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Abstract—Recent studies have demonstrated that active per-
ception can improve the perception abilities of deep learning
(DL) models. However, there are challenges associated with
using active perception in DL models, including the need
for datasets and/or realistic simulations that can support the
training process, along with the difficulty of predicting the
final target position, which reduces planning efficiency. To
address these challenges, this work presents a methodology for
enhancing the perception abilities of DL models through active
perception. The methodology proposes a way to create datasets
for active perception by fusing existing large-scale datasets and
decomposing the active perception problem into three sub-
tasks for face recognition. The sub-tasks aim to determine
the appropriateness of the current view for face recognition,
the direction in which the robot should move for a better
viewpoint, and the expected amount of movement required.
A novel trial-based approach is introduced to estimate the
final target position, making the method platform-agnostic and
easily applicable to different robots. The proposed methodology
is validated through experiments on two well-known face
verification datasets that have been augmented with occlusions,
demonstrating its effectiveness in enhancing the perception
abilities of DL models through active perception.

Index Terms—active perception, face recognition, robotics
perception

I. INTRODUCTION

In recent years, Deep Learning (DL) has revolutionized
various complex robotics vision tasks, ranging from object
detection and recognition, scene segmentation, face recog-
nition, and more [1]. This enhanced perceptual ability has
also opened up various opportunities, leading to the cre-
ation of impressive applications such as autonomous cars,
autonomous drones, and robots that can collaborate with
humans on various tasks. Despite these breakthroughs in DL
for robotics, most existing methods have a major drawback
- they rely on a static inference paradigm that is inherent
in traditional computer vision pipelines. This means that DL
models process fixed and static inputs, ignoring the fact that
robots have the ability to interact with their environment
to gather more information. For example, consider a robot
equipped with a camera that performs face recognition [2].
A DL model may not be able to recognize a person if the
robot has only captured a suboptimal view, e.g., a far profile
view. However, by repositioning itself, a robot can acquire a
better view, e.g., a frontal and closer view. Then, the same
DL model could recognize the person. This approach, known
as active perception [3]–[5], involves manipulating the robot
or sensor to acquire a clearer view or signal, leading to
improved situational awareness. This process is similar to
how humans and animals interact with their environment,

such as humans looking from different angles to process
complex visual stimuli, or animals pointing their ears toward
the source of an audio signal [6].

Recent, yet rudimentary, studies have shown that active
perception can enhance the perception abilities of various
models. For instance, a deep learning system that predicts
the optimal next move for a robot using reinforcement
learning, as demonstrated in [7], can significantly enhance
the performance of object detection where factors such as
viewing angle, occlusions, and object scale can greatly af-
fect recognition accuracy. Similar findings have also been
reported in more recent works [8]–[10]. It is worth noting
that active perception approaches often result in the creation
of faster and lighter DL models, as they are trained to solve
a simplified problem, e.g., face recognition from specific
viewpoints [11].

Even though active perception can indeed lead to improved
perception capabilities in such cases, it comes with a chal-
lenge: it requires a significant change in training pipelines for
DL models. Indeed, active perception-enabled DL models are
usually trained either using datasets that can support active
perception, e.g., datasets that can allow for simulating robot
movements [11], or in simulation [12]. However, the former
approaches require the creation of appropriate datasets, which
can be costly, while the latter suffers from well-known
problems, such as distribution shifts [13], requiring the use
of appropriate sim-to-real methodologies before deployment.
Furthermore, most of the existing approaches only try to
solve a direction prediction problem, i.e., predict the direction
towards which a robot should move in order to acquire
a better viewpoint. However, this a) requires the constant
involvement of active perception in order to refine the move-
ment and decide when it should stop, as well as b) makes
planning much harder, since there is no estimate of the final
target.

The main contribution of this work is a methodology that
can tackle these two challenges. To this end, we first propose
a methodology that allows for the creation of datasets that can
be used for active perception approaches by fusing existing
large-scale datasets in an appropriate way. This enables re-
using large-scale datasets with minimal cost, providing a
practical way to train active perception-enabled DL models.
Furthermore, we propose decomposing the problem of active
perception for face recognition into three appropriate sub-
tasks qualitatively answering the following questions: a) Is
the current view appropriate for face recognition?, b) If not,
towards which direction the robot should move?, and c) After
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deciding the direction, how much the robot it expected to
move?. Note that answering the last question is not trivial,
since it required robot-specific knowledge (e.g., the parame-
ters of the camera, require the potential use of depth sensors,
etc). To overcome this limitation, in this work we propose a
novel trial-based approach, which enables estimating the final
target position after performing a small trial movement. This
enables the proposed method to be platform-agnostic and be
very easily applied to different robots with no modifications.
The proposed method is validated using two well-known face
verification datasets, demonstrating its effectiveness.

The rest of the paper is structured as follows. First,
Section II introduces the proposed method. Then, Section III
provides the experimental evaluation. Finally, Section IV
concludes the paper.

II. PROPOSED METHOD

Background Let xt denote an observation acquired from
a robot at timestep t. In this work, we will focus on face
recognition tasks and we assume that this observation has
been appropriately pre-processed, e.g., cropped using face de-
tection models. Also, let ff (xt) ∈ RD be a face recognition
model that extracts a discriminative representation that can be
used for face verification or retrieval [14], [15], where D is
the dimensionality of the extracted representation. Typically,
we require this representation to bring images that belong to
the same person closer, i.e.,

||ff (xt)− ff (x)||2 < r ∀x ∈ Xk, (1)

where Xk denotes the set of images of a person k, || · ||2
denotes the l2 norm, and r is a face recognition threshold,
i.e., the maximum distance between two face representations
in order to consider that these belong to the same person.
Similarly, for images that belong to different persons it holds:

||ff (xt)− ff (x)||2 ≥ r ∀x ∈ X̄k, (2)

where X̄k denotes the set of images that do not belong to
the person k. The aim of this work is to learn how a robot
should manipulate the camera sensor in order to improve its
confidence, i.e., reduce the distance for representations that
belong to the same persons:

||ff (xt+T )− ff (xR)||2 < ||ff (xt)− ff (xR)||2, (3)

where xt+T denotes the face representation obtained after
T timesteps (i.e., movements of the robot) and xR ∈ Xk.
Note that it is often enough to improve the confidence just
for one image of a person, since XR may contain different
views of the same person. Therefore, it is enough to reduce
the distance with respect to just one of these images in order
to correctly recognize the person.
Active Perception Networks Active perception approaches
aim to appropriately control a robot/robot’s sensors in order
to obtain such a better representation. In this work, we
decompose the employed active perception pipeline into three
discrete steps. First, we need to decide whether the current
input xt is good enough or whether we need to actually
perform any active perception step in order to improve
(note that typically active perception is used to just improve
perception, it is not a goal per se). Then, we need to decide

the direction of the movement. In this work, we only consider
two movement axes, i.e., up/down and left/right. However,
this is without loss of generality, since the same approach
can be applied to any number of axes. Finally, we need to
decide the amount of movement that needs to be performed.
Of course, complex occlusions might require a combination
of such movements that need to be applied in sequence in
order to get the best result. In such cases, the robot should
perform them sequentially.

In this work, we propose to modify the existing face
recognition approaches by adding an additional classification
head on top of the representation extracted by existing face
representation backbones. This enables us to quickly make
a decision concerning whether the current face is occluded.
Note that the first step of the aforementioned pipeline is
always executed, while the other two are executed only when
we have decided that we need to perform active perception
during the first step. Therefore, it is critical that a lightweight
approach is used for making this decision to avoid slowing
down the face recognition pipeline when faces that are good
enough are obtained. This decision can be made by a simple
linear classifier on top of the extracted representation as:

ya = WT
a ff (xt) ∈ R, (4)

where Wa are the weights of the employed binary classifier.
Experimentally, we have found out it is possible to merge
the first two steps using the same classifier, which can fur-
ther accelerate the inference process. Therefore, we propose
employing a Active Perception Direction Classifier (APDC),
which is formulated as:

yAPDC = WT
APDCff (xt) ∈ R5, (5)

where each of the output neurons of the classifier corresponds
to the following actions: a) do nothing (active perception is
not needed), b) move to the left, c) move to the right), d)
move up and e) move down. This classifier is trained using
the regular cross entropy loss and the ground truth annotation
generated along with the dataset. The process that generates
the ground truth annotations will be explained in Dataset
Generation subsection.

The third part of the proposed active perception pipeline
is to predict the amount of movement that needs to be per-
formed in order to obtain the best possible view. This allows
for performing optimal planning instead of incrementally
repeating the active perception steps, while it also enables
us to perform more fine-grained control. To this end, after
deciding the direction of movement using the APDC, the
robot performs a trial movement (of predefined duration), and
a new image, xt+1 is acquired. Then, another network, the
Movement Regressor (MR), is to estimate how many times
this movement should be repeated in order to get the best
possible view. This network received both the original and
the new images and outputs a number that expresses the ratio
between the current movement and the optimal estimated
movement:

yR = fMR(xt,xt+1) ∈ R. (6)

Note that we do not directly use the representations extracted
from (xt) to this end since such features are invariant to small
perpetuations due to the way face recognizers are trained.
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Therefore, we opted for using a separate network for this end.
Even though this comes with an additional cost, it should
be noted that this network is only used when the APDC
decides that a movement should be performed. Similar to
APDC, this network is trained using ground truth annotations
obtained through a simple simulation environment described
in Dataset Generation subsection.
Dataset Generation The employed data and ground truth
annotation pipeline employ two components: a 2D Occlusion
Generator (2DOG) and b) a 3D simulator (3DS) module.
The 2DOG picks a facial image (from a face recognition
dataset) and a segmented object (from a dataset that contains
objects and segmentation masks) and generates an occluded
facial image. Note that, as described in Section III, there
are many large-scale datasets that can be directly used to
this end. After selecting a random occlusion percentage, a
resize percentage for the selected object, and an occlusion
direction, a synthetic image is generated by superimposing
the selected object and facial image. Since we know the
occlusion direction, the ground truth annotation for the APDC
is readily available. Then, during the training, the 3DOG
module accepts an occluded image produced by 3DOG and
the direction produced by the APDC and produces the new
observation xt+1 (using a randomly selected distance). The
same module then calculates the remaining movement needed
for complete object removal, as a ratio of the movement
impact. This ratio is the target for the regression model
optimization process. Note that 3DOG is used both during the
training (in order to generate the new observation images), as
well as during the validation (to simulate the effect of active
perception).

III. EXPERIMENTAL EVALUATION

Evaluation Datasets and Experimental Setup As we
described in Section II, the proposed method requires two
different datasets for training, i.e., a face dataset and a generic
object dataset. To this end, in this work, we employed the
MS-Celeb dataset [16] as the face dataset, which is one of the
largest publicly available databases used for face recognition
and verification. It consists of a total of 10M images, from
1M individuals. The individuals depicted in this database are
people that have received public attention, mostly due to their
profession. The dataset includes diversity both in terms of age
and race. The subset that is used in the current pipeline is
constructed by selecting the top 100K celebrities, based on
the frequency of their appearance. The final training dataset
consists of 5,084,127 unique images.

We also employed the Common Objects in Context [17]
dataset as the source for objects that can be used for gen-
erating occlusions. COCO dataset includes highly accurate
annotations for instance segmentation tasks, which makes
it ideal for object extraction. More specifically, we use
the instance segmentation masks to accurately crop all the
annotated objects included in each sample image. We save
the cropped objects as RGBA samples, in order to seamlessly
apply the occlusions on face images. We later apply 3 post-
processing steps to further improve the quality and realism of
the occlusions: (1) we remove images that their axis aligned
bounding box is smaller than 50x50 pixels; (2) we apply
contour detection and exclude the images that contain more

than one blob (this happens due to object split, caused by
occlusion with a different instance); (3) we further crop the
objects so that the object coverage in the RGBA image is
higher than 70%. We specifically perform the last two steps,
because we want the object to occlude as much as possible
and not leave face features visible in the occlusion areas. Our
final object dataset includes 129K and 65K objects split into
training and validation sets respectively.

Finally, for evaluating the performance of the proposed
method we used two well-known face verification datasets:
a) the Labeled Faces in the Wild dataset (LFW) [18], which
contains 13,233 images, collected from the web, as well as b)
the Cross-Pose Labeled Faces in the Wild (CPLFW) dataset,
which contains 11,652 images.
Model Architecture The employed face recognition model is
composed of a ResNet-50 backbone, while the ArcFace loss
is used for learning face discriminative representations [15],
combined with focal loss [19]. The employed model is trained
on MS-Celeb-1M dataset [20]. Note that during the training
of the active perception components of the proposed method,
we do not back-propagate gradients to the backbone in order
to avoid altering the representations learned for face recog-
nition, which would require re-training the face recognition
head. The direction decision network is implemented as an
extra classification head that predicts direction data parallel
to the classification head. It operates on the 512 × 7 × 7
feature maps produced by the face recognition model, using
two linear layers, where the last linear module outputs five
probabilities, one for each possible direction. For the MR we
use an EfficientNet B7 backbone [21], followed by a global
pooling layer and two fully connected layers with 2048 and 1
neuron(s) respectively. The swish activation function is used
for the first layer, while the sigmoid activation function is
used for the last layer in order to constrain the output to
values between 0 and 1. Both of the variations use sigmoid
activation so that we can limit the robot’s movement to non-
extreme values.

We use a two-step pipeline to train the APDC and MR.
The first part of the training pipeline includes the training
of the APDC. We load pre-trained weights both for the
face feature extractor and face recognition head and keep
them frozen in the optimization step. The second part of the
training pipeline includes the training of MR. The previously
trained (from step 1) APDC remains frozen in this step, and
EfficientNet B7 backbone is being optimized. We initialize
the parameters of the backbone with ImageNet pre-trained
weights and normalize the input images accordingly. For all
the experiments reported in this paper, the models are trained
for 250K iterations. The Adam optimizer is used [22] with a
learning rate of 1e−3.
Experimental Evaluation First, we evaluate the baseline
face verification accuracy under no occlusions, along with the
effect of different occlusion ratios in Table I. The CPLFW
dataset is harder than the LFW dataset leading to a baseline
verification accuracy of about 92% instead of about 99%.
Applying increasingly larger amounts of occlusions further
reduces these figures. Indeed, for 60% occlusion, the accu-
racy drops to below 65% for the CPLFW dataset and to less
than 85% for the LFW dataset, demonstrating the significant
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TABLE I: Face verification accuracy when occlusion objects
are applied to face images.

Dataset CPLFW LFW

Baseline 92.23% 99.81%

30% occlusion 90.28% 99.49%
40% occlusion 85.64% 97.68%
50% occlusion 72.46% 89.75%
60% occlusion 63.50% 81.68%

TABLE II: Effect of employing active perception on face
verification accuracy. Using the proposed method allows for
achieving higher accuracy in a smaller number of steps.

Dataset CPLFW LFW

Baseline 81.61% 95.04%

APDC (1 step) 87.43% 98.23%
APDC (2 steps) 89.93% 99.41%
APDC (3 steps) 90.91% 99.59%

Proposed (APDC+MR) 92.05% 99.8%

impact of occlusions on face recognition accuracy.
Then, in Table II we report the results of applying the

proposed method on a dataset that contains occluded images
(equally distributed occlusions from 20% to 60%). First,
note that similarly to the previous results, when no active
perception is employed, the accuracy drops significantly.
Employing the APDC network allows for improving the
obtained results, but even after three steps, we haven’t yet
reached the original accuracy. Note that the use of APDC
only is equivalent to the method proposed in [23]. On the
other hand, when the full proposed pipeline is employed in
just two steps (trial + active perception) we are able to get
almost to the point of the original images that contained no
occlusions.

IV. CONCLUSION

This paper presented a methodology for enhancing the
perception abilities of DL models through active perception.
The methodology addressed the challenges associated with
using active perception in DL models, including the need
for specific datasets or simulations, and the difficulty of
predicting the final target position. Experimental results on
two well-known face verification datasets demonstrated the
effectiveness of the proposed methodology in enhancing the
perception abilities of DL models through active percep-
tion. The results showed that the proposed method was
able to provide improved recognition accuracy compared
to traditional passive perception approaches. These findings
suggest that the proposed methodology has the potential to
be widely adopted in real-world applications where active
perception can enhance the perception abilities of DL models,
providing a practical and effective solution. Future research
direction include the application of this methodology for
other tasks, e.g,. object detection, as well as the evaluation of
the developed models using real scenarios, e.g., in healthcare
robotics [24].
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