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Abstract—A key challenge for evolving complex physical ob-
jects is to design a representation, that is, to devise suitable
genotypes and a good mapping from genotypes to phenotypes
(the objects to be evolved). This paper outlines a new approach
to address this challenge for evolving robot morphologies and
presents a proof-of-concept study to assess its feasibility. The key
idea is to design genotype-phenotype mappings using variational
autoencoders. This idea is implemented and tested for the evolu-
tion of modular robots for a locomotion task. The experiments
show the practicability of this idea where the representation is
not hand-designed, but algorithmically generated. This indicates
a great future potential for the evolution of complex objects where
there are no straightforward representations to use.

Index Terms—evolutionary robotics, morphological evolution,
representation, genotype-phenotype mapping

I. INTRODUCTION

Evolutionary Algorithms (EA) have been used to optimize
the morphology, the controller or both of simulated or real
robots for over two decades, with several approaches regarding
the EA setup [1]–[3]. Unfortunately, the details of the EA
configuration are seldom discussed and, to date, there is
little known about how to set up an effective EA for robot
evolution. The EA feature that probably has received the least
attention is the representation or genotype-phenotype mapping,
that is, the encoding of phenotypes (robots) into genotypes
(data structures). The usual practice is to use some common
representation, based on the researchers’ habits, subjective
preference, or ease of implementation. This is very question-
able, because it is well-known in the EA research community
that the representation is a crucial factor in the performance
of EAs [4].

Zooming in on morphological robot evolution, it can be
noted that available knowledge about representations is scarce.
There are a number of options in the literature for encoding
the morphologies of evolving robots, including parse trees, L-
systems, compositional pattern-producing networks (CPPNs),
but we are only aware of a few studies that explicitly address
the effects of different morphology encodings [5], [6]. Re-
search on this subject is in its infancy and the only thing we
seem to know is that “the representation is at least as important
as the optimization method for effectively creating robots” [7],
[8].

The goal of this paper is to outline a new approach to
handle representations for morphological robot evolution and
to conduct a proof-of-concept study to assess its feasibility.

The key idea is to design genotype-phenotype mappings in
a systematic way, using variational autoencoders (VAE) [9].
The corresponding workflow consists of the following steps:
1) specify the phenotype space (the robots to be evolved),
2) specify the genotype space (the desired data structure to
be used in the EA), 3) identify the criteria that define when
a genotype-phenotype mapping is considered good, 4) use an
applicable machine learning algorithm to find a good mapping.

Our main research question concerns the feasibility of learn-
ing good representations for morphological robot evolution
by this approach. To answer this question we consider the
evolution of morphologies of modular robots, whose pheno-
types are defined by the RoboGen system [10], and aim at a
vector representation, where genotypes are real valued vectors.
Regarding the desired properties of the learned mapping we
choose to be minimalistic here. Although there are several
sensible criteria to define when a genotype-phenotype mapping
is good (these will be discussed in Section IV), for this proof
of concept, we only apply the standard reconstruction and KL-
divergence loss [11] of the mapping as used in VAEs.

Note, that by this approach we not only get a genotype-
phenotype mapping, but also a phenotype-genotype mapping
and that the phenotype-genotype mapping is the (approximate)
inverse of the genotype-phenotype mapping because of the use
of the reconstruction loss in the learning algorithm. In EA
terms, this means that the representation is (approximately)
invertible. This is a seldom feature that can be advantageous.
Another aspect to note is the locality of the representation.
In EAs, locality stands for the property that nearby genotypes
map to nearby phenotypes and it is a very desirable feature that
makes a problem easier to solve. We expect that the genotype-
phenotype mapping we obtain by the learning algorithm scores
well on the locality criterion, even though it is not explicitly
included among the optimization criteria.

II. ROBOT EVOLUTION SYSTEM

The most general case of robot evolution concerns joint
evolution of morphologies (bodies) and controllers (brains)
with lifetime learning right after birth as captured in the
Triangle of Life model [12]. This implies two important
things. Firstly, a phenotypic dichotomy (a robot consists of
a body and a brain) and a genotypic dichotomy (the genotype
of a robot consists of a body-coding segment and a brain-
coding segment). Secondly, that the fitness of the robots is not

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1072



Fig. 1. The modules considered in the morphological design space. From left
to right: core, brick, vertical active hinge, and horizontal active hinge.

calculated with the inherited brain, directly after ‘birth’, but
with the learned brain, when the lifetime learning is finished
in the so-called infancy period.

A. Robotic phenotypes

1) Morphologies (bodies): The morphologies of the mod-
ular robots in our setup are composed of a subset of the
modules in the RoboGen system. Each module has specific
areas (“slots”) where it can be attached to another module.
We consider four distinct modules, as depicted in Fig. 1:

• Core: The cuboid, rigid centerpiece of the robot, of which
there is always exactly one in each configuration. It has
slots on four of its sides, excluding the top and bottom.

• Brick: A passive component similar to the core, but with
a slightly smaller size. There can be zero or more bricks
in a robot. Practically, a brick has three available slots,
as one is used for attaching it to the parent module.

• Active Hinge: This module is an actively-controlled rotary
joint that can rotate up to 60 degrees in either direction,
which enables the robot to move. There are two vari-
ants of the active hinge, allowing for either vertical or
horizontal rotation. Each active hinge has two slots, one
on each end of the joint, with one slot being utilized to
connect the joint to its parent module. Like the brick, a
robot can have zero or more active hinges.

Throughout this paper, we discuss locality, a property that
connects phenotypic and genotypic distances. To work with
this concept, it is essential to define a metric for modular
robots. A logical selection is the tree edit distance, which
represents the number of modules that need to be added or
removed from one tree to transform it into another. For this
purpose, we use the APTED algorithm [13], [14].

2) Controllers (brains): Each robot is controlled through
a network of central pattern generators (CPGs) [15]. Every
active hinge i has a corresponding CPG consisting of state
variable xi, representing the desired angle, and hidden state
yi. The system changes over time according to the following
set of differential equations:

ẋi = wiyi +
∑
j∈Ni

wxjxixj

ẏi = −wixi

(1)

where wxjxi
= −wxixj

. The controller parameters w deter-
mine the interaction between state variables. If more than
one module is in between active hinge a and b we set
wxaxb

= wxbxa = 0. Initially all state variables are set to

√
2
2 , leading to a system generating sine and cosine signals

that control the robot.

B. Robotic representations
In this work, we focus on the morphological representation

and evolution. Therefore, we do not co-evolve the brains with
the bodies. Thus the genotype of a robot encodes only the
morphology and the brain of each ’newborn’ robot is learned
from scratch as discussed in Section III-B. We consider two
types of representations for robot morphologies: (1) CPPN
representation and (2) vector representation.

1) CPPN representation: This approach uses CPPNs, a
type of artificial neural network, to represent the robot mor-
phologies [16]–[18]. Our CPPN representation has four inputs
and five outputs. The inputs include the x, y, and z coordinates
of a component and the number of modules between that com-
ponent and the core. The outputs determine the probabilities
of module types (brick, active hinge, or empty) and rotations
(0 or 90 degrees). Rotations are only applied to active hinges.

The body’s genotype to phenotype mapping treats the mor-
phology as a 3D grid. Starting from the core, we move outward
querying the CPPN network to decide the type and rotation of
each module until no open slots remain or a maximum number
of modules is reached. If a grid location is already occupied,
the module is not placed and that branch ends.

2) Vector representation: Our goal is to represent mor-
phologies using real-valued vectors, as this enables the use
of many vector-based optimization techniques. A key insight
is that our system can be described by an unambiguous regular
tree grammar, and there exist readily accessible methods for
learning good representations from a set of trees. The formal
definition of the tree grammar describing our robots is as
follows:

Alphabet = {core, brick, hinge h, hinge v, empty}
Nonterminals = {start, child}
Start symbol = start

Production rules = start → core(child, child, child, child)
child → brick(child, child, child)
child → hinge h(child)
child → hinge v(child)
child → empty

Where hinge h and hinge v are horizontal and vertical
active hinges respectively, and empty represents a slot with
no module attached.

Specifically, the recursive tree grammar autoencoder (RT-
GAE), a type of VAE, learns an approximate encoder and
decoder between tree and vector space from an unambiguous
regular tree grammar and an array of sample trees [19].
Note that in contrast to the CPPN genotype, which represents
morphologies as non-overlapping grids, this approach directly
represents them as trees, resulting in the two representations
capturing slightly different morphology spaces.

The encoder consists of neural networks, each associated
with a specific production rule. When encoding a tree, the
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network corresponding to the root node’s matching production
rule is evaluated using representations of its child nodes, which
are recursively encoded before the parent. Notably, production
rules leading to terminals are encoded as a constant. A final
neural network layer maps the encoded root node to the
parameters of the VAE’s latent distribution.

Similarly, the decoder comprises neural networks not only
for production rules but also for nonterminals. Beginning with
the initial symbol, it iteratively substitutes a nonterminal by
feeding its representation into the neural network tied to the
symbol to derive a production rule, leading to a terminal. Sub-
sequently, it evaluates the neural network associated with that
production rule to generate representations for the terminal’s
children, if any.

It is worth highlighting that genotype-phenotype mappings
generally do not have an (approximate) inverse and that this
method provides it without additional effort. Additionally,
locality, the property ensuring that similar genotypes map to
similar phenotypes, is crucial for an effective representation
[4]. We anticipate that the compression achieved by the
RTGAE using standard reconstruction and KL-divergence loss
will partially preserve this relationship, even without explicit
training for it.

III. EXPERIMENTS

The source code for our experiments is available at1.

A. Representation learning

The objective of our first experiment is to generate a vector
representation using the methods described earlier. We train
the RTGAE for 200 epochs with a batch size of 200. The
training set consists of 10,000 trees uniformly sampled from a
bounded domain of 1 to 10 nodes, including the core. We
use a sampling algorithm similar to [20] where trees are
constructed by continuously adding modules to available slots.
Each iteration randomly selects a module type to append or
leaves the slot empty. The selection weight of each type is
based on the frequency of its appearance in trees that have
the desired number of modules. Tree sizes are randomized
to encounter both large and small trees during training. The
network was trained using reconstruction and KL divergence
losses, following the original RTGAE paper.

The RTGAE has two main hyperparameters to consider:
the ”tree dimensionality”, which refers to the size of the
encoding used by the encoder and decoder neural networks,
and the ”VAE dimensionality”, indicating the dimensionality
of the VAE latent space and corresponding to the size of the
genotype. The model must learn to represent the complete tree
space, although bounded, in contrast to the original RTGAE
paper that focused on a specific subset of trees. Consequently
the compression will appear low in comparison and a high
model dimensionality is required. Fig. 2 shows the combined
reconstruction and KL divergence losses during training for
varying hyperparameter values. From this plot, we deduce

1https://github.com/surgura/morphology representation

Fig. 2. Combined reconstruction and KL divergence losses over epochs for
varying RTGAE hyperparameters. Dimensions in the legend are in order of
the losses at the final epoch.

that 128 is a reasonable value for tree dimensionality, and
24 is preferable to 48 for VAE dimensionality. We favor the
representation of 24 because a lower dimension is generally
more beneficial for evolutionary algorithms and the difference
in training loss is small. Additionally, we aim to limit the
number of nodes in the generated trees to ten, aligning it with
the training set. However, the RTGAE implementation we use
counts empty nodes as well. Consequently, we adjusted the
node limit to 30, allowing for robots with ten modules, but
sometimes resulting in an excessive number of active hinges.

To assess adherence to the tree edit distance we randomly
sample pairs of genotypes, map them to phenotype space, and
compare genotypic (Euclidean) distance to phenotypic (tree
edit) distance. Fig. 3 depicts this as a scatterplot, focusing
on a range of small genotypic distances. A slight positive
correlation can be observed between genotypic and phenotypic
distances. The full plot, which covers up to a genotypic
distance of 5, maintains this trend, extending to a phenotypic
distance of 35. From this, we conclude that the RTGAE
produces a mapping with modest locality, at no extra cost.

Additionally, for added validation, we randomly sample
genotypes, pair each with a neighbor by applying Gaussian
perturbation, and then visualize the resulting robots in Fig. 4.
As expected, neighboring genotypes result in similar robots.

B. Evolutionary experiments for validation

In our second experiment, we aim to validate the effective-
ness of the learned vector representation by using it to evolve
robots for a locomotion task. To this end, use a flat terrain and
measure fitness by displacement over an evaluation period of
30 seconds by

fitness =
√
x2
end + y2end

where the initial position is (0, 0) and (xend, yend) denotes
the robot’s final position in the x-y plane. Exploiting the fact
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Fig. 3. The vector representation demonstrates modest locality even though it
was not explicitly optimized for this. This property entails that small changes
in the genotype lead to small changes in the phenotype. Each dot in the figure
shows the genotypic and phenotypic distances of a pair of robots measured
by Euclidean and tree edit respectively. Note that this is a zoomed-in view.
The full plot extends to maximum distances of 5 and 35, showing the same
effect.

Fig. 4. Illustration of the effects of small mutations of genotypes shown in
phenotypes. Top: morphologies of randomly sampled vector representations.
Bottom: morphologies resulting from applying small Gaussian perturbations
to the representations on top.

that bodies are represented by vectors, we simply use the
covariance matrix adaptation evolution strategy (CMA-ES),
a popular gradient-free vector optimization algorithm [21] to
evolve good robots. We utilize the CMA-ES Python package
developed by the original paper’s author, with default settings
and an initial standard deviation set to 0.5, terminating after
1100 fitness evaluations.

As explained in Section II-B, robot brains are not evolved
together with the bodies, but learned for each ‘newborn’ robot
from scratch in the infancy stage of the Triangle of Life model.
Because brain configurations are specified by vectors (the
weights of the CPG network) we choose to use the CMA-ES
as the learning algorithm, with default settings and an initial
standard deviation set to 0.5, running for 20 generations [22].
Note that it is important to distinguish two instances of the
CMA-ES: one for evolving the bodies and one for learning
the brains.

Further to the validation experiments, we also perform
comparative experiments with the CPPN representation using

crossover and mutation operators from the original CPPN
paper but without the speciation mechanism with settings after
[23]. The experiment is conducted over 20 generations with a
population size of 100 and an offspring size of 50, leading
to a total of 1100 evaluations. Similarly to the validation
experiments, brains are not co-evolved with the bodies, but
learned by the CMA-ES using the same settings as above.

Fig. 5a illustrates the fitness trend during the evolutionary
experiment using the learned vector representation. The curves
show the typical behavior of ascending at a diminishing rate,
as generally seen in EAs. This leads us to conclude that
our system for learning a vector representation is effective
in practice. As an additional sanity check, we consider the
learning delta, a specific measure for morphological robot
evolution systems with individual learning after ‘birth’. The
learning delta quantifies the learning capacity of a morphology
by measuring the difference in fitness before and after learning.
While the concept of learning delta is relatively new, several
papers have reported the same behavior in different systems:
namely, that the learning delta grows over the course of mor-
phological evolution [24]. Fig. 5b shows that the evolutionary
dynamics using the learned vector representation are fully in
line with the general pattern.

The plots belonging to the CPPN-based evolutionary runs
(Fig. 5c and Fig. 5d) show that CPPN outperforms the vector
representation. Closer inspection reveals a strange effect: the
presence of highly fit individuals in the initial populations
of the CPPN experiment. We aim to illustrate this effect in
Fig. 6a and Fig. 6b, where we show the nine fittest robots
from a random sample of 100 robots for the CPPN and vector
representations, respectively. Our vector representation yields
a diverse array of morphologies, while the CPPN representa-
tion predominantly generates snake-like shapes. Intriguingly,
the snake is also the best performing robot at the end of
evolution. This is evidenced in Fig. 7b, which displays the
fittest morphology from each CPPN experiment. These robots
execute a distinct curling-and-uncurling movement pattern
that does not transfer well to other morphologies, even if
they are similar. We suspect that the snake is located on a
steep local maximum surrounded by strong attractors, which
usually makes it hard to find by evolutionary algorithms.
On the other hand, while the experiments using the learned
vector representation also converge to a uniform behavior
(rolling), the resulting morphologies are significantly more
diverse, suggesting a wider fitness peak that comprises many
morphologies. This leads us to believe that CPPN’s superior
performance is primarily attributed to its inherent bias towards
the snake morphology.

IV. DISCUSSION

The experiments provided a positive answer to our main
question: is learning a genotype-phenotype mapping using
VAEs for morphological robot evolution possible? The core
evidence is in the curves of Fig. 5a showing that evolution
works as expected. To appreciate this, recall that the represen-
tation used here was not hand-designed, but algorithmically
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(a) Fitness during evolution using learned vector representation (b) Learning delta during evolution using learned vector representation

(c) Fitness during evolution using CPPN representation (d) Learning delta during evolution using CPPN representation

Fig. 5. (a & b) An evolutionary process using the learned vector representation yields morphologies with progressively higher fitness and learning ability.
(c & d): The CPPN representation can already produce morphologies with high fitness and learning ability in the initial population (see Section III-B for
further analysis). “Best” refers to the most fit robot encountered up to the current number of evaluations. “Mean” represents the average among the individuals
in the current population or, in the case of CMA-ES, the pool of candidate solutions.

(a) Best morphologies out of 100 random vector representations (b) Best morphologies out of 100 random CPPN representations

Fig. 6. The best performing robots out of 100 randomly sampled genotypes. (a) The learned vector representation yields a diverse array of robots. (b) The
CPPN representation predominantly generates snake-like shapes.
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(a) Best morphologies from each experiment using the learned vector
representation

(b) Best morphologies from each experiment using the CPPN representation

Fig. 7. The best robots from multiple independent evolutionary experiments. (a) The learned vector representation led to a uniform behavior, but with diverse
morphologies. (b) The CPPN representation produced a snake morphology in all trials.

generated; all the user has to do for this is to specify the length
(dimensionality) of the genotype vectors, then apply an off-
the-shelf learning method. This is a potentially very impactful
approach, especially for evolving complex objects (like a robot
body), where there are no straightforward representations to
use.

In Introduction, we expressed our expectation that the
learned genotype-phenotype mapping scores well on the lo-
cality criterion. Fig. 3 confirmed this. While the dot cloud
does not form a clear band along the diagonal, it shows that
close neighbors in the genotype space are also close in the
phenotype space.

We see several possibilities to extend the main idea behind
this study. The most promising line of research concerns the
addition of different criteria to define the quality of a genotype-
phenotype mapping and include these in the learning process.
Specifically, we are thinking of locality (how well do nearby
genotypes map to nearby phenotypes), coverage (how much of
the phenotype space can be accessed through the mapping),
and representation bias (how much does the mapping steer
towards certain regions in phenotype space).
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