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Abstract—Object detection plays a crucial role in automated
image analysis by identifying and localizing objects within an
image. One-stage Deep Learning (DL)-based object detectors
have achieved impressive results, primarily due to large-scale
datasets available for training them. However, these approaches
rely heavily on abundant labeled data, posing challenges when
only a few samples per class are available. To this end, few-
shot object detection approaches have been proposed. Among
them, fine-tuning the final detection head while keeping the
feature extractor/backbone frozen is a commonly used approach
for few-shot object detection. This approach effectively utilizes
pre-existing knowledge encoded in the backbone, using a small
number of samples to learn new object categories. However, in
this paper, we argue that fine-tuning only the last layers may
limit accuracy and lead to overfitting if the initial layers of
the detection head are not adapted for the new task. The data
processing inequality, which states that information lost in early
network layers cannot be recovered in subsequent ones, supports
this argument. To address this issue, we propose a symmetric
fine-tuning method that involves both the first and last layers
of the detection head, aiming to maintain a fixed trainable
parameter budget while strategically selecting parameters for
fine-tuning. Experimental results demonstrate the effectiveness
and efficiency of this approach and open up several interesting
future research directions.

Index Terms—Object detection, Few-shot, Fine-Tuning, Sym-
metric Fine-Tuning

I. INTRODUCTION

Object detection combines the tasks of identifying and lo-
calizing objects within an image, enabling the automation of
determining “what” and “where” certain objects are depicted.
In recent years, the emergence of one-stage Deep Learning
(DL)-based object detectors like YOLO [1], SSD [2], and
CenterNet [3], along with the availability of large-scale
datasets such as MS COCO [4] and VOC [5], has yielded
impressive results. However, these approaches heavily rely
on substantial amounts of labeled data for training and
are not effective when only a few samples per class are
available. This limitation arises in various real-world use
cases, including logo detection [6], media monitoring [7],
robotics [8], and others. To overcome this constraint, recent
research has focused on developing few-shot object detection
methods that can learn from a small number of labeled
examples while retaining the advantages of one-stage object
detection pipelines.

Few-shot object detection is a challenging task that in-
volves training a model to recognize objects with minimal
supervision [9]. The objective is to develop algorithms that
can effectively generalize to new object domains or unseen
instances with only a few annotated samples. While existing

few-shot object detection methods have shown promising
results [10], several challenges remain, with overfitting being
among the most important ones. Overfitting occurs when
the model fails to generalize well to unseen data due to
the limited number of training examples, resulting in poor
performance and reduced generalization ability. Additionally,
many current few-shot learning methods rely on complex
architectures that require training multiple models simul-
taneously, which increases computational complexity and
implementation difficulty. Two-stage models have become a
popular approach in few-shot object detection [11], [12], [13],
[14]. These models employ separate region-of-interest (ROI)
extraction and classifier modules, such as Faster RCNN [15].
As a result, these models can be more easily manipulated to
mitigate overfitting in either the localization or classification
tasks. However, such approaches are typically slower than
recent one-stage approaches, making them less suitable for
large scale deployment, especially in streaming applications
where energy and speed restrictions exist [7].

Fine-tuning the final detection head while keeping the
feature extractor/backbone frozen is a commonly used few-
shot learning approach for few-shot object detection with
one-stage DL detectors [1]–[3]. This approach leverages the
pre-existing knowledge encoded in the backbone, using only
a small number of samples to learn new categories. It is
generally effective because the detection head, responsible for
classification decisions, contains relatively fewer parameters
compared to the rest of the network. To mitigate overfitting,
fine-tuning is typically applied only to the last few layers. Al-
though widely used, in this paper we argue that this approach
may limit accuracy and potentially exacerbate overfitting. To
understand this phenomenon, we need to consider the data
processing inequality [16], which states that information lost
in early layers cannot be recovered in subsequent layers. This
result has been validated in several studies, highlighting the
importance of maintaining good information flow throughout
the network [17]. Consequently, fine-tuning only the last
layers can lead to overfitting, since if the early layers discard
useful information, the later layers may rely on irrelevant
features to fit the limited available data. On the other hand,
fine-tuning the entire detection head can potentially address
this issue, but it also increases the risk of overfitting due to
the network’s larger capacity compared to the limited training
samples. Therefore, the main research question addressed
in this paper is whether a more structured approach to
fine-tuning can be employed, enabling the introduction of
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additional information to the detection head while reducing
the risk of overfitting.

The main contribution of this paper is the introduction of
a symmetric fine-tuning approach designed to overcome the
challenges mentioned above. The proposed method focuses
on maintaining a fixed “trainable parameter budget”, which
refers to the number of parameters that will be trained, while
strategically selecting the most appropriate parameters for
fine-tuning. To achieve this, we advocate for a symmetric
fine-tuning approach that involves both the first and last layers
of the detection head in the fine-tuning process. The experi-
mental results validate the effectiveness and efficiency of the
proposed approach, highlighting its potential to advance the
field of few-shot object detection and open doors for more
advanced techniques.

The rest of this paper is structured as follows. Section II
presents the proposed symmetric fine-tuning approach. The
results of the conducted experimental study are presented and
discussed in Section III. Finally, Section IV concludes this
paper.

II. PROPOSED METHOD

Let X = {(x1, t1), (x2, t2), . . . , (xN , tN )} represent a
training set of N samples used for few-shot fine-tuning
of an object detector. Here, xi represents an image, and
ti represents the corresponding bounding box annotations
in a format suitable for the employed object detector. We
define y = f(x) as a single-stage detector, consisting of
a feature extraction backbone denoted by ỹ = fb(x), and
a detection head y = fd(ỹ,W), where W represents the
parameters of the detection head. In this work, we assume
that the feature extraction backbone is already trained, so
we do not explicitly define the training parameters for fb(·).
Additionally, we use M to represent the number of layers
involved in fd(·,W), where W = [W1,W2, . . . ,WM ], and
Wi denotes the parameters of the i-th layer. The specific
choice of the object detection algorithm, such as YOLO [1],
and SSD [2], determines the loss function used for training,
denoted as L(y, t). It is important to note that the proposed
method is not affected by the selection of the loss function,
feature extraction backbone, or detection head architecture. It
can be applied without restrictions to any single-stage object
detection approach, provided that a multi-layer detection head
is employed.

In traditional few-shot fine-tuning, we typically choose the
K > 0 last layers and optimize the detection head as follows:

W∗
T = argmin

WT

N∑
i=1

L(fd(fb(xi),W), ti), (1)

where WT = [WM−K+1, . . . ,WM ]. This means we focus
on training only the last M layers of the detection head, while
keeping the remaining parameters fixed.

In contrast with the aforementioned approach, the pro-
posed method introduces a parameter budget B to limit the
number of parameters eligible for optimization. To simplify
the method, we allocate the budget based on layers rather
than the actual count of parameters. Hence, B represents
the maximum number of layers that can be optimized. Our
symmetric fine-tuning approach involves optimizing the first

B layers along with the last B layers. This allows the
detection head to uncover information from the backbone that
may have been suppressed during the initial training of the
object detector, such as task-irrelevant details. Consequently,
we formulate the optimization problem as follows:

W∗
P = argmin

WP

N∑
i=1

L(fd(fb(xi),W), ti), (2)

where

WP = [W1, . . . ,WB ,WM−B+1, . . . ,WM−1,WM ]. (3)

An important question arises concerning the unoptimized
intermediate layers and their suitability for the task at hand.
However, both our experimental evaluation and recent liter-
ature [18] suggest that these layers can indeed learn generic
feature combinations in a meaningful way, enabling effective
optimization. It should be noted that the proposed method
can also be viewed as a mean of enforcing a prior in
the detection process. By keeping the intermediate layers
frozen, we constrain the solution space and mitigate possible
overfitting phenomena. Furthermore, for fair comparisons in
our experimental evaluation, we specifically consider cases
where K = 2B, ensuring an equal number of optimized
layers in both the traditional fine-tuning approach and our
proposed method.

III. EXPERIMENTAL EVALUATION

In this section we provide the experimental evaluation.
First, we describe the employed evaluation setup. Then, we
provide the experimental results and discuss the obtained
results.

A. Experimental Setup

For all the conducted experiments we use the Single Shot
MultiBox Detector (SSD) [2] using the implementation pro-
vided by Tensorflow1. We also employ a ResNet50 backbone
as a feature extractor and an object detection head that consist
of four convolutional layers before feeding the final predictor
layer for classification and bounding box regression. The
model was trained on the entire COCO dataset and the input
images were resized to a resolution of 640 × 640 pixels,
ensuring consistency across in-domain and out-of-domain
experiments.

To perform few-shot learning we fine-tuned the model
in the OpenImages dataset [19] with four classes that are
not included originally in MS COCO (out-of-domain ex-
periments), i.e., “helmet”, “fish”, “tire”, and “flower”, as
well as two classes that are already included in the MS
COCO dataset (in-domain experiments), i.e., “bird” and
“coffee cup”. For each class, we selected a set of 10 random
images from the OpenImages dataset and resized them to
640× 640 pixels. These images were chosen to not include
occluded and truncated examples, as well as instances where
objects belonged to a group. We provide the training setup,
along with code for reproducing the conducted experiments
at REMOVED-FOR-PEER-REVIEW. To assess the model’s
performance, for each class we used a separate set of 100

1https://github.com/tensorflow/models
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TABLE I: Evaluating different fine-tuning approaches. mAP@0.5-0.99 is reported for each class separately, as well as the
average for all classes (“avg”), in-domain (’avg (in)’), and out-of-domain (‘avg (out)’)). Bold values indicate the best results
among the same set of experiments (baseline vs. proposed). Underlined numbers indicate the best overall results.

Method coffee cup bird helmet tire fish flower avg avg (in) avg (out)

Baseline (Last Layer) 0.759 0.455 0.017 0.03 0.24 0.17 0.278 0.607 0.114

Baseline (L2) 0.740 0.470 0.069 0.270 0.302 0.217 0.344 0.605 0.214

Proposed (L2) 0.782 0.478 0.11 0.403 0.33 0.253 0.393 0.630 0.274

Baseline (L3) 0.748 0.458 0.109 0.361 0.335 0.262 0.379 0.603 0.267

Proposed (L3) 0.766 0.477 0.15 0.445 0.337 0.271 0.408 0.621 0.301

Baseline (L4) 0.736 0.457 0.146 0.426 0.331 0.275 0.395 0.596 0.294

Proposed (L4) 0.756 0.474 0.157 0.466 0.390 0.280 0.420 0.615 0.323

randomly selected images from the OpenImages dataset, en-
suring that maintained the same characteristics as the training
set. We utilized the standard COCO evaluation methodology
to compute our metrics for each class.

To augment the training data and compensate for the
limited size of the training set, we applied various augmenta-
tions such as rotation, flip, scale, stretch, color, and positive
extraction [20]. The approach of selectively extracting only
positive instances was also employed to guide our model
towards effectively reducing false positives during training.

We conducted experiments using the following seven se-
tups:

• Baseline - Last Layer, where only the last layer
(classifier and box-predictor are trained). This setup is
abbreviated as “Baseline”.

• Baseline - Two Layers, where both the predictor layer
and the last convolutional layer are trained. This setup
is abbreviated as “Baseline (L2)”.

• Proposed - Two Layers, where the predictor layer and
the first convolutional layer from the head are trained.
This setup is abbreviated as “Proposed (L2)”.

• Baseline - Three Layers, where the predictor layer and
the two last convolutional layers are trained. This setup
is abbreviated as “Baseline (L3)”.

• Proposed - Three Layers, where the predictors and the
two first convolutional layers from the head are trained.
This setup is abbreviated as “Proposed (L3)”.

• Baseline - Four Layers, where the predictors and the
three last convolutional layers are trained. This setup is
abbreviated as “Baseline (L4)”.

• Proposed - Four Layers, where the predictors, the last
and the first two convolutional layers from the head are
trained. This setup is abbreviated as “Proposed (L4)”.

For each of these experiments we use the same base model
with the same hyperparameters but varying the number of
layers trained.

B. Experimental Evaluation

In Table I we report the mean Average Precision (mAP)
for Intersection over Union (IoU) values of 0.5 to 0.99.
First, we note that in the average case optimizing more
layers leads to increased precision for both the standard and
proposed fine-tuning approaches. Furthermore, note that for

the two in-domain classes (i.e., “coffee cup” and “bird”)
overfitting phenomena arise more easily when optimizing
more layers. For example, optimizing the last layers reduces
the mAP from 0.759 to 0.740. On the other hand, using the
proposed method in these cases allows for mitigating this
effect. For example, in the same case, when the first and the
last layers are optimized (“Proposed (L2)”), mAP rises to
0.782. Furthermore, we observe that in all evaluated cases
using the proposed symmetric fine-tuning approaches leads
to better results compared to fine-tuning the same number of
layers at the end of the network. Also, we observe that the
proposed method can achieve significantly better utilization
of the layer budget since using just two layers can reach (or
even exceed in the same cases), the baseline which optimizes
four layers. This observation hints towards confirming our
initial hypothesis that the first layers act as a bottleneck,
reducing the fine-tuning accuracy.

Furthermore, in Fig. 1 we provide the mAP over the whole
fine-tuning process for the different approaches. First, we
note the slower convergence for out-of-domain classes, com-
pared to in-domain classes. Furthermore, again we confirm
that the proposed symmetric fine-tuning approach leads to the
overall best results, often outperforming other methods that
use a significantly higher optimization budget. The difference
between the proposed and the baseline approaches grows as
the difficulty of the classes to be learned grows, e.g., for the
‘helmet’ class.

IV. CONCLUSIONS

In this paper, we proposed a symmetric fine-tuning method
for few-shot object detection that involves both the first and
last layers of the detection head. This approach aims to main-
tain a fixed trainable parameter budget while strategically
selecting parameters for fine-tuning. The proposed method
follows findings that are supported by the data processing
inequality, which states that information lost in early net-
work layers cannot be recovered in subsequent layers. The
experimental results demonstrate the effectiveness and effi-
ciency of the proposed symmetric fine-tuning approach. By
incorporating both the initial and final layers of the network
in the fine-tuning process, we achieve improved accuracy
and mitigate the risk of overfitting. This method provides
a more comprehensive adaptation of the detection head for
the few-shot object detection task, leveraging the benefits of
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(a) mAP during fine-tuning for the flowers class (b) mAP during fine-tuning for the fish class

(c) mAP during fine-tuning for the helmets class (d) mAP during fine-tuning for the tire class

(e) mAP during fine-tuning for the bird class (f) mAP during fine-tuning for the coffee cup class

Fig. 1: mAP during training for out-of-domain (subfigures 1a, 1b, 1c and 1d), as well as for in-domain (subfigures 1e and
1f) classes.
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pre-existing knowledge while allowing for effective learning
of new object categories.

The findings of this study open up several interesting future
research directions. First, future research can explore more
sophisticated methods for determining the optimal trainable
parameter budget. This could involve incorporating factors
such as model complexity, dataset characteristics, or task-
specific requirements to dynamically allocate resources and
improve the overall performance of the fine-tuning process.
Furthermore, investigating dynamic ways to select the most
appropriate parameters for optimization based on information
flow within the network holds significant potential. This
approach would consider the relevance and impact of each
layer or module on the overall performance and adaptively
prioritize their fine-tuning. Such dynamic parameter selection
methods could improve the efficiency and effectiveness of
the fine-tuning process. Finally, exploring how the proposed
findings and techniques in few-shot object detection can be
extended and applied to generic optimization methods for
deep neural networks is another intriguing research direction.
This exploration could lead to advancements in optimizing
deep neural networks across various domains and tasks.
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