
A Clustering-based Support Vector Classifier for
Dynamic Time-Linkage Optimization

Meng Gao, Xiao-Fang Liu*
Institute of Robotics and Automatic Information Systems

College of Artificial Intelligence
Nankai University

Tianjin, China
liuxiaofang@nankai.edu.cn

Zhi-Hui Zhan
School of Computer Science and Engineering

South China University of Technology
Guangzhou, China

zhanapollo@163.com

Jun Zhang
Hanyang University
Ansan, South Korea
Nankai University

Tianjin, China
junzhang@ieee.org

Abstract—Dynamic time-linkage optimization problems
(DTPs) bring challenges to existing evolutionary algorithms due
to the influence of a current decision in the future. Existing
methods usually model the rewards of a current decision in
the future for prediction. However, these methods often present
low prediction accuracy due to the lack of sufficient training
data. In addition, they often require a long computational time.
To address these issues, the problem of predicting rewards
is converted into a simpler binary classification problem,
which evaluates whether a current solution can bring positive
or negative influence in the future. This paper proposes a
clustering-based support vector classifier for solution evaluation.
In the proposed method, the density of the time-linkage property
is detected first. Historical data are divided using k-means
clustering so as to train a support vector classifier for solution
evaluation. Good solutions are selected to generate a final
decision solution using a crossover operator. Integrating the
clustering-based support vector classifier into particle swarm
optimization, a new method named CSVC-PSO is put forward.
Multiple instances are constructed using a recent DTP test
suite with different types of time-linkage patterns and density.
Experimental results demonstrate that the proposed CSVC-PSO
outperforms state-of-the-art algorithms on most instances using
a shorter time.

Index Terms—evolutionary computation, time-linkage, dy-
namic optimization, support vector machine

I. INTRODUCTION

Dynamic time-linkage optimization problems (DTPs) [1]
widely exist in many real-world applications [2], in which
the problem parameters change over time and a current de-
cision solution influences future environments. For example,
in a vehicle navigation system, if all vehicles use the same
”optimal” route on the same road, the route may no longer be
optimal for the entire system in the future [3]. These problems
challenge existing evolutionary algorithms due to the change
of the optimum and the influence of a current decision in the
future.

In the literature, multiple methods are developed to track
the changing optima in dynamic environments [4]. The meth-

This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grant 62103202, in part by the Natural Science
Foundation of Tianjin under Grant 21JCQNJC00140, and in part by the
Fundamental Research Funds for the Central Universities, Nankai University
(Grant 63231162). (Corresponding author: Xiao-Fang Liu)

ods can be roughly classified into two types, i.e., diversity
enhancement (e.g., [5]) and prediction (e.g., [6]). Particularly,
diversity enhancement methods increases population diversity
by adding new solutions [7]. In contrast, prediction methods
model the changing patterns of the optima for predicting new
optima in new environments [6] or shift historical solutions to
new environments using transfer learning techniques [8], [9].
These methods have shown good performance on dynamic
optimization problems. However, they ignore the time-linkage
property and present poor performance on DTPs. Mathemat-
ical analysis has demonstrate that it is challenging to solve
DTPs using traditional evolutionary algorithms [10]–[12].

To deal with the time-linkage property of DTPs, some
methods aim to learn a model for predicting the influence
of a current solution in the future [13], [14]. These prediction
methods train a surrogate model from the data of historical
environments using machine learning techniques. Based on
the prediction and the current fitness values, they select a good
solution with good performance in both the present and the
future. For example, an evolutionary algorithm with a predictor
builds a predictor using historical data for optimizing DTPs in
[13], but the method presents a large prediction error. The pre-
diction accuracy is further introduced for decision making for
improving algorithm performance [14]. To simulate the long-
term influence of decision solutions, reinforcement learning
is adopted to learn the rewards using surrogate models [15].
However, the method requires a long computational time and
may perform poorly due to the lack of sufficient training data.

According to the above discussion, existing methods may
present a large prediction errors due to the lack of training
data. An alternative method is to build a simpler model for
a simple target. Thus, this paper proposes particle swarm
optimization with a clustering-based support vector classifier,
named CSVC-PSO. Particularly, the clustering-based support
vector classifier is developed to evaluate whether a solution
has positive or negative influence in the future, rather than
the real reward value of each solution. In this way, the
evaluation problem is converted into a simpler binary classifi-
cation problem. In addition, a time-linkage detection method is
designed to estimate the density of the dependence of decisions
between environments. If the dependence is weak, then the

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 953



best solution found by PSO is taken as decision; otherwise, a
new solution is constructed by a crossover operator to combine
the current fitness value and the future influence. Multiple
instances are construed based on the very recent DTP test
suite [15], with different types of dependence patterns and
density. Experimental results show that the proposed method
outperforms state-of-the-art algorithms on most instances. In
addition, the proposed method requires a shorter computational
time. The contributions of this paper are as follows:
• A new time-linkage detection method is developed to

determine whether the dependence between decision so-
lutions is strong. This helps the algorithm to select
decision schemes.

• A new clustering-based support vector classifier is pro-
posed to evaluate whether a solution has a positive or
negative reward in the future. Compared with existing
methods to directly estimate the reward of each solution,
the proposed method is able to avoid a large prediction
error under limited data.

• A new crossover operator constructs a final solution by
considering the fitness value in the current environment
and the possible reward in the future.

The rest of this paper is organized as follows. Section II
provides the definition of DTP. Section III introduces the
proposed method. Section IV presents experimental results.
Finally, conclusions are drawn in Section V.

II. DYNAMIC TIME-LINKAGE OPTIMIZATION

A DTP can be formulated as

max

tend∑
t=1

f(xt, γt(X
∗
t−1))

s.t. xt ∈ Γ.

(1)

where tend represents the number of time steps, xt denotes a
solution available at time step t, X∗t−1 is the set of decision
solutions selected up to time t− 1, γt represents the problem
parameters at time step t; and Γ is the search space. The
optimization objective of a DTP is to find solutions with the
maximum cumulative fitness value from t = 1 to t = tend.

III. METHOD

In this section, CSVC-PSO is introduced. The flowchart of
CSVC-PSO is illustrated in Fig. 1. CSVC-PSO consists of
four parts: particle swarm optimization, time-linkage detec-
tion, clustering-based support vector classifier, and crossover.
Particularly, PSO is employed to search good solutions with
the best fitness value in the current environment. During
the searching procedure, the solutions found are stored in
an external archive P for future utilization. Then the time-
linkage detection is performed to determine the density of
the dependence between decisions in dynamic environments.
If the dependence is weak, then decision is made based on
the current fitness values only; otherwise, the future influence
of solutions are evaluated using a clustering-based support
vector classifier, and a decision is made using a crossover

Start

Time-Linkage Detection S
el

ec
t 
x
𝑝

as
 x

𝑡∗

Clustering-based Support 

Vector Classifier

End

no

yes

Optimizer

Archive: H

x𝑡−1
∗ , 𝑓𝑡

𝑚

…
x1
∗, 𝑓2

𝑚

Archive: P

x𝑡,𝑛, 𝑓𝑡,𝑛 ,

… ,

x𝑡,1, 𝑓𝑡,1

Add 𝑓𝑡
𝑚 to

Archive: H’

𝐻′+: 𝜇+, 𝜎+

𝐻′−: 𝜇−, 𝜎−

Archive: H

x𝑡−1
∗ , 𝑓𝑡

𝑚

…
x1
∗, 𝑓2

𝑚

Cluster

no

CSVC

Train

Crossover

Archive
P

Archive
E

crossover

Selected

x𝑝 x𝑒

x𝑡
∗

yes

Dataset: S

𝑆+: x′1
+
, 1 , …

𝑆−: x′1
−
, 0 ,…

Strong?

Stop?

Fig. 1: Flowchart of CSVC-PSO

operator based on both current fitness value and future rewards.
Once an environmental change occurs, new solutions are
generated to make decisions using the same procedure. The
procedure continuous until meeting the terminating conditions.
The details of each component in CSVC-PSO are introduced
in the following.

A. Particle Swarm Optimization

Denote the current environment index as t. Since PSO [16]
has shown good performance in dynamic environments, it is
adopted as the optimizer to search for good solutions in each
environment. A swarm is randomly initialized first. In every
iteration, the velocity vi and position xi of each particle i are
updated as

vi = wvi + c1r1(Pbesti − xi) + c2r2(Gbest− xi),
xi = xi + vi.

(2)

where w is the inertia weight, c1 and c2 are acceleration
coefficients, r1 and r2 are random numbers in a range of [0,1],
Pbesti is the historically best position found by particle i, and
Gbest is the global best position of the swarm. If the updated
position is better than Pbesti, then the Pbesti is updated.
Through multiple iterations, the swarm finds a good solution
in the current time step. During the iteration procedure, all the
positions found by the swarm are stored in an external archive
P . The solutions in P will be selected for decision making.
Particularly, the best solution in P is denoted as xp and its
fitness value is denoted as fmt . More details of how to use the
archives are given in the following subsections.

In the first four environments (t < 5), the best solution
found by PSO is taken as the final decision to collect data.

B. Time-Linkage Detection

The time linkage is detected before decision making. If the
time linkage is weak, a current decision has little influence in

954



𝜇

𝜎

𝑂

v0

v1v2

(a) Large dissimilarity index

𝜇

𝜎

v0

𝑂

v2 v1

(b) Small dissimilarity index

Fig. 2: Examples of the dissimilarity index

the future. In such a case, choosing the best solution based on
the current fitness value is a good choice. Otherwise, decision
making should also consider the future rewards of solutions.

Indeed, we can use the dependence between a decision
solution in an environment and the available best fitness
value in the next environment to represent the time linkage.
Hence, a related sample can be constructed by pairing a
decision x∗j in j-th environment and the best fitness value
fmj+1 found by PSO in the next (j + 1)-th environment, i.e.,
(x∗j , fmj+1), where 1 ≤ j < t. These samples are stored
in an archive H , which is used to learn the dependence
between decision solutions of the problem. Particularly, H =
{(x∗1, fm2 ), (x∗2, fm3 ), ..., (x∗t−1, fmt )}.

If the time linkage is strong, then the difference between fit-
ness values in multiple environments will be large; otherwise,
the difference will be small. Inspired by this, we propose to
detect the dependence by checking the difference among the
best fitness values found in previous environments. To achieve,
the samples in H are divided into two subsets using k-means
clustering based on the fitness value fmj first. The subset with
better fitness values are called a positive set and another one
is called a negative set. Then, the mean and variance of the
archive H , positive set, and negative set are calculated as a
two-dimensional vector v = (µ, σ), in which µ is the mean
value of all fitness values in a set and σ represents the variance.
The three corresponding vectors are denoted as v0 = (µ0, σ0),
v1 = (µ1, σ1), and v2 = (µ2, σ2), respectively.

Since the positive and negative sets are divided from H ,
one of them has a large mean value than that of H and one
has a smaller value. To measure the differences between two
subsets, a dissimilarity index is defined as

Id =
‖ v0 − v1 ‖ + ‖ v0 − v2 ‖ + ‖ v1 − v2 ‖

‖ v0 ‖ + ‖ v1 ‖ + ‖ v2 ‖
(3)

where ‖v0‖ is the modulus length of the vector v0. An example
of the dissimilarity between subsets is illustrated in Fig. 2. The
x-axis and y-axis represent the mean value and variance of a
set. As shown in Fig. 2, the dissimilarity between two subsets
is strongly correlated to the perimeter of the triangle formed by
the three vector. Thus, the dissimilarity index can well evaluate
the density of the time linkage between environments. If Id is
larger than a predefined threshold δ, then it is considered that
the time linkage between environments is strong; otherwise, it
is weak.

C. Clustering-Based Support Vector Classifier

To evaluate the future rewards of solutions, existing methods
tend to build a model for predicting the accumulated rewards
of solutions in a long term. However, these methods present
large prediction errors due to the lack of enough training data.
Instead of predicting the rewards using regression models,
coarse evaluation may be more accurate under limited data.
In this paper, we propose a clustering-based support vector
classifier (CSVC) to evaluate whether a solution can bring
positive influence or negative impacts in the future. That is,
solutions are only classified into two clusters. The solution
evaluation problem is converted into a binary classification
task.

1) Construct Training Data: To train a classifier, training
data is constructed first. Since the classifier aims to predict the
future influence of solutions, training samples are constructed
by pairing the decision solution x∗j at j-th environment and the
best fitness value obtained in the next (j+ 1)-th environment.
That is, the data in H is used for learning. The positive set
and negative set obtained during the time-linkage detection
indeed are the positive and negative samples for classification.
Denote the positive set and the negative one as X+ and
X−. Particularly, a sample (x∗, f) ∈ X+ in the positive set
is converted into a new sample (x∗, 1) with a label of 1.
In contrast, a sample (x∗, f) ∈ X− in the negative set is
converted to a new sample (x∗, 0) with a label of 0. All new
samples forms a training set S.

2) Determine Relevant Variables: There are usually some
irrelevant variables in the training samples, which increase
training difficulties and decrease prediction accuracy [17]. In
addition, the number of training samples is small and a small
model may be better. Thus, relevant variables, denoted as Ir,
are detected and selected to further reduce the number of
variables. Denote the variable set as V = {x1, x2, ..., xD},
here xi represents the set of the i-th variable of all the solutions
in H . In this paper, Pearson correlation coefficient [18] r is
used to measure the correlation between a variable and the
target in H . Denote the Pearson correlation coefficient of a
variable xi as ri. Then the variables rank according to the
r values in a descending order. To avoid the setting of a
threshold, the differences between the r values of any two
neighboring variables are calculated. Variables are selected one
by one until meeting a variable that has the largest difference
to the r value of the next one.

3) Support Vector Classifier: Based on the selected relevant
variables, the training samples in S are reduced. The irrelevant
variables are removed from each sample. The resultant samples
are used to train a support vector classifier [19]. To deal with
nonlinear mapping relationships, a nonlinear support vector
machine is implemented with the typical radial basis function
kernel. The procedure of training a support vector classifier is
given in Algorithm 1.

D. Crossover for Decision Making

The trained classifier is used to evaluate whether a solution
has a negative or positive impact in the next environment.

955



Algorithm 1 Training a Support Vector Classifier

Input: H = {(x∗1, fm2 ), (x∗2, fm3 ), ..., (x∗t−1, fmt )}
Output: a trained classifier

1: X+, X− ← perform K-means clustering on H;
2: S ← ∅;
3: for each e = (x∗, f) ∈ H do
4: if e ∈ X+ then
5: e′ = (x∗, 1);
6: else
7: e′ = (x∗, 0);
8: end if
9: S = S ∪ {e′};

10: end for
11: Ir ← Relevant variable selection based on H;
12: for each (x∗, label) ∈ S do
13: x′ ← Select the relevant variables from x∗ based on Ir;
14: Replace (x∗, label) with (x′, label);
15: end for
16: train a support vector classifier using S;

All candidate solutions in the archive P are evaluated using
classifier and the ones with positive labels are considered
as promising solutions. Among these solutions with positive
labels, the one with the highest fitness value is denoted as xe.
Since xe is evaluated using relevant variable only, it may have
poor values on the irrelevant variables. To address this issue,
we utilize the information of the irrelevant variables in the best
solution found by the particle swarm optimization (denoted as
xp, the best solution in P ). That is, the relevant variables of xe
and the irrelevant variables in xp can be combined to construct
a better decision solution. Particularly, both xe and xp have a
relative good fitness value in the current environment, whereas
xe has also a positive reward in the future. To achieve this,
a crossover operator is performed on xe and xp to generate a
final decision solution x∗t = (x1t , ..., x

D
t ) as:

xit =

{
xie, if i ∈ Ir,
xip, otherwise.

(4)

where xi represents the i-th variable of x. The values of
relevant variables are set to be the same as xe, and other
variables are set to be the same as those of xp. At the t-th
time step, x∗t is adopted as the decision.

IV. EXPERIMENT

A. Experimental Setting

1) Benchmark Problems: A recent dynamic time-linkage
problem test suite [20] is adopted for test. Multiple instances
with different time-linkage patterns are constructed [15]. Three
time-linkage patterns are constructed, i.e., linear, sinusoidal
and circular dependence, which represent linear or nonlinear
relationships between the solutions and the rewards in the

(a) Sinusoidal pattern (b) Circular pattern

Fig. 3: Nonlinear dependence patterns, where the green area
is the range of variables that have a positive influence in the
future and the rest area is that of negative influence.

future. Particularly, the problems with linear time linkages are
formulated as

f(x, t) =
m

max
i=1
{hi − wi‖x− ci‖}+ bt,

s.t. bt =

{
b, x1t−1 ≥ 0,

−b, x1t−1 < 0,

x ∈ [−5, 5]D.

(5)

where hi is the height of the i-th peak, wi is the width of
the i-th peak, ci is the center of the i-th peak, and f(x, t)
is used to find the solution with the highest fitness value.
Additionally, bt is the time-linkage coefficient. In the DTPs,
the parameters hi, wi, and ci vary over time but are not
related to the previous decision solution in past environments.
In contrast, bt is only related to the decision solution x∗t−1
in the proceeding environment, resulting in the time-linkage
property of the problem. Two other nonlinear dependence
types to simulate sinusoidal and circular dependence patterns
are constructed by

bt =

{
b, 2 ∗ sin(π5 ∗ x

1
t−1) ≤ x2t−1,

−b, 2 ∗ sin(π5 ∗ x
1
t−1) > x2t−1.

(6)

bt =

 b,
√

(x1t−1)2 + (x2t−1)2 ≤ 3.99,

−b,
√

(x1t−1)2 + (x2t−1)2 > 3.99.
(7)

The two nonlinear dependence patterns are illustrated in Fig.
3. The x-axis represents the first relevant variable of solutions
and y-axis represents the second variable. As illustrated in Fig.
3a, the dependence pattern of (6) forms a sinusoidal boundary
for classification. In contrast, (7) in Fig. 3b forms a circular
boundary for classification.

The parameters of the problems is set following [20]. The
change frequency of the problems is set as 10,000 function
evaluations.

2) Competing Algorithms: Two algorithms are taken for
comparisons, i.e., the very recent SQL-PSO [15] and PSO
[16]. Particularly, SQL-PSO performs the best among existing
typical algorithms for DTPs. The parameters of the compared
algorithms are set the same as in [15]. In all algorithms, the
swarm size is set as 100, ω = 0.75, and c1 = c2 = 1.4.

956



TABLE I: Results of dissimilarity index on multiple instances
with different b and tend values

b tend=10 tend=40 tend=70 tend=100

0 0.18± 0.05 0.24± 0.04 0.26± 0.03 0.27± 0.03
10 0.32± 0.1 0.35± 0.07 0.37± 0.06 0.36± 0.05
20 0.62± 0.15 0.57± 0.09 0.57± 0.08 0.55± 0.06
30 0.74± 0.17 0.83± 0.09 0.8± 0.07 0.8± 0.06
40 0.96± 0.2 1.04± 0.12 1.06± 0.13 1.06± 0.1
50 1.12± 0.22 1.19± 0.09 1.22± 0.07 1.22± 0.06
60 1.24± 0.15 1.32± 0.09 1.34± 0.06 1.35± 0.05
70 1.29± 0.13 1.38± 0.07 1.4± 0.06 1.4± 0.04
80 1.34± 0.14 1.4± 0.04 1.4± 0.03 1.41± 0.03
90 1.35± 0.12 1.44± 0.05 1.44± 0.03 1.46± 0.03

100 1.36± 0.14 1.44± 0.06 1.46± 0.04 1.47± 0.04

3) Performance Metric: To evaluate the performance of the
algorithm, the accumulated fitness value of decision solutions
in all environments is used as

F =

tend∑
t=1

f(x∗t , γt) (8)

where x∗t is the decision solution in t-th environment.
Each algorithm independently runs 20 times on each prob-

lem instance. The mean values and the standard deviations
over 20 runs are reported. Wilcoxon rank-sum test is per-
formed between the proposed method and each competing
algorithm at a significance level of 0.05. The signs “+”, “≈”
and “-” represent that the proposed method is significantly
better than, equal to or worse than the competing algorithm.
The algorithm with the maximum result is highlighted in bold.

B. Effect of Components

This subsection observes the relationship between the dis-
similarity index and the time linkage. In addition, the effect
of each component in the algorithm is tested.

1) Dissimilarity Index for Time-Linkage Detection: In order
to investigate the effect of time-linkage detection, this subsec-
tion observes the relationship between the dissimilarity index
(denoted as Id) and time linkage in problems. The problem
with a linear dependence pattern in (5) is adopted to construct
multiple instances with a different b and tend. Particularly,
b is set in a range of [0, 100] with a step size of 10, i.e.,
b = 0, 10, 20, ..., 100. The number of environments tend is set
as 10, 40, 70, and 100.

The average and standard deviation of the dissimilarity
index Id over 20 runs are reported in Table I. It can be
observed that Id increases with the growth of the time-linkage
coefficient b. When b > 60, Id increases slowly and tends to
converge. In the case of tend = 10, Id is lower than that of
tend = 100 due to the lack of historical data. Nevertheless,
the correlation between Id and b is strong as tend increases.
In contrast, when b ≤ 30, the time-linkage property does not
play a significant role in the environments. Therefore, in the
subsequent experiments, the threshold δ = 0.9 is chosen for
time-linkage detection.

TABLE II: Statistical results of CSVC-PSO and its variants,
i.e., CSVC, CSVC+Detection, and CSVC+Cross

b CSVC CSVC+Detection CSVC+Cross CSVC-PSO

10 4050± 760 4967± 352 4384± 563 4967 ± 352
50 6357± 922 6382± 834 6693± 837 6718 ± 834
100 8889± 937 8781± 857 9231± 845 9260 ± 856

TABLE III: Statistical results of CSVC-PSO, CSVC-
PSO(linear), PSO, and SQL-PSO

Pattern b CSVC-PSO CSVC-PSO(linear) PSO SQL-PSO

Linear

10 4967 ± 352 4967 ± 352(≈) 4967 ± 352(≈) 3879 ± 644(+)
30 5274 ± 662 5274 ± 663(≈) 5108 ± 684(+) 4599 ± 930(+)
50 6540 ± 966 6718 ± 834(−) 4963 ± 968(+) 5348 ± 1199(+)
80 8094 ± 687 8200 ± 715(≈) 5021 ± 1334(+) 7617 ± 1259(≈)

100 8917 ± 1075 9260 ± 856(−) 4903 ± 1680(+) 9117 ± 1625(−)

Sinusoidal

10 4955 ± 367 4955 ± 367(≈) 4955 ± 367(≈) 4087 ± 626(+)
30 5081 ± 575 5088 ± 586(≈) 4994 ± 694(≈) 4178 ± 793(+)
50 5710 ± 854 5821 ± 897(−) 4858 ± 943(+) 5367 ± 910(+)
80 7295 ± 1033 7327 ± 1209(≈) 5485 ± 1364(+) 6557 ± 1473(+)

100 7262 ± 1377 7652 ± 1478(+) 4533 ± 1772(+) 8833 ± 1107(−)

Circular

10 4978 ± 352 4978 ± 352(≈) 4978 ± 352(≈) 4344 ± 591(+)
30 5004 ± 525 5008 ± 518(≈) 5081 ± 444(≈) 4458 ± 442(+)
50 4999 ± 681 4788 ± 610(+) 5043 ± 534(≈) 5076 ± 908(≈)
80 5380 ± 1041 4938 ± 1279(+) 5365 ± 928(≈) 5346 ± 1712(≈)

100 5368 ± 1849 5369 ± 1854(≈) 5443 ± 1561(≈) 6410 ± 1879(−)

+/ ≈ /− 3/9/3 7/8/0 9/3/3

2) Effects of Components: CSVC-PSO consists of three
components: time-linkage detection, classifier, and crossover.
Four CSVC-PSO variants are tested, i.e., CSVC that selects
the best one with positive influence from the solutions found
by PSO, CSVC+Detection that uses the time-linkage detection
and CSVC for solution evaluation, and CSVC+Cross that uses
CSVC for solution evaluation and a crossover operator to
generate the final decision solution. Note that all the three vari-
ants use the same optimizer, i.e., PSO, as CSVC-PSO. There
instances with a linear dependence pattern b = 10, 50, 100 are
taken as examples for test. The statistical results of CSVC-
PSO and the three variants are reported in Table II. As
shown in Table II, CSVC-PSO obtains the best results among
four algorithms on all instances. Particularly, the time-linkage
detection can improve algorithm performance on instances
with b = 10, 50, showing that it is better to select solutions
based on current fitness value when the time linkage is weak.
In contrast, the crossover operator can improve algorithm
performance on instances with b = 100, showing that the it
is better to select irrelevant variables based on current fitness
value only. In general, the three components are important in
the proposed method.

C. Compared with other Algorithms

In this section, the proposed method is compared with other
algorithms. CSVC-PSO configured with a linear kernel is also
compared, named CSVC-PSO(linear). Multiple DTP instances
with different dependence patterns, i.e., linear, sinusoidal, and
circular patterns, are constructed. Particularly, b is set as 10,
30, 50, 80, and 100. A total of 15 instances are tested.

The statistical results of CSVC-PSO, CSVC-PSO(linear),
PSO and SQL-PSO are reported in Table III. There is
no significance difference between CSVC-PSO and CSVC-
PSO(linear) on 9 out of 15 instances. CSVC-PSO performs

957



TABLE IV: Average running time of each algorithm in an
environment

Algorithm CSVC-PSO CSVC-PSO PSO SQL-PSO(linear)

Time(s) 0.2868 0.2826 0.0732 16.9068

Ratio 1 0.98 0.25 58.95
“Ratio” is the ratio of the time of an algorithm to that of CSVC-PSO

better than CSVC-PSO(linear) on 3 instances on instances with
sinusoidal and circular dependence patterns, whereas worse
on 2 instances with linear patterns. This shows that a radius
bias function kernel work better on nonlinear dependence
patterns. From Table III, CSVC-PSO performs significantly
better than PSO and SQL-PSO on 7 and 9 out of 15 instances,
whereas worse on 0 and 3 instances only. Particularly, on
all instances with b ≤ 30, CSVC-PSO presents better or
similar performance to PSO since the best solution found
by PSO is taken as decision in cases of weak time linkage.
In contrast, on most instances with b > 30, CSVC-PSO
performs significantly better than PSO. This shows that the
proposed method can well focus on the current fitness value
and the future influences in different cases. Compared with
SQL-PSO, CSVC-PSO performs significantly better on all
instances with b ≤ 30 and most instances with b > 30,
especially on sinusoidal dependence patterns. This shows that
the proposed method can well evaluate the future influence of
solutions in dynamic environments. Specifically, CSVC-PSO
performs worse than SQL-PSO on instances with b = 100.
This is because that the state predictor in SQL-PSO can well
predict rewards when the dependence density is very strong.
In general, the proposed method can evaluate the positive or
negative influence on different types of dependence patterns
and density using a simple classification rather than using
reinforcing learning.

Table IV lists the average running time of all algorithms on
one instance with a linear dependence pattern and b = 100. As
shown in Table IV, CSVC-PSO and CSVC-PSO (linear) have
similar running time. PSO is the quickest. CSVC-PSO require
less than 0.3 seconds due to their simple and efficient design.
In contrast, SQL-PSO requires the longest computation time
due to its extensive use of proxy models, which is nearly 59
times that of CSVC-PSO. Thus, CSVC-PSO can obtain better
results than SQL-PSO using a shorter time.

V. CONCLUSION

This paper proposes particle swarm optimization with a
clustering-based support vector classifier, named CSVC-PSO,
to solve DTPs. In the proposed method, a time-linkage de-
tection method is developed to evaluate the density of the
dependence of decisions between environments. A clustering-
based support vector classifier is trained using historical data to
evaluate the influence of solutions in the future. A crossover
operator is performed to combine the current fitness values
and future influence for decision making. Experimental re-
sults show that, on multiple instances with different types

of dependence patterns and density, the proposed CSVC-PSO
outperforms than state-of-the-art algorithms on most instances.
In addition, CSVC-PSO requires a shorter time than the state-
of-the-art algorithm.

REFERENCES

[1] T. T. Nguyen, Z. Yang, and S. Bonsall, “Dynamic time-linkage
problems-the challenges,” in 2012 IEEE RIVF International Conference
on Computing & Communication Technologies, Research, Innovation,
and Vision for the Future. IEEE, 2012, pp. 1–6.

[2] B. Werth, E. Pitzer, J. Karder, S. Wagner, and M. Affenzeller, “Dynamic
vehicle routing with time-linkage: from problem states to algorithm
performance,” in International Conference on Computer Aided Systems
Theory. Springer, 2022, pp. 69–77.

[3] T. T. Nguyen and X. Yao, “Dynamic time-linkage evolutionary optimiza-
tion: definitions and potential solutions.” Metaheuristics for Dynamic
Optimization, vol. 433, pp. 371–395, 2013.

[4] Z.-H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolu-
tionary computation for complex continuous optimization,” Artificial
Intelligence Review, pp. 1–52, 2022.

[5] J. Luo, F. He, H. Li, X.-T. Zeng, and Y. Liang, “A novel whale
optimisation algorithm with filtering disturbance and nonlinear step,”
International Journal of Bio-Inspired Computation, vol. 20, no. 2, pp.
71–81, 2022.

[6] A. Ahrari, S. Elsayed, R. Sarker, D. Essam, and C. A. C. Coello, “Adap-
tive multilevel prediction method for dynamic multimodal optimization,”
IEEE Transactions on Evolutionary Computation, vol. 25, no. 3, pp.
463–477, 2021.

[7] J. Karimi, H. Nobahari, and S. H. Pourtakdoust, “A new hybrid approach
for dynamic continuous optimization problems,” Applied Soft Comput-
ing, vol. 12, no. 3, pp. 1158–1167, 2012.

[8] M. Jiang, Z. Wang, S. Guo, X. Gao, and K. C. Tan, “Individual-
based transfer learning for dynamic multiobjective optimization,” IEEE
Transactions on Cybernetics, vol. 51, no. 10, pp. 4968–4981, 2021.

[9] X.-F. Liu, Z.-H. Zhan, T.-L. Gu, S. Kwong, Z. Lu, H. B.-L. Duh,
and J. Zhang, “Neural network-based information transfer for dynamic
optimization,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 5, pp. 1557–1570, 2019.

[10] W. Zheng, H. Chen, and X. Yao, “Analysis of evolutionary algorithms
on fitness function with time-linkage property,” IEEE Transactions on
Evolutionary Computation, vol. 25, no. 4, pp. 696–709, 2021.

[11] W. Zheng, Q. Zhang, H. Chen, and X. Yao, “When non-elitism meets
time-linkage problems,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2021, pp. 741–749.

[12] W. Zheng and X. Yao, “Theoretical analyses of evolutionary algo-
rithms on time-linkage onemax with general weights,” arXiv preprint
arXiv:2305.07098, 2023.

[13] P. A. Bosman, “Learning, anticipation and time-deception in evolution-
ary online dynamic optimization,” in Proceedings of the 7th Annual
Workshop on Genetic and Evolutionary Computation, 2005, pp. 39–47.

[14] C. Bu, W. Luo, T. Zhu, and L. Yue, “Solving online dynamic time-
linkage problems under unreliable prediction,” Applied Soft Computing,
vol. 56, pp. 702–716, 2017.

[15] T. Zhang, H. Wang, B. Yuan, Y. Jin, and X. Yao, “Surrogate-assisted
evolutionary q-learning for black-box dynamic time-linkage optimiza-
tion problems,” IEEE Transactions on Evolutionary Computation, 2022.

[16] X.-F. Liu, Y. Fang, Z.-H. Zhan, and J. Zhang, “Strength learning particle
swarm optimization for multiobjective multirobot task scheduling,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 7,
pp. 4052–4063, 2023.

[17] X.-F. Liu, X.-X. Xu, Z.-H. Zhan, Y. Fang, and J. Zhang, “Interaction-
based prediction for dynamic multiobjective optimization,” IEEE Trans-
actions on Evolutionary Computation, pp. 1–1, 2023.

[18] S. Tutorials, “Pearson correlation,” Retrieved on February, vol. 4, 2014.
[19] S. Ghosh, A. Dasgupta, and A. Swetapadma, “A study on support vector

machine based linear and non-linear pattern classification,” in 2019
International Conference on Intelligent Sustainable Systems, 2019, pp.
24–28.

[20] H. Fu, P. R. Lewis, B. Sendhoff, K. Tang, and X. Yao, “What are dy-
namic optimization problems?” in 2014 IEEE Congress on Evolutionary
Computation. IEEE, 2014, pp. 1550–1557.

958


