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Abstract—Time series anomaly detection is a binary classi-
fication problem with unbalanced data, which aims to iden-
tify data that fall outside of the normal behaviors. Since the
proportion of the abnormal data is very small, the cost of
labeling all data is prohibitively high. Therefore, unsupervised
methods are more suitable than supervised methods. With the
rapid development of deep learning, various multivariate time
series anomaly detection methods based on deep learning have
been proposed. However, existing methods do not fully capture
the spatial-temporal correlations and are not robust to noise.
To address these issues, we propose an unsupervised anomaly
detection method called Orthogonal Self-Attention Variational
Autoencoder Generative Adversarial Networks (OSVAE-GAN).
To fully extract the spatial-temporal correlations, we use an
orthogonal self-attention (OS) mechanism. Moreover, to increase
the capability to deal with complex multivariate data, we in-
tegrate two generative adversarial networks (GANs) with the
variational autoencoder (VAE). Finally, to reduce the influence of
noise, we introduce the maximum mean discrepancy (MMD) loss.
Experiments are conducted on five public datasets, which show
that the proposed method is superior to the existing methods.

Index Terms—Anomaly detection, generative adversarial net-
works, maximum mean discrepancy, orthogonal self-attention.

I. INTRODUCTION

Anomaly detection (AD) is important in data mining, which
aims to find outliers that are significantly different from the
majority of the data. Over the last decade, research on anomaly
detection has made great progress due to its wide applications
in industrial production equipment monitoring, network opera-
tion and maintenance, and manufacturing quality control, see,
e.g., the survey papers [1]-[5] and references therein. With the
development of sensor technology, massive amounts of time

series data are available [6], [7]. Therefore, multivariate time
series anomaly detection is crucial.

Various multivariate time series anomaly detection methods
based on supervised learning and unsupervised learning have
been proposed, see, e.g., the survey papers [8]-[12] and
references therein. However, the data in application fields is
large, and the proportion of abnormal data is small, there-
fore the cost of labeling all data is prohibitively high [8],
[9]. Hence, unsupervised methods are more suitable than
supervised methods. Various unsupervised machine learning
methods for time series anomaly detection, such as Principal
Component Analysis (PCA), k-Nearest Neighbor (kNN), and
Support Vector Machine (SVM) [10]-[12]. However, most
existing methods ignore the inherent features of time series
data, and thus are difficult to deal with time series data.

With the rapid development of deep learning, various un-
supervised time series anomaly detection methods based on
deep learning have been developed, to address the above
issues [13]-[16]. For example, the authors of [15] and [16]
propose unsupervised time series anomaly detection methods
based on autoencoder (AE). AE encodes the original data to
generate latent variables, which are fed to the decoder to obtain
the reconstructed data, and finally realizes AD through the
reconstruction error. However, AE lacks of the regularization
of latent variables, and thus is difficult to deal with complex
time series data. To address this problem, the authors of [17]
propose a multivariate time series anomaly detection method
based on variational autoencoder (VAE), originally proposed
in [18] by combining Bayesian inference with AE, and by
adding constraints to latent variables and a random sampling
process to improve the capability to deal with complex data.
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However, it ignores the spatial-temporal correlations of the
multivariate time series data.

To extract the temporal correlation, Dis-AE-LSTM [19],
TAnoGAN [20] and TadGAN [21] propose time series
anomaly detection methods based on GAN [22] and long
short-term memory network (LSTM) [23]. There are few
studies which consider the temporal correlation and the spatial
correlation simultaneously. For example, the authors of [24]
propose a multivariate anomaly detection method called MAD-
GAN, which uses the entire variable set simultaneously to
capture the spatial correlation, and the LSTM Recurrent Neu-
ral Networks (LSTM-RNN) to capture temporal correlation.
However, it does not delve into the spatial correlation, and the
influence of noise on detection is ignored.

To address these issues, we propose a novel unsupervised
multivariate time series anomaly detection method called
Orthogonal Self-Attention Variational Autoencoder Generative
Adversarial Networks (OSVAE-GAN). The proposed method
uses two GANs, where one generator is used as the encoder
of the VAE to obtain latent variables, and the other generator
is used as the decoder of the VAE to reconstruct the original
time series. In addition, two discriminators are used to measure
the difference between the original and the reconstructed time
series as well as the difference between the distribution of
latent variables and the prior distribution, respectively. Finally,
in order to detect the abnormal multivariate time series data,
the anomaly score is calculated based on the output of the
discriminator and the reconstruction error.

The main contributions of this work are as follow:

• A novel unsupervised AD method for multivariate time
series data is proposed. Compared with Dis-AE-LSTM
[19] and LSTM-VAE [25], we use two generators as the
encoder and the decoder of the VAE, which has better
capability to deal with complex time series data.

• Compared with TAnoGAN [20], TadGAN [21], and
MAD-GAN [24], two sets of orthogonal multi-head self-
attention networks are used to form an orthogonal self-
attention (OS) mechanism, which significantly improves
the capability to capture spatial-temporal correlations.

• Compared with TadGAN and MAD-GAN, the maximum
mean discrepancy (MMD) [26]-[28] loss is introduced
to further constrain latent variables, which improves the
robustness to noise.

• Experiments are conducted on five public datasets, i.e.,
SWaT [29], WADI [30], SMD [31], SMAP [32], MSL
[32]. The comparison with LSTM-VAE, TAnoGAN and
TadGAN shows that the proposed method outperforms
these existing methods.

The remainder of this paper is organized as follows. Section
II presents the proposed anomaly detection method OSVAE-
GAN. Section III provides the detection performance of the
proposed method by various experiments. Section IV con-
cludes the paper.

II. ANOMALY DETECTION WITH OSVAE-GAN

Given a multivariate time series X = [x1, x2, ..., xT ] ∈
Rd×T , where T is the total length of the time sequence, d is
the number of measurements, and xi = [x1

i ;x
2
i ; ...;x

d
i ] ∈ Rd

denotes d measurements at time i. The multivariate time series
X is processed through a sliding window with the window
size wt and the step size ws, which results in a set of samples
X = {Xi

seq}Ni=1, where N =
⌊
T−wt

ws

⌋
and Xi

seq ∈ Rd×wt .
In this section, we first provide the overview of the proposed

OSVAE-GAN method. In the training phase, as illustrated
in Fig. 1, the pre-processed sample Xseq is fed into the
OS to extract the hidden spatial-temporal correlations in the
original sample, which will be detailed in subsection II-A.
Then the output of the OS X̄seq is input to the VAE to obtain
the reconstructed sample X̂seq . The discriminator Dx of the
generator G and the discriminator Dz of the generator E are
introduced for adversarial training, which will be detailed in
subsection II-B. Once the OSVAE-GAN model is trained with
normal data, in the testing phase, the anomaly score for a
given sample is computed. By comparing with the detection
threshold, whether the data is abnormal can be determined,
which will be detailed in subsection II-C.

Fig. 1. The overall framework of the proposed OSVAE-GAN.

A. Orthogonal self-attention mechanism

In this subsection, we introduce the OS containing Temporal
Multi-head Self-attention and Spatial Multi-head Self-attention
to capture temporal and spatial correlations, respectively.

In the seminal work [33], multi-head attention is proposed,
which maps its input to multiple different subspaces through
the nonlinear transformation, and then uses these subspaces to
find the final point in the new space. The essence of multi-
head attention is multiple independent attention calculations
as an integrated function, which can capture richer feature
information, improve expression ability, and prevent overfit-
ting. Therefore, we use multi-head self-attention networks as
models for Temporal Multi-head Self-attention and Spatial
Multi-head Self-attention.

The processes of Temporal Multi-head Self-attention and
Spatial Multi-head Self-attention are illustrated in Fig. 2. For
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Fig. 2. The OS composed of Temporal Multi-head Self-attention and Spatial
Multi-head Self-attention.

example, through Temporal Multi-head Self-attention, we get
the sample Xseq,t containing the temporal correlation by

Xseq,t = MultiHeadT(Xseq) =

( h∑
i=1

headi

)
WO

T , (1)

where WO
T ∈ Rdv×din is a learnable parameter matrix, h is the

number of heads for the multi-head self-attention, dv = din,
din is the number of columns of the input, which is equal to
wt for the temporal case, and headi is calculated by

headi = Attention(QiWi,1,KiWi,2, ViWi,3), (2)

where Attention indicates that the input sample is processed
using a scaled dot-product attention

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (3)

where softmax is the activate function, Wi,1, Wi,2 ∈
Rdin×din , Wi,3 ∈ Rdin×dv are learnable parameter matrices,
and

Qi = XseqWi,1, Ki = XseqWi,2, Vi = XseqWi,3. (4)

For Spatial Multi-head Self-attention, the input sample Xseq

is first transposed, and then follows the process similar to
Temporal Multi-head Self-attention to obtain Xseq,s contain-
ing the spatial correlation. Due to the space limitation, we
have omitted the details.

Finally, Xseq,t and Xseq,s respectively contains the temporal
correlation and the spatial correlation are added as

X̄seq = Xseq,t +XT
seq,s. (5)

B. Adversarial learning

In this subsection, we introduce the proposed adversarial
learning strategy based on VAE, GANs and MMD. The
process of the adversarial learning is as follows. As illustrated
in Fig. 1, the output of the OS X̄seq is input to the encoder
E of the VAE to obtain latent variables E(X̄seq). Then, the

decoder G is used to obtain the reconstructed sample X̂seq .
In order to make the reconstruction of the VAE more robust,
the discriminator Dx of the generator G is introduced to play
an adversarial game, forcing the reconstructed sample X̂seq

as close to the original sample Xseq as possible. Moreover,
to deal with complex multivariate data, the discriminator Dz

of the generator E is introduced to play an adversarial game,
which makes latent variables and the data follow from the prior
standard normal distribution indistinguishable. Finally, in order
to mitigate the influence of noise, the MMD is introduced to
measure the difference between the latent variable distribution
and the prior distribution.

In order to train the OSVAE-GAN, we need to solve an
optimization problem to be specified in Eq. (11), whose
objective function contains the loss of the VAE, objective
functions of two GANs, and the loss of the MMD.

The loss function of the VAE consists of the reconstruction
error and the Kullback-Leibler (KL) divergence, given by

LVAE(E ,G) = EXseq∼Px

[ ∥∥Xseq − G(E(X̄seq))
∥∥
2

]
+ βDKL(PE ||Pz),

(6)

where Px is the distribution of the input sample Xseq , PE is
the distribution of latent variables E(X̄seq), Pz is the standard
normal distribution, β is a trade-off parameter, and

DKL(P ||Q) =
∑
a∈Ω

P (a) log
P (a)

Q(a)
,

where Ω is the sample space of the distributions of P and Q.
For the decoder G and its discriminator Dx, the objective is

min
G

max
Dx∈Dx

VX(Dx,G),

with
VX(Dx,G) = EXseq∼Px

[Dx(Xseq)]−Ez∼Pz
[Dx(G(z))]

+ λ1Ez∼Pz

[
(∥∇zDx(G(z))∥2 − 1)2

]
,

(7)

where Dx is a set of Lipschitz continuous functions with Lips-
chitz constant being 1, i.e., ∥f(a)− f(b)∥ ≤ ∥a− b∥ ,∀a, b ∈
dom f , and dom f refers to the domain of the function f . In
addition, the gradient penalty term penalizes the gradient that
is not equal to 1 [34], and λ1 is a trade-off parameter.

Similarly, for the encoder E and its discriminator Dz , the
objective is

min
E

max
Dz∈Dz

VZ(Dz, E),

with
VZ(Dz, E) = Ez∼Pz

[Dz(z)]−EXseq∼Px
[Dz(E(X̄seq))]

+λ2EXseq∼Px

[
(∥∇X̄seq

Dz(E(X̄seq))∥2 − 1)2
]
.

(8)

The loss of the MMD is given by

LMMD(Pz,PE) =
∥∥Ez∼Pz

[Φ(z)]

− EE(X̄seq)∼PE [Φ(E(X̄seq))]
∥∥2
H,

(9)

where H denotes the reproducing kernel Hilbert space
(RKHS), and Φ(·) is a function that maps the data to a RKHS.
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Finally, by combining all objective functions given in Eqs.
(6)-(9), the overall objective function is

VF (Dx,G,Dz, E) = LVAE(E ,G) + VX(Dx,G)
+ VZ(Dz, E) + LMMD(Pz,PE),

(10)

and the overall objective is

min
{E,G}

max
{Dx∈Dx,Dz∈Dz}

VF (Dx,G,Dz, E). (11)

A pseudo code of the above procedure is summarized in
Algorithm 1, where we have used Xi to denote Xi

seq for the
notational simplification.

Algorithm 1 OSVAE-GAN.
Require: n, batch size.

epoch, number of iterations over the data.
ndisc, number of iterations of the discriminator per
epoch.
η, learning rate.

1: for each epoch do
2: for each k = 0, ..., ndisc do
3: Sample {Xi}ni=1 from the input sample X .
4: Sample {zi}ni=1 from standard normal distribution.

5: X̄i = MultiHead(Xi).

6: gDx
= ∇wDx

( 1n
∑n

i=1 Dx(Xi)− 1
n

∑n
i=1 Dx(G(zi)))

+λ1(∥∇zDx(G(zi))∥2 − 1)2

7: wDx
= wDx

+ η · adam(wDx
, gDx

)

8: gDz
= ∇wDz

( 1n
∑n

i=1 Dz(zi)− 1
n

∑n
i=1 Dz(E(X̄i)))

+λ2(∥∇x̄iDz(E(X̄i))∥2 − 1)2

9: wDz = wDz + η · adam(wDz , gDz )

10: end for
11: Sample {Xi}ni=1 from the input sample X .
12: Sample {zi}ni=1 from standard normal distribution.
13: gwG,E = ∇wG ,wE

(
1
n

∑n
i=1 Dx(Xi)− 1

n

∑n
i=1 Dx(G(zi))

+ 1
n

∑n
i=1 Dz(zi)− 1

n

∑n
i=1 Dz(E(X̄i))

+
∥∥ 1
n

∑n
i=1 Φ(zi)−

1
n

∑n
i=1 Φ(E(X̄i))

∥∥2
H

+
∥∥ 1
n

∑n
i=1 Xi − 1

n

∑n
i=1 G(E(X̄i))

∥∥
2

)
14: wG,E = wG,E + η · adam(wG,E , gwG,E )
15: end for

C. Anomaly score

Our proposed anomaly score is motivated by [21], which
is calculate by the reconstruction error and the output of the
discriminator Dx.

To calculate the reconstruction error between the original
sample Xseq and the reconstructed sample X̂seq , we use the
root-mean square error (RMSE) given by

LR(Xseq) =

√
1

d · wt

∑d
i=1

∑wt

j=1(xij − x̂ij)
2, (12)

where xij and x̂ij are the elements at the corresponding
positions of Xseq and X̂seq , respectively.

The output of the discriminator Dx is given by

LDx
(Xseq) = Dx(Xseq). (13)

A larger reconstruction error indicates a higher probability
that the Xseq is abnormal. However, a smaller output of the
discriminator Dx indicates a higher probability that the Xseq

is abnormal. Therefore, the reconstruction error LR(Xseq)
and the discriminator output LDx

(Xseq) cannot be calculated
directly to obtain the anomaly score without processing. We
apply a z-score transformation to normalize LR(Xseq) and
LDx(Xseq) into distributions ZLR

(Xseq) and ZDx(Xseq) with
the standard normal distribution. Their multiplication leads to
the anomaly score A(Xseq), given by

A(Xseq) = ZLR
(Xseq)ZDx

(Xseq). (14)

During the testing phase, a given sample is abnormal if
the anomaly score is greater than the threshold. There are
two common methods to choose the appropriate threshold.
When the input samples are relatively consistent with the
normal distribution, the detection threshold can be determined
by using the 3σ rule [35]. The detection threshold can also be
determined according to the abnormal rate of the verification
dataset (a subset of the testing dataset) [36]. We adapt these
two methods and choose the better one in the experiment.

III. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed method and
compare with the existing methods, such as LSTM-VAE [25],
TAnoGAN [20], and TadGAN [21], on five public datasets,
i.e., SWaT [29], WADI [30], SMD [31], SMAP [32], MSL
[32]. First, the description of datasets and experiment settings
are introduced in subsection III-A. Next, experimental results
and ablation study are given in subsection III-B.

A. Datasets description and experiment settings

1) Datasets description: The five publicly datasets are
as listed in Table I. The Mars Science Laboratory Rover
(MSL) dataset and the Soil Moisture Active Passive (SMAP)
satellite dataset are telemetry data provided by two different
spacecrafts. The Secure Water Treatment (SWaT) dataset is
collected at real water treatment plants. The Water Distribution
(WADI) dataset consists of data collected under normal condi-
tions and under attack scenarios in a water distribution testbed.
The Server Machine Dataset (SMD) collects the resource
utilization in a computer cluster.

2) Experiment settings: PyTorch framework is utilized and
all experiments are performed on a GeForce RTX 3090
graphics card. In addition, the network architecture is detailed
in Table II. Both the encoder E and the decoder G consist of
a 3-layer bidirectional LSTM network and a fully connected
layer. The discriminator Dx of the decoder G consists of three
fully connected layers. The discriminator Dz of the encoder E
consists of two fully connected layers. The number of heads in
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TABLE I
DATASETS DESCRIPTION.

Dataset name Training set
size

Testing set
size

Number of
dimensions

MSL 58317 73729 55

SMAP 135183 427617 25

SWaT 3000 5000 1

WADI 40000 17281 127

SMD 708405 708420 38

two multi-head self-attention networks is 8. For the proposed
OSVAE-GAN, the batch size is 32, the number of epoch
is 100, and the learning rate is 10−4. We set the window
sizes of SMAP, WADI, SMD, MSL, and SWaT are 50, 50,
80, 100, and 200, respectively. We set the time steps of the
sliding window are ⌊wt

2 ⌋. We use F1-Score (F1) to evaluate
the performance of our proposed method and the existing
methods, which is given by F1 = 2×Preision×Recall

Preision+Recall , where
Preision = TP

TP+FP ,Recall =
TP

TP+FN . A higher F1 score in-
dicates a better performance.

TABLE II
ARCHITECTURE OF NETWORKS.

Name of Networks Layer Parameters

OS FC -
softmax -

The encoder E LSTM num layers=3
The decoder G bidirectional=True

batch first=True
FC -

LeakyReLU -
Dropout -

The discriminator Dx FC -
LeakyReLU -

Dropout -
The discriminator Dz FC -

LeakyReLU -
Dropout -

B. Experimental results

The experimental results of the proposed OSVAE-GAN
method and the existing methods are listed in Table III, which
shows that the proposed method outperforms these existing
methods by having the highest averaged F1 score (97.71%)
across all the datasets. The averaged F1 score of LSTM-VAE
is 95.43%. LSTM-VAE is an anomaly detection method based
on the VAE, which uses the LSTM as the encoder and the
decoder. However, LSTM-VAE lacks any auxiliary network
to strengthen the reconstruction process, as well as additional
restrictions on latent variables, which may lead to its poor
performance when dealing with sparse or imbalanced time
series data. The average F1 score of TAnoGAN is 85.83%,
which is much lower than other methods in our experiments.
TAnoGAN is also an anomaly detection method based on

the GAN, which uses a discriminator and two generators.
TAnoGAN does not utilize VAE for feature extraction, but
instead a fully connected layer (FC), which may lead to the
worse performance when dealing with complex multivariate
time series data. The average F1 score of TadGAN method
is 95.25%. TadGAN is also an anomaly detection method
based on two GANs, which only uses bidirectional LSTM
to extract the temporal correlation. In addition, TadGAN has
two generators as the AE and constrains latent variables
only through the discriminator, which could result in poor
robustness to noise.

TABLE III
COMPARISON RESULTS OF THE PROPOSED METHOD AND EXISTING

METHODS.

Methods

Datasets
MSL SMAP SWaT WADI SMD Avg.

LSTM-VAE 94.00 92.74 95.09 97.80 97.53 95.43

TAnoGAN 87.50 85.25 70.59 92.14 93.65 85.83

TadGAN 94.44 93.17 93.08 97.77 97.81 95.25

OSVAE-
GAN 97.91 96.55 97.16 98.61 98.33 97.71

TABLE IV
RESULTS OF THE ABLATION STUDY FOR OSVAE-GAN.

Methods

Datasets
MSL SMAP SWaT WADI SMD Avg.

OSVAE-GAN
without OS and

MMD
94.10 91.96 97.30 97.43 97.35 95.63

OSVAE-GAN
without OS 94.14 93.08 97.10 97.18 96.87 95.67

OSVAE-GAN 97.91 96.55 97.16 98.61 98.33 97.71

To verify the roles and contributions of the two key modules,
i.e., the OS and the MMD in extracting spatial-temporal corre-
lations and improving the robustness to noise in the OSVAE-
GAN method, we conduct the ablation study. The results of
ablation experiments are listed in Table IV. The average F1
score of OSVAE-GAN without the OS is 95.67%, which is
lower than the average F1 score of OSVAE-GAN. This shows
that the OS indeed contributes to the extract spatial-temporal
correlations and improves detection performance. The average
F1 score of OSVAE-GAN without the OS and the MMD is
95.63%, which is lower than the average F1 score of OSVAE-
GAN without the OS and the average F1 score of OSVAE-
GAN. This shows that the MMD improves the robustness to
noise and improves detection performance. As shown in Table
IV, for the SWaT dataset, the F1 score of the OSVAE-GAN
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is slightly lower than the OSVAE-GAN without these two
modules. A possible reason for this is that the SWaT dataset
is univariate time series data, which is relatively simple.

IV. CONCLUSIONS

In this paper, we propose an unsupervised anomaly detec-
tion method called OSVAE-GAN. First, we introduce the OS
to fully extract the spatial-temporal correlations. Moreover,
we integrate two GANs with the VAE to deal with complex
multivariate time series data. Finally, we use the MMD loss
to reduce the influence of noise. Experiments are conducted
on five public datasets and the results shows that the proposed
method outperforms the existing methods.
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