
XF-OPT/META: A Hyperparameter Optimization
Framework Applied to the H-SPPBO Metaheuristic

for the Dynamic TSP
Daniel Werner

Department of Computer Science
Leipzig University, Germany

Fatma Turna
Swarm Intelligence and Complex Systems Group

Department of Computer Science
Leipzig University, Germany

fatma.turna@uni-leipzig.de

Hoang Thanh Le
Swarm Intelligence and Complex Systems Group

Department of Computer Science
Leipzig University, Germany
lht@informatik.uni-leipzig.de

Martin Middendorf
Swarm Intelligence and Complex Systems Group

Department of Computer Science
Leipzig University, Germany

middendorf@informatik.uni-leipzig.de

Abstract—This paper has two objectives. Firstly, to introduce
a new framework XF-OPT/META for testing and comparing
Hyperparameter Optimization (HPO) methods. The framework
supports model-free methods, e.g., Random Search (RS), as
well as model-based methods, such as Bayesian Optimization
(BO), with various surrogate models. Due to the generalized
and modular structure of the XF-OPT/META framework, it
can be easily extended to other optimization methods for dif-
ferent optimization problems. The second objective is to empir-
ically compare the performance of various HPO methods for
population-based metaheuristics. For that the XF-OPT/META
framework is used to apply HPO methods to the Hierarchical
Simple Probabilistic Population-Based Optimization (H-SPPBO)
metaheuristic for the Dynamic Traveling Salesperson Problem
(DTSP) and to calculate high-performing parameter values for
H-SPPBO. Promising results are obtained using the parameter
values found by BO. In particular, a parameter set obtained
with Gradient-Boosted Regression Trees (GBRT) outperforms a
reference parameter set for H-SPPBO from an existing study.

Index Terms—Hyperparameter Optimization, Metaheuristics,
Parameter Tuning, Dynamic Traveling Salesperson Problem,
Hierarchical Simple Probabilistic Population-Based Optimization
(H-SPPBO), Bayesian Optimization

I. INTRODUCTION

In the recent years, powerful algorithms have been devel-
oped for a variety of problems, including many NP -hard
optimization problems. However, these algorithms’ versatility
and high performance stem from parameters that can be set by
the user to carefully adjust the algorithm’s behavior. In order to
thoroughly utilize an algorithms potential, efficient and easily
applicable methods are needed to determine high-performing
parameter values for these algorithms. Hyperparameter Opti-
mization (HPO) refers to the optimization problem of finding
such parameter values in order to maximize an algorithm’s
performance. For this problem, the framework XF-OPT/META

is presented in this work which provides various methods for
HPO as well as tools to compare and evaluate HPO algorithms.
The framework is used to empirically compare different HPO
methods.

For a comparison the HPO methods are applied to the
Hierarchical Simple Probabilistic Population-Based Optimiza-
tion (H-SPPBO) in order to tune its parameters for the
dynamic TSP (DTSP). H-SPPBO is a metaheuristic frame-
work developed by Kupfer et al. [1] for designing algorithms
that incorporate populations, i.e., sets of previously generated
solutions. It extends the SPPBO framework [2] which unifies
various population-based algorithms, such as the Population-
Based Ant Colony Optimization (PACO) [3] and Simplified
Swarm Optimization (SSO) [4]. The central component of both
frameworks is formed by Solution Creating Entities (SCE,
similar to ants in an ACO algorithm). In H-SPPBO the SCEs
are organized in a hierarchical tree structure where swaps
occur if an SCE obtains better solutions than its parent SCE.
The swaps can be used to detect dynamic changes [1], making
H-SPPBO suitable for dynamic optimization problems, such
as the DTSP.

Metaheuristics belonging to the H-SPPBO framework fea-
ture a large number of parameters to adjust the algorithm’s
behavior, such as the weights for different populations and
the strength of the influence of heuristic components or of
randomness on constructing new solutions [1], [2]. Thus, H-
SPPBO metaheuristics provide a promising case for comparing
HPO methods and using the XF-OPT/META framework. So
far there is not much research available on comparing HPO
methods for tuning metaheuristics.

The remainder of this paper is structured as follows. In
Section II, an overview of related work is given. Methods
to optimize hyperparameters for metaheuristics are covered in

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1183

Section III. Experimental results are presented in Section IV
and conclusions are given in Section V.

II. RELATED WORK

The use of metaheuristics for dynamic optimization prob-
lems began more than 20 years ago. One of the earlier works
that discusses the theoretical concept of the dynamic TSP
using evolutionary computation is [5]. Another example is [6]
which shows that adapting an Ant Colony Optimization (ACO)
algorithm to dynamic changes of TSP instances is faster than
simply restarting the algorithm. Guntsch and Middendorf [7]
proposed pheromone modification strategies for ACO to react
to dynamic insertions or deletions of cities of a TSP instance.
Similar methods are presented in [8]. Since then numerous
studies have been performed on dynamic optimization. A
survey is given by Mavrovouniotis et al. [9] who review
existing studies on Swarm intelligence dynamic optimization
(SIDO). They group the most important applications of SIDO
into continuous or discrete problems while discussing and clas-
sifying strategies that enhance Swarm intelligence algorithms
to cope with dynamic changes. Another survey is by Yazdani
et al. [10], [11] on evolutionary continuous optimization over
the last two decades.

The problem of choosing appropriate values for parameters
of a metaheuristics (such parameters are also called hyper-
parameter) has always been an important consideration in
research. Eiben et al. [12] give a thorough review and analysis
of the different options in the field of parameter tuning.
Although they focus on Genetic Algorithms, they provide
a taxonomy for parameter optimization. Talbi [13] classifies
parameter tuning methods into offline methods and online
methods. The offline methods are further split into meta-
level and base-level methods, whereas for online methods a
distinction is made between dynamic and adaptive updating
methods, which are also further classified.

In a review of parameter optimization by Wong et al. [14],
it is concluded that parameter tuning plays an important role
in the exploratory and exploitative behavior of ACO. The most
popular reference in manual parameter tuning for ACO is the
original work by Dorigo et al. [15], [16]. They performed sev-
eral experiments with different parameter value combinations
on TSP instances and the obtained parameter values serve as a
baseline for many subsequent studies. An updated version of
these “good” parameter values and variations of the original
ACO were published in [17]. A self-adaptive control scheme
has been proposed by Hao et al. in [18] which constructs a
combinatorial problem of the parameter value search problem
and applies PSO to optimize the obtained values, leading to
promising results in TSP benchmarks.

Another promising approach to optimize parameters as a
type of black-box optimization problem is Bayesian optimiza-
tion (BO) which was first introduced in [19]. Since then,
BO has been applied to a variety of problems, including
hyperparameter optimization problems. For example, Snoek
et al. [20] consider the auto-tuning problem in the frame-
work of Bayesian optimization, in which the generalization

performance of a learning algorithm is modeled as a Gaussian
process (GP). The traceable backscatter induced by the GP
allows the information gathered from previous experiments
to be efficiently used, providing optimal choices about which
parameter values to try next. In a study performed by van
Hoof and Vanschoren [21], a new surrogate model based on
gradient boosting is proposed. This model uses quantitative
regression to provide optimistic estimates of the performance
of unobserved hyperparameter settings which is combined
with distance measurements between unobserved and observed
hyperparameter settings to aid in tuning exploration. Finally,
an approach similar to this work, but more narrowly focused,
is investigated by Yin and Wijk [22]. They use Random
Search and Bayesian optimization (BO) to tune the parameters
of a classical ACO algorithm on multiple instances of the
asymmetric TSP. Their approach to tuning parameters leads
to promising results, without requiring a priori knowledge of
the problem or the algorithm.

III. HYPERPARAMETER OPTIMIZATION FOR
METAHEURISTICS

Based on the description of [23] to the problems in this
study, the hyperparameter optimization problem for meta-
heuristics can be formulated as follows: Let A be an opti-
mization algorithm (here, a metaheuristic) and Λ be the set
of possible (hyper)parameter configurations (i.e., a vector of
parameter values) for A. For a vector λ ∈ Λ the algorithm A
with parameter values according to λ is denoted by Aλ. Let fA
be a function that evaluates the “performance” of algorithm A
when it is executed with parameter values λ. As an example,
fA(λ) can be defined to be the best obtained solution quality
of Aλ during a run with some problem instance. In the case
of metaheuristics, typically, A incorporates stochastic elements
so that fA(λ) is a random variable.

Assuming that small values for fA are desirable, the
hyperparameter optimization problem is to find an optimal
parameter configuration λ that minimizes the expected value
of fA(λ):

λ∗ = arg min
λ∈Λ

E[fA(λ)] (1)

Usually it is not known how fA changes depending on the
used parameter values λ. Furthermore, it is possible that fA
(as a black-box function) can be computationally expensive
to evaluate. Due to this, approaches like Random Search
(RS) where configurations from Λ are randomly sampled
might require a large computational effort before promising
parameter values are obtained.

An approach to deal with this is to approximate fA by using
a surrogate model f̂A that is easier to compute and “learned”
by sampling the original function fA at selected parameter
configurations λ for the metaheuristic A. Afterwards, the
model f̂A is primarily used instead of fA to test parameter
values. In the following, let D0 be the set of pairs (λi, fi) with
sampled parameter values λi and observed values fi = fA(λi)
that is used to construct f̂A.

1184

In the context of Bayesian optimization (BO), which is not
just an algorithm used for HPO, but a complete framework
for the global optimization of (expensive) black-box functions,
the function f̂A constructed using the sampled values λi is
referred to as a prior distribution. It provides information on
“uncertainty” in unsampled areas of Λ as well as information
on promising areas that potentially lead to a low value for fA.
Based on this information new data points (λj , fj) in Λ are
sampled, which, in combination with the data in D0 leads to
a larger data set D′ that is used to construct a new function
f̂ ′A (posterior distribution).

The selection of new parameter configurations used for the
new data set D′ is determined by an acquisition function
u : Λ → R>0. Depending on the choice of u, it is possible
to adjust the sampling process to focus more on exploration
(reducing uncertainty in unsampled areas) or exploitation (i.e.,
more sampling in well-performing areas). In the next iteration,
f̂ ′A becomes the prior distribution used to sample new data
points and construct a new posterior distribution that takes all
previously observed data points into account. This process is
repeated for a number of ncalls iterations.

In contrast to Random Search (as a model-free method),
Bayesian Optimization incorporates all previously tested data
points and thus the knowledge obtained during the optimiza-
tion process to construct surrogate models which can lead
to more promising parameter values. Furthermore, evaluating
a surrogate function f̂A is often computationally easier than
running the algorithm A to evaluate fA. In this work, the
following surrogate models are used and compared:
• Gaussian Process (GP), which is developed as an exten-

sion of the multivariate Gaussian distribution [22],
• Extra-Trees (ET) proposed by Geurts et al. [24] and
• Gradient Boosted Regression Trees (GBRT) as an en-

semble method that uses decision trees as base learners
to produce an ensemble prediction [25].

In short, three HPO methods based on Bayesian optimiza-
tion with these three models are used in the computational
experiments in the next section. In addition, Random Search
(RS) [26] is used as a baseline algorithm leading to a total
of four HPO algorithms tested in this work. Regarding ac-
quisition functions, the Probability of Improvement (PI) [27]
and Expected Improvement (EI) [28] are used. The choice of
these functions and models is based on the Machine Learning
library scikit-optimize [29], which also provides ET
and GBRT as regression is commonly used in the field of
ensemble learning.

For all of the methods named above, this work pro-
vides a extensive software package, written in Python and
called EXperimentation Framework and (Hyper-)Parameter
Optimization for Metaheuristics (XF-OPT/META). Every as-
pect of this package is modular (allowing for easy replacement
of components) and straightforward to configure (allowing
for adaptation to algorithms other than H-SPPBO and other
optimization problems outside of the dynamic TSP). Fur-
thermore, it provides a variety of logging functionalities and
methods to evaluate and visualize results. The code for this

package is available at [30] with an extensive documentation
to increase the comprehensibility and reproducibility of the
results presented in this work.

IV. COMPUTATIONAL RESULTS

In this section, the XF-OPT/META framework is used to ap-
ply the hyperparameter optimization methods presented above
to the H-SPPBO metaheuristic on the dynamic TSP. In the
following, the methodology for performing the experiments
and evaluating the results is presented.

A. Choice of Problem Instances

For the experiments, the same problem instances as in [1]
and [2] from the TSPLIB benchmark were used to compare
the results. Furthermore, additional instances were selected
to investigate the performance of the methods on instances
with different characteristics and a higher number of nodes.
In total, 10 TSP instances are used which are split into 5
groups that each contain a “smaller” instance (50 ≤ n ≤ 250)
and a “larger” instance (250 < n ≤ 450). The instances are
chosen such that instances within the same group have similar
characteristics, but differ from instances in other groups. A full
list of the used instances and a description of the clustering
methodology used to select them can be found in [30].

B. Experimental Setup for H-SPPBO

The basis of the experiments in this section is the H-SPPBO
algorithm A which is executed for 2600 iterations with given
parameter values λ on a DTSP instance. During a so-called
H-SPPBO execution Aλ, the H-SPPBO algorithm first runs
for 2000 iterations without changes in the problem instance
in order to minimize effects caused by randomness during the
initial iterations and to allow the algorithm to reach a steady
state. After 2000 iterations, n · (C/2)% pairs of distinct nodes
are selected randomly and the node positions in each pair are
swapped, with C being a parameter of the DTSP instance. This
dynamic change occurs 6 times every 100 iterations, starting
at iteration 2000. This type of dynamic and the length for each
run is based on the study [1] where an H-SPPBO algorithm
is also used.

With the H-SPPBO executions on dynamic TSP instances
as described above, the HPO methods presented in Section III
were used to determine good parameter configurations for the
algorithm. In particular, the following parameters were tuned
using the algorithms implemented in the XF-OPT/META
framework:
• wpersprev ∈ [0.001, 0.99]: the weight for Ppersprev (the

SCE’s personal previous solution),
• wpersbest ∈ [0.001, 0.99] the weight for Ppersprev ,(the

SCE’s best personal solution),
• wparentbest ∈ [0.001, 0.99]: the weight for Pparentbest (the

personal best solution of the SCE’s parent),
• α ∈ [0, 10] ∩ N0: influence of the probabilistic/non-

heuristic component,
• β ∈ [0, 10] ∩ N0: influence of the heuristic component,

1185

• θ ∈ [0.1, 0.5]: threshold for detecting a change within the
SCE tree,

• H ∈ {Hfull , Hpartial}: type of reaction algorithm used
when dynamic changes in the instance are detected.

Since the dynamic TSP is considered as the optimization
problem for the H-SPPBO algorithm, it is not sufficient to
evaluate the performance of an H-SPPBO execution using
only the solution quality at the end of the run (after 2600
iterations). The underlying TSP instance changes multiple
times during an execution. Due to this, the function fA used
to evaluate the performance of an H-SPPBO execution is
defined as an average value that, besides the performance
at the end of the run also takes into account the obtained
solution quality right before the dynamic changes at iterations
t ∈ {2000, 2100, 2200, 2300, 2400, 2500} occur.

Since the length L∗ of an optimal TSP tour is known for
all instances used in this study and since the value L∗ does
not change with the considered dynamic, it is possible to use
the relative percentage difference RPD = (L−L∗)/L∗ to de-
scribe the quality of a TSP tour with length L when calculating
fA. This makes it possible to evaluate the parameter optimizers
over different problem instances with varying optimal lengths
L∗.

The experiments performed in this section can be divided
into two main parts. In the first part, all four HPO algorithms
O ∈ {RS,BO-GP,BO-ET,BO-GBRT} are run k1 = 3
times each, where each HPO run independently optimizes the
parameter values of the H-SPPBO algorithm using ncalls = 30
H-SPPBO executions. During the HPO runs, the improvement
in fA over time is logged and averaged over the k1 = 3 HPO
runs, with the goal of determining the most suitable HPO
algorithm Ô. Algorithm Ô is then executed multiple times
to calculate promising parameter values λ̂ for H-SPPBO. The
second part consists of running H-SPPBO multiple times with
the obtained parameter values λ̂ and comparing the results
with other results from an existing study [1]. Whenever an
HPO algorithm with Bayesian optimization is used, the size
of the initial data set D0 to construct the initial surrogate model
f̂A is set to |D0| = 10. For the acquisition functions [27], [28]
the trade-off parameter ξ is set to ξ = 0.01.

C. Choosing the Hyperparameter Optimization Algorithm

The first part of the experiments was performed as described
above, with using the 5 smaller instances in each group and
the dynamic intensity set to C = 0.25, leading to a total of
1800 H-SPPBO executions. The averaged convergence curves
for the compared HPO algorithms are shown in Fig. 1. The
curves show that GBRT is the best performing method in indi-
vidual comparisons according to convergence behavior among
HPO algorithms. It can be seen that the average convergence
behavior of GBRT provided a lead of approximately 1.5% in
the final RPD over the next best method, ET.

Apart from visually inspecting the convergence behavior of
the four HPO algorithms, it is also possible to look at the
area under the curve (AUC) of the plots and the best RPD
value obtained, i.e., the RPD value at ncalls = 30, denoted

Fig. 1. Convergence plot of the average over TSP instances eil51, berlin52,
pr136, pr226, d198, comparing for the 4 HPO algorithms. The bold lines show
the averaged values, whereas the semitransparent lines show the convergence
curves used to calculate the averaged curve for each HPO algorithm.

TABLE I
THE AUC AND MINIMUM RELATIVE SOLUTION QUALITY (RPD∗) AT THE
LAST H-SPPBO EXECUTION FOR EACH HPO ALGORITHM AND SMALLER
TSP INSTANCE, AVERAGED OVER ALL k1 = 3 OPTIMIZATION RUNS, AND
THE MEAN OVER ALL INSTANCES. THE BEST VALUES FOR EACH COLUMN

ARE SHOWN IN BOLD.

eil51 berlin52 pr136

AUC RPD∗ AUC RPD∗ AUC RPD∗

RS 0.830 0.026 0.347 0.001 2.266 0.097
GP 0.900 0.034 0.650 0.019 1.850 0.093
ET 0.819 0.020 0.227 0.005 1.809 0.075
GBRT 0.601 0.024 0.159 0.003 1.948 0.075

pr226 d198 mean

AUC RPD∗ AUC RPD∗ AUC RPD∗

RS 1.837 0.075 2.139 0.092 1.484 0.058
GP 1.394 0.072 1.698 0.082 1.298 0.060
ET 1.547 0.072 1.940 0.085 1.268 0.051
GBRT 1.497 0.042 1.745 0.081 1.190 0.045

as RPD∗ in the following. These values are shown in Table I
for all HPO algorithms, averaged over all k1 = 3 HPO runs,
for the “small” TSP instances in each of the 5 groups, and
their mean.

The mean also show that GBRT is the algorithm that
converges fastest (AUC = 1.190) to the best performing
parameter configuration (RPD∗ = 4.5%). Even in instances
like pr226 and d198 with a higher number of nodes, it
performed at least second best or better, implying good search
consistency across the parameter space Λ.

To validate the results above, statistical tests were performed
using the measured data. One test is the KruskalWallis H test,
with each of the four HPO algorithms as a sample group,
separated by the five instances used. The results for each
instance are shown in Table II. A significance level of 0.05
was chosen to reject the null hypothesis that the data for all
sample groups originates from the same distribution. Based

1186

TABLE II
RESULTS OF THE KRUSKALWALLIS TEST, INCLUDING THE TEST

STATISTIC H AND p-VALUES APPLIED TO ALL FOUR HPO ALGORITHMS,
SEPARATED BY TSP INSTANCE.

Instance H p-value
eil51 47.893 2.244× 10−10

berlin52 46.960 3.544× 10−10

pr136 29.898 1.450× 10−6

pr226 57.998 1.574× 10−12

d198 46.514 4.410× 10−10

on the resulting p-values, the null hypothesis can be rejected,
suggesting that the four HPO algorithms show a significantly
different convergence behavior from each other.

Furthermore, a post-hoc ConoverIman test was then per-
formed to gain more insight into which specific pairs of
optimization algorithms differ and how. The resulting test
statistics are shown in Table III. The sign of the test statistic
indicates whether the difference is positive or negative, and
statistically significant differences are highlighted in green. It
can be seen that GBRT obtains significantly smaller RPD∗

values than the other algorithms for the instance eil51. For
the other instances, the differences are significant to RS and
GP for most of the instances, whereas for for the comparison
between GBRT and ET a significant difference can only be
seen for the instance berlin52 and eil51.

Furthermore, the differences between ET and GP are sta-
tistically significant, confirming the observations from the
convergence plot in Fig. 1. Regarding the instance berlin52,
GBRT also performs better than GP and ET, but interestingly,
the observed difference was not significant between GBRT and
RS. However, the convergence plot in Fig. 1 as well as the
results for the instances pr136, pr226, and d198 indicate that
RS tends to perform worse than the other three HPO methods.

To summarize the results of the first part, Bayesian opti-
mization using Gradient Boosted Regression Trees (GBRT)
shows the fastest convergence and tends to reach the best
solution quality, while providing fairly robust results over the
considered instances. Therefore, it is used as HPO algorithm
Ô that performs the second part of the experiments.

D. Comparison with Existing Parameter Values

In the second part, as described above, the best performing
HPO algorithm Ô = GBRT from the first part is executed
k2 = 6 times on the smaller TSP instances in each group with
ncalls set to ncalls = 60 to calculate suitable parameter values
λ̂ for H-SPPBO. Furthermore, different dynamic intensities
C ∈ {0.1, 0.25, 0.5} are used so that the HPO algorithm is
used to find parameter configurations for these TSP instances
with different dynamics. In total, 5400 executions of the H-
SPPBO are performed. By running the HPO algorithm k2 = 6
times, 6 different parameter configurations are obtained for
each of the 5 smaller TSP instances and dynamic intensities
C. From these, the best performing configuration with the best
value RPD∗ was selected, leading to a total of 15 parameter
configurations λ̂ in total. A full list of these parameter config-
urations is available online at [30].

2000 2100 2200

0.05

0.1

0.15

0.2

0.25

2000 2100 2200 2000 2100 2200

Parameter Set Group HPO Reference

R
P

D

C=0.1 C=0.25 C=0.5

Fig. 2. Line plots showing the relative solution quality RPD over the
first 300 dynamic iterations (starting just before iteration 2000) for both
parameter configurations λ̂ and λref with a plot for each dynamic intensity
C ∈ {0.1, 0.25, 0.5}, averaged over all ten TSP instances.

Afterwards, the H-SPPBO algorithm is executed multiple
times with the parameter configuration λ̂ obtained above for
each of the 5 groups and the results are compared with the
parameter values used in an existing study [1]. Similar to that
study, the dynamic intensities C ∈ {0.1, 0.25, 0.5} are used.
The H-SPPBO algorithm is now executed on both smaller
and larger instance in each group (10 instances in total, with
the parameter values in each group being the same) using
the three values for C and the results are averaged over
20 replications, leading to 600 executions of the H-SPPBO
algorithm. For the larger instance in each group, the same
parameter configuration was used that was obtained for the
smaller instance in the same group. This provides insight
on how suitable the parameter values are for instances with
similar characteristics, even when the size of the instance
differs. In order to compare the results with the study [1], the
same runs are also executed using a generally well-performing
reference set λref from that study, leading to an additional 600
runs and a total of 1200 H-SPPBO executions.

Fig. 2 shows the results for λref and λ̂ for each dynamic
intensity C ∈ {0.1, 0.25, 0.5}, averaged over all TSP in-
stances. It can be seen that just before each dynamic event, the
reference parameter configuration λref consistently produces
almost the same solution quality RPDref = 0.2. However, the
parameter values obtained by HPO clearly outperform them at
every point in the dynamic runtime, including the times just
before a dynamic change occurs.

V. CONCLUSION

In this work the XF-OPT/META framework was developed
which provides various methods for Hyperparameter Opti-
mization (HPO), such as Random Search (RS) or Bayesian
optimization (BO) with various surrogate models for use with
metaheuristics. This framework was used to experimentally
compare different HPO methods by tuning the parameters of
an Hierarchical Simple Probabilistic Population-Based Opti-
mization algorithm (H-SPPBO) for the Dynamic Traveling
Salesperson Problem (DTSP).

The results show that on average, Bayesian optimization
with Gradient Boosted Regression Trees (GBRT) obtains the
best results in this study when compared to other surrogate

1187

TABLE III
VALUES FOR THE TEST STATISTIC OF THE POST-HOC CONOVERIMAN TESTS FOR ALL FOUR HPO ALGORITHMS AS A SAMPLE GROUP, SEPARATED BY

TSP INSTANCE. A GREEN CELL INDICATES THAT THE NULL HYPOTHESIS IS REJECTED (AFTER BONFERRONI CORRECTION).

Instance RS vs. GP RS vs. ET RS vs. GBRT GP vs. ET GP vs. GBRT ET vs. GBRT
eil51 −1.644 1.099 8.358 2.743 10.002 7.259
berlin52 −7.486 −1.002 2.668 6.485 10.154 3.669
pr136 5.400 6.223 4.491 0.823 −0.909 −1.731
pr226 14.432 7.766 8.290 −6.666 −6.142 0.524
d198 10.207 3.936 6.083 −6.271 −4.125 2.146

models. Not only did the parameter configurations obtained
by Bayesian optimization perform well in the dynamic phase
of the DTSP, but the tuned algorithms also obtained improved
results during the static phase before the problem instance is
changed and outperformed reference parameter values for H-
SPPBO from an existing study.

Furthermore, promising results were reached when using
the same parameter values for larger instances with similar
characteristics. This indicates that HPO is able to use smaller
instances to find parameter configurations that generalize to
larger instances, illustrating the potential that lies in the
combination of HPO and metaheuristics. Moreover, the XF-
OPT/META framework provides modularity and interfaces
for each of the main modules, in particular the underlying
optimization problem, the HPO algorithm, and the meta-
heuristic to be tuned, allowing straightforward extensions of
the framework to other problems and algorithms for further
research.

REFERENCES

[1] E. Kupfer, H. T. Le, J. Zitt, Y.-C. Lin, and M. Middendorf, “A
hierarchical simple probabilistic population-based algorithm applied to
the dynamic TSP,” in 2021 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2021, pp. 1–8.

[2] Y.-C. Lin, M. Clauss, and M. Middendorf, “Simple probabilistic
population-based optimization,” IEEE Transactions on Evolutionary
Computation, vol. 20, no. 2, pp. 245–262, 2015.

[3] M. Guntsch and M. Middendorf, “A population based approach for
ACO,” in Applications of Evolutionary Computing. Springer Berlin
Heidelberg, 2002, pp. 72–81.

[4] W.-C. Yeh, “A two-stage discrete particle swarm optimization for the
problem of multiple multi-level redundancy allocation in series systems,”
Expert Systems with Applications, vol. 36, no. 5, pp. 9192–9200, 2009.

[5] Z.-C. Huang, X.-L. Hu, and S.-D. Chen, “Dynamic traveling salesman
problem based on evolutionary computation,” in Proceedings of the 2001
Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546),
vol. 2. IEEE, 2001, pp. 1283–1288.

[6] D. Angus and T. Hendtlass, “Ant colony optimisation applied to a
dynamically changing problem,” in Developments in Applied Artificial
Intelligence: 15th International Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Expert Systems IEA/AIE
2002 Cairns, Australia, June 17–20, 2002 Proceedings 15. Springer,
2002, pp. 618–627.

[7] M. Guntsch and M. Middendorf, “Pheromone modification strategies
for ant algorithms applied to dynamic TSP,” in Applications of Evolu-
tionary Computing: EvoWorkshops 2001: EvoCOP, EvoFlight, EvoIASP,
EvoLearn, and EvoSTIM Como, Italy, April 18–20, 2001 Proceedings.
Springer, 2001, pp. 213–222.

[8] C. J. Eyckelhof and M. Snoek, “Ant systems for a dynamic TSP:
Ants caught in a traffic jam,” in Ant Algorithms: Third International
Workshop, ANTS 2002 Brussels, Belgium, September 12–14, 2002
Proceedings. Springer, 2002, pp. 88–99.

[9] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence
for dynamic optimization: Algorithms and applications,” Swarm and
Evolutionary Computation, vol. 33, pp. 1–17, 2017.

[10] D. Yazdani, R. Cheng, D. Yazdan, J. Branke, Y. Jin, and X. Yao,
“A survey of evolutionary continuous dynamic optimization over
two decadespart a,” IEEE Transactions on Evolutionary Computation,
vol. 25, no. 4, pp. 609–629, 2021.

[11] ——, “A survey of evolutionary continuous dynamic optimization over
two decadespart b,” IEEE Transactions on Evolutionary Computation,
vol. 25, no. 4, pp. 630–650, 2021.

[12] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Transactions on Evolutionary Computa-
tion, vol. 3, no. 2, pp. 124–141, 1999.

[13] E.-G. Talbi, Metaheuristics: from design to implementation, ser. Wiley
Series on Parallel and Distributed Computing. Hoboken, NJ: Wiley-
Blackwell, 2009.

[14] K. Y. Wong and Komarudin, “Parameter tuning for ant colony opti-
mization: A review,” in 2008 International Conference on Computer
and Communication Engineering. IEEE, 2008, pp. 542–545.

[15] M. Dorigo, A. Colorni, and V. Maniezzo, “Ant system: An autocat-
alytic optimizing process,” Dipartimento Di Elettronica, Politecnico Di
Milano, Milan, Italy, 1991.

[16] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by
a colony of cooperating agents,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, 1996.

[17] M. Dorigo and T. Sttzle, Ant Colony Optimization. Cambridge, MA:
The MIT Press, 06 2004.

[18] Z.-F. Hao, R.-C. Cai, and H. Huang, “An adaptive parameter control
strategy for ACO,” in 2006 International Conference on Machine
Learning and Cybernetics. IEEE, 2006, pp. 203–206.

[19] J. Močkus, “On bayesian methods for seeking the extremum,” in
Optimization Techniques IFIP Technical Conference Novosibirsk, July
1–7, 1974, G. I. Marchuk, Ed., 1975, pp. 400–404.

[20] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in Neural Information
Processing Systems, vol. 25. Curran Associates, Inc., 2012.

[21] J. van Hoof and J. Vanschoren, “Hyperboost: Hyperparameter op-
timization by gradient boosting surrogate models,” arXiv preprint
arXiv:2101.02289, 2021.

[22] E. Yin and K. Wijk, “Bayesian parameter tuning of the ant colony
optimization algorithm: Applied to the asymmetric traveling salesman
problem,” Bachelor’s Thesis, KTH Royal Institute of Technology. School
of Electrical Engineering and Computer Science, 2021.

[23] M. Feurer and F. Hutter, Hyperparameter Optimization. Springer
International Publishing, Cham, 2019, pp. 3–33.

[24] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, pp. 3–42, 2006.

[25] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” The Annals of Statistics, pp. 1189–1232, 2001.

[26] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.” Journal of Machine Learning Research, vol. 13, no. 2, 2012.

[27] H. J. Kushner, “A new method of locating the maximum point of an
arbitrary multipeak curve in the presence of noise,” Journal of Basic
Engineering, vol. 86, no. 1, pp. 97–106, 1964.

[28] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” Journal of Global Optimization,
vol. 13, no. 4, pp. 455–492, 1998.

[29] T. Head, M. Kumar, H. Nahrstaedt, G. Louppe, and I. Shcherbatyi,
“scikit-optimize/scikit-optimize: v0. 8.1,” Zenodo, 2020.

[30] “XF-OPT/META: Experimentation framework and (hyper-)parameter
optimization for metaheuristics,” https://github.com/Bettvorleger/XF-
OPT-META, accessed: 2023-06-17.

1188

