only fit the approximated mapping from 
variables to a single objective. However, such a model 
structure in KS/RS cannot explore the relationship between 
different objectives, but there may be some connection among 
objectives in real-world EMOPs. This connection may be 
linear or non-linear, positively or negatively correlated. For 
example, the car cab design application is a real-world EMOP 
with nine objectives including fuel economy, acceleration 
time, and car weight [18]. In this application, there must be 
some connection between these three objectives intuitively, 
such as a heavier car inevitably leads to a longer acceleration 
time.  

Therefore, in this paper, we explore a new surrogate 
structure to fit the approximated objectives-to-objective 
mapping. For such a surrogate, models in it are not 
independent. In other words, the output of one model may be 
the input for another model, and vice versa. Therefore, models 
in this surrogate are conjugate with each other, and thus this 
surrogate is called a conjugate surrogate (CS).  

In conclusion, the core of CS is to achieve the 
approximated fitting of the entanglement among objectives, 
and the causation of this entanglement is the sharing of 
variables. Therefore, the mapping from other objectives fn (n 
= 1, …, M and n ≠ m) to objective fm can be divided into two 
steps: the inverse mapping from other objectives fn to shared 
variables (i.e., the inverse form of Eq. (1)) and the mapping 
from shared variables to fm. In this way, these shared variables 
are used as intermediates to realize the connection between the 
two steps. Fig. 1 shows the basic structures of KS, RS, and CS. 
The arrows of each color represent the mapping paths to the 
corresponding color objective, in which the solid arrows mean 
the mapping paths from variables to one objective and the 
dotted arrows mean the inverse mapping paths from objectives 
to variables. Xm (m ∈ 1, …, M) is a variable subset selected 
from {x1, x2, …, xD} to participate in the model training for fm, 
and it is also treated as the shared variable subset when 
constructing mapping from other objectives fn to fm in Fig. 1 
(c). 

The main contributions of this paper can be summarized 
as follows: 

 We propose a new method for building an RS, in which 
the variable dimension is reduced through feature 
selection. 

 We for the first time propose the concept of CS and 
gives the basic structure of CS for expensive 
multiobjective optimization. In addition, we also 
propose a method for building a simple CS. 

 We propose a surrogate management method to 
coordinate RS and CS working in SAMOEAs. 
Theoretically, this surrogate management method can 
be implemented into any SAMOEAs that use Kriging 
models to approximate the objective functions. 

The rest of this paper is organized as follows. First, we 
briefly introduce some background information about EMOPs 
and SAMOEAs in Section II. Then in Section III, we illustrate 
the details of our proposed surrogate method including the RS, 
CS, and surrogate management. Section IV presents the 
experimental results and analysis. Finally, Section V gives the 
conclusion of this paper.  

II. BACKGROUNDS 

MOPs are optimization problems that involve multiple 
conflicting objectives simultaneously. A MOP with M 
objectives to be minimized can be defined as: 

  
1

T

1

min :  = { ( ), ..., ( )}

. . ( , ..., )

M

D

f f

s t x x 

x x

x
       (3) 

where Ω is the search space. EMOPs have the same expression 
as MOPs, except that the FE of each objective fm (m = 1, …, 
M) in EMOPs is expensive. 

SAMOEAs are a kind of algorithm that can solve these 
EMOPs efficiently in recent years. Fig. 2 shows the basic 
flowchart of a SAMOEA. When faced with an EMOP to be 
solved, the SAMOEA first initializes some solutions and real-
evaluates them. Then the flow will be split into two (i.e., solid 
arrows and dotted arrows). The solid arrows represent the 
flow of an MOEA, and the dotted arrows represent the flow 
of data and the surrogate. Next, we will focus on how the 
surrogate works during the MOEA process. More specifically, 
these evaluated solutions form the DB, after which a 
surrogate is trained through the DB. Then, this well-trained 
surrogate will replace the real FE and give the predicted 
objective values to each un-evaluated offspring solution via 
the surrogate management. Thus, newborn solutions can 

     
(a) KS structure                              (b) RS structure             (c) CS structure 

Fig. 1. The basic structures of KS, RS, and CS in SAMOEAs. 
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Fig. 2. The flowchart of a SAMOEA. 
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avoid expensive FE so as to reduce computational costs. After 
the MOEA has completed a search for a certain period, some 
solutions will be selected for real FE to ensure that the search 
trend is convergent. These real-evaluated solutions will be 
added to the DB to further update the surrogate. Therefore, 
the surrogate training in SAMOEAs can be seen as an 
incremental learning process. 

III. PROPOSED SURROGATE METHOD 

In this section, we illustrate the details of our proposed 

surrogate method for expensive multiobjective optimization. 

A. Reduction Surrogate 

Considering that the dimension reduction for each rsm in 
RS is to select some variables Xm from {x1, x2, …, xD}, the 
correlation between selected variables and fm will affect the 
fitting performance of rsm. In other words, if the selected 
variables in Xm have a higher correlation with fm, then the final 
fitting degree on fm of rsm will be closer to ksm, thus 
minimizing the performance deterioration caused by 
dimension reduction.  

Based on the above analysis, dimension reduction for rsm 
is more like a feature selection operation [19]. Therefore, we 
propose a new dimension reduction method through feature 
selection for building an RS, as shown in Fig. 3. In detail, for 
objective fm, the correlations between variables xd (d = 1, …, 
D) and fm are calculated by Relief-F [20] based on all samples 
in DB. Then all variables are sorted in descending order 
according to their Relief-F weights, and a line is further 
obtained by connecting variables with the largest and smallest 
Relief-F weights. The variable having the largest distance to 
this line is regarded as the knee point. Finally, variables 
whose Relief-F weights are larger than that of this knee point 
are selected for participating in the training of rsm. Notice that 
this method of dimension reduction is derived from [21]. 
However, if the number of variables finally selected for rsm is 

lower than a threshold K (K is set as 0.5D in this paper), then 
the first K variables with high Relief-F weights after sorting 
are selected. After dimension reduction, the variable subset 
for training rsm is denoted as Xm. As a result of the above 
approach, the dimension of variables adopted for training rsm 
in the RS is reduced from D to |Xm|, where K ≤ |Xm| < D. 

B. Conjugate Surrogate 

Although the form of RS makes surrogate training less 
costly and suitable for higher-dimensional EMOPs, it does so 
at the expense of prediction performance. In this paper, we 
take a new approach and propose the idea of building a CS in 
expensive multiobjective optimization, and the collaboration 
between CS and RS can alleviate the performance 
deterioration in RS. 

In Fig. 1 (c), we discuss the basic structure of CS, but it 
can be seen that too many shared variable subsets need to be 
set if CS is built following that structure. This greatly 
increases the difficulty and complexity of building CS. 
Therefore, herein, we propose a method to build a simpler CS, 
in which only a single shared variable subset is used for the 
mapping among all objectives.  

Referring to the concept of inverse model, we can find the 
approximated inverse mapping from fm to variables Xm by a 
model. That is, F’(fm) → Xm, where F’(b) → a is the inverse 
function of F(a) → b. In addition, there must be an 
intersection among all Xm (m = 1, …, M), as: 

1 ...o MX X X           (4) 

Therefore, F’(fm) → Xm can be further divided into F’(fm) 

→ Xo and F’(fm) → Xm\Xo. Furthermore, F(Xm) → fm can be 

Algorithm 1 Surrogate training 

Input: DB; 

Output: RS and CS. 

Begin 

1:   For m = 1 : M do 

2:        calculating Relief-F weights between variables and fm in DB; 
3:        sorting weights in descending order, and finding knee point; 

4:        Xm = variables whose weights are larger than knee point; 

5:        If |Xm| < 0.5D then 

6:               Xm = first half of variables with high Relief-F weights; 

7:        End if 

8:        training rsm through DB(<Xm, fm>); 
9:   End for 

10: RS = (rs1, …, rsM); 

11: Xo = X1 ∩ X2 ∩ … ∩ XM; 

12: For m = 1 : M do 

13:      training csm through DB(<{f1, …, fm-1, fm+1, …, fM, Xm\Xo}, fm>); 

14: End for 

15: CS = (cs1, …, csM); 

End 

 

Algorithm 2 Surrogate-assisted FE 

Input: un-evaluated solution x, RS, CS; 

Output: {f1(x), …, fM(x)} and {e1(x), …, eM(x)} 

Begin 

1:   For m = 1 : M do 

2:        {rfm(x), rem(x)} = rsm(Xm); 

3:   End for 

4:   For m = 1 : M do 

5:        {cfm(x), cem(x)} = csm(rf1(x), …, rfm-1(x), rfm+1(x), …, rfM(x), Xm/Xo); 

6:        If cem(x) < rem(x) then 
7:                fm(x) = cfm(x);  em(x) =  cem(x); 

8:        Else 

9:                fm(x) = rfm(x);  em(x) =  rem(x); 
10:      End if 

11: End for 

End 

 

    
Fig. 3. Variable selection for rsm in RS. 
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rewritten as F({Xo, Xm\Xo}) = F({F’(f1), …, F’(fm-1), 
F’(fm+1), …, F’(fM), Xm\Xo}) = F({f1, …, fm-1, fm+1, …, fM, 
Xm\Xo}) → fm. Herein, we use a model csm to rewrite the 
approximated mapping from Xm to fm, as: 

1 1 1({ ,..., , , ..., , \ })m m m M m o mcs F f f f f X X f      (5) 

The fusion of all csm (m = 1, …, M) consists of the CS. Fig. 4 
shows the variables partition in CS. For each csm, only 
variables in Xm\Xo are directly involved in the training of csm. 
The intersection variable set Xo works as the shared variable 
subset to fulfill the mapping from fn (n = 1, …, M and n ≠ m) 
to fm.  

When we compare CS with RS, we can find that every 
model rsm in RS is independent of each other, while csm in CS 
parasitically interacts with other csn (n = 1, …, M, and n ≠ m). 

In other words, all models in CS are conjugate symbiosis 
since the output of each objective depends on the other 
objectives as inputs, and at the time participates in the output 
of the other objectives as inputs.  

C. Surrogate Management 

In this section, we illustrate the details of our proposed 
surrogate management method. 

Algorithm 1 gives the pseudo-code of surrogate training. 
Once DB is input, the Relief-F weights between variables and 
each objective fm are calculated according to the solutions in 
DB (line 2). Then a variable subset Xm is chosen (lines 3-7), 
and only these Xm instead of all variables in DB participate in 
the training of RS (lines 8 and 10). After that, we obtain the 
intersection of all variable subsets (line 11). Finally, the CS 

TABLE I 

THE STATISTICAL IGD RESULTS BETWEEN CS-RVEA AND OTHER SAMOEAS 

Problem M CS-RVEA MOEA/D-EGO GP-ARMOEA HeE-MOEA AB-SAEA K-RVEA RS-RVEA 

DTLZ1 

3 3.23e+2 (4.48e+1) 3.19e+2 (6.09e+1) = 3.54e+2 (3.50e+1) + 3.70e+2 (3.49e+1) + 3.30e+2 (3.84e+1) = 3.17e+2 (4.82e+1) = 3.21e+2 (2.07e+1) = 

5 2.46e+2 (3.46e+1) 2.24e+2 (3.53e+1) = 2.74e+2 (2.58e+1) + 2.62e+2 (2.85e+1) = 2.47e+2 (3.99e+1) = 2.38e+2 (3.28e+1) = 2.51e+2 (2.78e+1) = 

8 1.49e+2 (2.97e+1) 1.44e+2 (2.02e+1) = 1.80e+2 (2.63e+1) + 1.89e+2 (2.33e+1) + 1.55e+2 (3.72e+1) = 1.46e+2 (2.79e+1) = 1.67e+2 (2.33e+1) = 

DTLZ2 

3 6.04e-1 (1.00e-1) 5.96e-1 (4.47e-2) = 6.71e-1 (1.34e-1) = 3.51e-1 (3.09e-2) - 6.37e-1 (9.19e-2) = 7.13e-1 (6.64e-2) + 5.88e-1 (8.81e-2) = 

5 7.24e-1 (7.23e-2) 7.98e-1 (8.12e-2) + 9.03e-1 (4.98e-2) + 5.48e-1 (3.44e-2) - 7.83e-1 (5.35e-2) + 8.20e-1 (5.26e-2) + 7.30e-1 (6.05e-2) = 

8 7.51e-1 (7.93e-2) 9.66e-1 (3.79e-2) + 9.40e-1 (5.72e-2) + 8.20e-1 (3.72e-2) + 8.45e-1 (8.70e-2) + 7.64e-1 (5.07e-2) = 7.66e-1 (6.62e-2) = 

DTLZ3 

3 9.41e+2 (8.67e+1) 7.05e+2 (2.15e+2) - 1.07e+3 (1.09e+2) + 1.04e+3 (1.17e+2) + 9.80e+2 (1.45e+2) = 8.78e+2 (1.03e+2) - 8.91e+2 (1.57e+2) = 

5 7.78e+2 (1.17e+2) 5.21e+2 (1.28e+2) - 9.14e+2 (8.86e+1) + 9.08e+2 (1.02e+2) + 8.30e+2 (1.05e+2) = 8.30e+2 (7.27e+1) = 7.81e+2 (8.24e+1) = 

8 5.27e+2 (6.83e+1) 4.32e+2 (1.12e+2) - 6.97e+2 (1.11e+2) + 6.77e+2 (6.54e+1) + 6.17e+2 (1.09e+2) + 5.31e+2 (7.46e+1) = 5.39e+2 (8.30e+1) = 

DTLZ4 

3 7.91e-1 (1.22e-1) 1.16e+0 (9.44e-2) + 1.15e+0 (1.68e-1) + 1.03e+0 (2.37e-2) + 9.08e-1 (1.78e-1) + 1.01e+0 (1.41e-1) + 9.60e-1 (1.27e-1) + 

5 9.41e-1 (1.02e-1) 1.21e+0 (7.15e-2) + 1.24e+0 (9.99e-2) + 1.14e+0 (2.83e-2) + 1.04e+0 (1.28e-1) + 1.06e+0 (1.30e-1) + 1.02e+0 (1.13e-1) + 

8 9.54e-1 (8.05e-2) 1.20e+0 (5.32e-2) + 1.20e+0 (4.30e-2) + 1.18e+0 (4.36e-2) + 1.09e+0 (7.54e-2) + 1.02e+0 (7.63e-2) + 1.07e+0 (6.39e-2) + 

DTLZ5 

3 4.68e-1 (9.40e-2) 5.64e-1 (7.94e-2) + 5.72e-1 (1.64e-1) + 2.63e-1 (3.42e-2) - 5.45e-1 (9.58e-2) = 5.67e-1 (1.23e-1) + 4.08e-1 (7.83e-2) - 

5 3.96e-1 (1.01e-1) 5.36e-1 (6.82e-2) + 6.14e-1 (1.30e-1) + 2.37e-1 (2.91e-2) - 4.91e-1 (1.18e-1) + 4.83e-1 (8.42e-2) + 3.84e-1 (8.33e-2) = 

8 3.06e-1 (5.75e-2) 4.25e-1 (5.61e-2) + 4.80e-1 (6.73e-2) + 1.82e-1 (2.16e-2) - 3.76e-1 (7.06e-2) + 3.40e-1 (7.73e-2) = 2.96e-1 (6.71e-2) = 

DTLZ6 

3 1.07e+1 (6.83e-1) 8.49e+0 (1.35e+0) - 1.35e+1 (5.73e-1) + 1.53e+1 (2.20e-1) + 1.31e+1 (8.90e-1) + 1.03e+1 (7.93e-1) = 1.10e+1 (9.41e-1) = 

5 1.00e+1 (9.45e-1) 7.61e+0 (1.16e+0) - 1.26e+1 (3.71e-1) + 1.36e+1 (1.54e-1) + 1.12e+1 (8.04e-1) + 1.02e+1 (7.51e-1) = 1.07e+1 (6.93e-1) + 

8 9.14e+0 (6.27e-1) 6.29e+0 (1.20e+0) - 1.00e+1 (3.47e-1) + 1.10e+1 (1.18e-1) + 9.90e+0 (4.98e-1) + 8.23e+0 (5.89e-1) - 9.23e+0 (4.21e-1) = 

WFG1 

3 1.86e+0 (1.06e-1) 2.22e+0 (6.81e-2) + 2.13e+0 (7.36e-2) + 2.28e+0 (4.59e-2) + 1.96e+0 (1.35e-1) + 1.85e+0 (1.57e-1) = 1.86e+0 (1.10e-1) = 

5 2.32e+0 (9.05e-2) 2.56e+0 (7.46e-2) + 2.50e+0 (5.01e-2) + 2.63e+0 (6.68e-2) + 2.42e+0 (1.18e-1) + 2.36e+0 (7.55e-2) = 2.35e+0 (8.72e-2) = 

8 2.92e+0 (7.04e-2) 3.09e+0 (4.43e-2) + 3.00e+0 (4.08e-2) + 3.13e+0 (3.71e-2) + 3.03e+0 (7.77e-2) + 2.92e+0 (5.30e-2) = 2.96e+0 (5.45e-2) = 

WFG2 

3 6.69e-1 (3.60e-2) 7.99e-1 (5.30e-2) + 7.37e-1 (5.84e-2) + 7.64e-1 (5.15e-2) + 7.63e-1 (1.03e-1) + 7.11e-1 (3.11e-2) + 6.87e-1 (3.62e-2) = 

5 1.07e+0 (6.40e-2) 1.45e+0 (2.26e-1) + 1.18e+0 (9.96e-2) + 1.62e+0 (2.20e-1) + 1.04e+0 (2.22e-1) - 1.06e+0 (9.58e-2) = 1.08e+0 (8.91e-2) = 

8 1.60e+0 (1.61e-1) 2.45e+0 (2.64e-1) + 1.85e+0 (2.37e-1) + 2.86e+0 (3.77e-1) + 1.99e+0 (5.77e-1) + 1.57e+0 (9.77e-2) = 1.65e+0 (1.05e-1) = 

WFG3 

3 6.60e-1 (3.34e-2) 6.81e-1 (1.84e-2) + 6.89e-1 (2.68e-2) + 4.94e-1 (2.17e-2) - 6.42e-1 (3.37e-2) = 6.93e-1 (2.42e-2) + 6.50e-1 (3.97e-2) = 

5 9.31e-1 (4.06e-2) 9.50e-1 (2.83e-2) = 9.74e-1 (2.38e-2) + 6.87e-1 (2.85e-2) - 9.45e-1 (5.63e-2) = 9.51e-1 (5.02e-2) = 9.40e-1 (4.12e-2) = 

8 1.34e+0 (4.96e-2) 1.30e+0 (4.57e-2) - 1.36e+0 (4.60e-2) = 9.65e-1 (6.33e-2) - 1.34e+0 (6.42e-2) = 1.34e+0 (5.73e-2) = 1.37e+0 (4.57e-2) = 

WFG4 

3 5.07e-1 (1.23e-2) 5.73e-1 (5.75e-2) + 5.36e-1 (2.17e-2) + 6.18e-1 (3.79e-2) + 5.16e-1 (3.56e-2) = 5.26e-1 (1.40e-2) + 5.33e-1 (1.90e-2) + 

5 1.34e+0 (4.72e-2) 1.92e+0 (2.46e-1) + 1.52e+0 (1.89e-1) + 2.32e+0 (1.71e-1) + 1.46e+0 (2.71e-1) = 1.40e+0 (1.07e-1) + 1.36e+0 (5.11e-2) + 

8 4.27e+0 (4.83e-1) 4.94e+0 (1.07e+0) = 4.22e+0 (3.77e-1) = 6.57e+0 (3.01e-1) + 4.17e+0 (5.40e-1) = 4.10e+0 (4.13e-1) = 4.33e+0 (2.84e-1) = 

WFG5 

3 5.91e-1 (3.58e-2) 6.79e-1 (3.26e-2) + 6.62e-1 (1.46e-2) + 7.62e-1 (1.35e-2) + 6.77e-1 (2.42e-2) + 5.62e-1 (4.06e-2) - 5.83e-1 (3.56e-2) = 

5 1.35e+0 (2.43e-2) 1.56e+0 (7.77e-2) + 1.51e+0 (9.93e-2) + 1.67e+0 (3.77e-2) + 1.44e+0 (3.67e-2) + 1.38e+0 (4.34e-2) + 1.37e+0 (3.99e-2) = 

8 3.44e+0 (1.03e-1) 4.58e+0 (3.11e-1) + 4.11e+0 (5.20e-1) + 4.35e+0 (1.45e-1) + 3.59e+0 (2.74e-1) + 3.54e+0 (1.96e-1) = 3.59e+0 (2.31e-1) + 

WFG6 

3 8.13e-1 (2.65e-2) 8.95e-1 (5.97e-2) + 8.69e-1 (1.46e-2) + 7.94e-1 (2.67e-2) - 8.43e-1 (2.50e-2) + 8.07e-1 (2.90e-2) = 8.19e-1 (1.59e-2) = 

5 1.52e+0 (1.85e-2) 1.79e+0 (6.62e-2) + 1.58e+0 (3.09e-2) + 1.96e+0 (7.07e-2) + 1.79e+0 (6.13e-2) + 1.55e+0 (3.70e-2) = 1.54e+0 (3.36e-2) = 

8 3.41e+0 (7.23e-2) 4.41e+0 (4.28e-1) + 3.63e+0 (1.06e-1) + 5.20e+0 (2.30e-1) + 4.42e+0 (3.85e-1) + 3.49e+0 (9.38e-2) + 3.51e+0 (1.20e-1) + 

WFG7 

3 6.53e-1 (1.67e-2) 6.77e-1 (1.84e-2) + 6.82e-1 (1.41e-2) + 6.07e-1 (1.51e-2) - 6.49e-1 (2.28e-2) = 6.88e-1 (1.47e-2) + 6.86e-1 (1.15e-2) + 

5 1.46e+0 (6.76e-2) 1.79e+0 (9.25e-2) + 1.43e+0 (3.20e-2) = 1.81e+0 (9.38e-2) + 1.61e+0 (9.04e-2) + 1.53e+0 (7.29e-2) + 1.56e+0 (9.46e-2) + 

8 3.80e+0 (2.51e-1) 5.25e+0 (3.78e-1) + 3.82e+0 (2.25e-1) = 5.53e+0 (2.76e-1) + 4.27e+0 (3.57e-1) + 4.09e+0 (6.46e-1) = 4.32e+0 (4.47e-1) + 

WFG8 

3 7.17e-1 (2.37e-2) 8.28e-1 (1.82e-2) + 7.28e-1 (2.19e-2) = 7.70e-1 (2.83e-2) + 7.50e-1 (3.41e-2) + 7.06e-1 (2.71e-2) = 7.15e-1 (2.18e-2) = 

5 1.54e+0 (2.63e-2) 1.89e+0 (6.07e-2) + 1.58e+0 (3.26e-2) + 2.04e+0 (6.48e-2) + 1.86e+0 (8.41e-2) + 1.57e+0 (4.13e-2) + 1.56e+0 (3.49e-2) = 

8 3.65e+0 (9.08e-2) 5.04e+0 (3.05e-1) + 3.85e+0 (1.08e-1) + 5.41e+0 (1.85e-1) + 4.76e+0 (2.54e-1) + 3.70e+0 (1.09e-1) = 3.79e+0 (2.50e-1) + 

WFG9 

3 8.28e-1 (4.45e-2) 8.66e-1 (4.96e-2) + 8.74e-1 (2.72e-2) + 7.72e-1 (5.10e-2) - 8.69e-1 (4.99e-2) + 8.58e-1 (4.20e-2) = 8.60e-1 (4.16e-2) + 

5 1.77e+0 (7.10e-2) 1.97e+0 (1.06e-1) + 1.83e+0 (8.84e-2) + 1.89e+0 (1.12e-1) + 1.87e+0 (9.94e-2) + 1.87e+0 (9.38e-2) + 1.89e+0 (1.00e-1) + 

8 4.40e+0 (3.00e-1) 5.22e+0 (4.43e-1) + 4.71e+0 (4.32e-1) + 4.88e+0 (2.74e-1) + 4.58e+0 (4.91e-1) = 4.57e+0 (4.17e-1) = 4.87e+0 (4.80e-1) + 

+/-/= 

DTLZ 8/6/4 17/0/1 12/5/1 11/0/7 7/2/9 4/1/13 

WFG 24/1/2 22/0/5 21/6/0 18/1/8 10/1/16 11/0/16 

Total 32/7/6 39/0/6 33/11/1 29/1/15 17/3/25 15/1/29 
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is trained (lines 12-14). In our surrogate, the Kriging model 
is adopted for building RS and CS. 

Algorithm 2 gives the method of using our well-trained 
surrogate to replace real FE during the optimization process. 
When an un-evaluated offspring solution x is generated, it is 
first fed to the RS to get the predicted objective values (e.g., 
rf1(x) to rfM(x)) and the prediction errors (e.g., re1(x) to reM(x)) 
(lines 1-3). Then x is fed to the CS to get another predicted 
value and error (e.g., cfm(x) and cem(x)) for each objective 
(line 5). Notice that the prediction values of x from RS will 
participate as input in the prediction process by CS. After that, 
if cem(x) is smaller than rem(x), then the m-th objective value 
of x (e.g., fm(x)) and its prediction error (i.e., em(x)) are 
provided by the model csm from CS; otherwise, it is estimated 
by the model rsm from RS (lines 6-10). 

IV. EXPERIMENTAL STUDIES 

A. Experimental Settings 

Theoretically, our proposed surrogate can be 
implemented into any SAMOEAs that use Kriging models to 
approximate the objective functions for expensive 
multiobjective optimization. Herein, we use it to replace the 
Kriging surrogate in K-RVEA [22], and the K-RVEA variant 
adopting our surrogate is denoted as CS-RVEA. Comparison 
experiments are taken with five state-of-the-art SAMOEAs 
(MOEA/D-EGO [8], GP-ARMOEA [9], HeE-MOEA [14], 
AB-SAEA [10], and K-RVEA) on DTLZ [23] and WFG [24] 
benchmark suites. In addition, to verify the effectiveness of 
CS, a CS-RVEA variant in which only the RS used (denoted 
as RS-RVEA) is also conducted. 

All algorithms run 20 independent times on each test 
problem. The inverted generalized distance (IGD) [25][26] is 
adopted as the performance metric. Wilcoxon’s rank-sum test 
at a 5% significance level is conducted between CS-RVEA 
and other compared algorithms. The symbols of ‘+’, ‘–’, and 
‘=’ represent that CS-RVEA is significantly better than, 
worse than, or similar to the corresponding compared 
algorithm, respectively. For each independent experiment, 
population size N = 50, variable dimension D = 20.  The Latin 
hypercube sampling is adopted to initialize 11D – 1 solutions 
as the initialized DB. The maximum number of FE is set as 
339 (e.g., 11D – 1 + 120). Except for these, other parameters 
of all compared algorithms are set according to their original 
papers for a fair comparison. 

B. Experimental Results and Analysis 

Table I shows the statistical IGD results between CS-
RVEA and other compared SAMOEAs on DTLZ and WFG 
with M = 3, 5, and 8, respectively. It can be seen that CS-
RVEA performs worse than some SAMOEAs on only a few 
test problems, whereas outperforms them on most other 
problems. Specifically, CS-RVEA obtains significantly 
better IGD results than other compared SAMOEAs on 32, 39, 
33, 29, 17, and 15 out of 45 instances, respectively. These 
results confirm the competitiveness of CS-RVEA in dealing 
with EMOPs.  

In addition, from the comparison of the results in Table I, 
the efficiency of CS on WFG seems to be better than that on 
DTLZ. This is probably due to the differences in the way the 
two benchmark test suites are constructed. DTLZ used a 
simple addition form to define the objective functions, which 
makes the objectives themselves lack sufficient symbiosis. 
This makes it difficult for CS to play a role in these kinds of 

problems. On the contrary, the structure of WFG is relatively 
more complex, and the objectives have stronger symbiosis, 
making the importance of CS more prominent in these 
problems. This result shows that the use of CS also depends 
on the property of EMOPs. CS is more suitable for problems 
where there is a certain connection between objectives, even 
if such a connection cannot be mathematically determined. 

To further explore the acceleration effect of CS in 
convergence, Fig. 5 plots the mean IGD curves of SAMOEAs 
over the number of real FEs on different problems. It can be 
seen that the IGD curve by CS-RVEA declines significantly 
faster than that by the other compared SAMOEAs. Here we 
focus on comparing the IGD curves among K-RVEA, RS-
RVEA, and CS-RVEA, and we can find that the curve of RS-
RVEA is worse than that of K-RVEA in some cases. These 
results further confirm our previous discussion that a single 
RS will cause a deterioration in performance, although it can 
reduce training costs. However, with the help of CS, CS-
RVEA can not only avoid this performance deterioration 
caused by RS but also improve the convergence speed.  

C. Runtime Cost Analysis 

In this section, we explore the difference in runtime cost 
between the three different surrogates. The experiments are 
implemented in Matlab on an identical computer with Inter(R) 
Core (TM) i5-11400 2.60 GHz and 16GB of RAM. Table II 
shows the average training time for a single surrogate on 
DTLZ2 with different objectives. It can be seen that the 
training time of RS and CS is less than that of KS, which 
indicates that they also have an advantage over KS in time 
cost. Although the simultaneous use of RS and CS will 
increase the training time, it is possible to reduce it through 
parallel training techniques. 

V. CONCLUSION 

The existing Kriging surrogate in SAMOEAs works as the 
replacement for real expensive fitness evaluation by 

  
(a) DTLZ2                       (b) DTLZ4 

 
(c) WFG5                                 (d) WFG9 

Fig. 5. The mean IGD curves of SAMOEAs on four test problems (M = 8). 

TABLE II 
AVERAGE TRAINING TIME (S) FOR A SINGLE SURROGATE ON DTLZ2 

M KS RS CS 

3 3.20160  1.77366  0.95435  

5 5.61238  3.00935  3.29620  

8 8.02504  3.65827  7.88033  
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approximating the mapping from variables to each objective 
but neglects the possible relationship among different 
objectives. In this paper, we for the first time explore the 
possibility of objectives-to-objective mapping and propose the 
CS to approximate such mapping for expensive multiobjective 
optimization. In addition, the collaboration between this CS 
and RS can also alleviate the prediction performance 
deterioration caused by dimension reduction, so as to improve 
the convergence speed without high training cost. 

Our proposed CS can be implemented into any SAMOEA 
in which the Kriging model is adopted to approximate each 
objective function for solving EMOPs, especially for those 
EMOPs when there is a potential connection between 
objectives. In the experiment, a CS-assisted SAMOEA called 
CS-RVEA is proposed, and the comparison results between 
several state-of-the-art SAMOEAs confirm its effectiveness 
and competitiveness in dealing with EMOPs. In our future 
work, we will propose several strategies to enhance the 
performance of CS and extend it to solve real-world expensive 
multiobjective optimization applications[27]-[30]. 
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