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Abstract—In numerical single-objective optimization, auto-
mated algorithm selection that uses exploratory landscape analy-
sis to describe problem features has achieved great results when
the machine learning models used for prediction are trained and
tested on the same problem set. However, recent work has shown
that the performance of such models decreases when the training
and testing sets contain different problems. In this paper, we
examine a recently developed algorithm selection model trained
on a set of artificial problems and tested on a well-known set of
hand-made benchmark problems. This model performed poorly
when it was originally presented. Here, we provide an explanation
for its poor performance by analyzing the feature importance of
the model using Shapley Additive Explanations. We then compare
these results to an alternative algorithm selection model that was
both trained and tested on the same set of hand-made benchmark
problems and achieved much higher performance. This allows
us to determine which features each model considers as most
significant for their predictions, and where they differ. We show
that the original and the alternative model use different landscape
features for their predictions, which explains the difference in
their performance. Further, by plotting the SHAP values on
a 2D plane, we show that the original model is unable to
distinguish between certain types of problems. Finally, we show
that regardless of their differences in utilizing the features both
the original and the alternative models perform poorly on a
specific group of problems.

Index Terms—algorithm selection, exploratory landscape anal-
ysis, numerical optimization

I. INTRODUCTION

The task of selecting the best performing algorithm for a
given problem, called algorithm selection [1], is a popular
area of research in optimization [2]. This is because algorithm
performance depends heavily on the specific problem being
solved, and no single algorithm exists that can solve all
problems well. In recent years, techniques such as exploratory
landscape analysis (ELA) [3] have been used with great suc-
cess for algorithm selection in the domain of single objective
numerical optimization, as they allow researchers to convert
problem samples into real-valued descriptors called landscape
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features that can be used directly by machine learning models.
In addition, these landscape features can easily be computed
by utilizing programming libraries such as “flacco” [4].

However, the performance of such algorithm selection mod-
els is heavily dependent on the training and testing data used.
If the data in the training and the testing sets are similar then
the models produce great results. One example of such work
is the study performed by Kerschke and Trautmann [5], which
analyzed the performance of an automated algorithm selection
model trained and tested on a set of 24 problems from the
BBOB benchmark set (BBOB problems) [6], and reduced
the overall runtime of the optimization procedure by half
compared to only using a single best solver. In this experiment,
the training and the testing data were similar to one another.
However, other work has shown that ELA can have problems
when the training and testing problems are different from one
another in terms of their ELA representation [7], [8], [9].

In this paper, we examine a different group of models that
we developed in our prior work [10], where we presented
several algorithm selection models that differed based on the
data used for training and testing. A performance evaluation
of these models showed that the models that were trained and
tested on similar data sets performed well, while the models
that were trained on one set and tested on a different set
performed poorly.

In this paper, we aim to expand on this analysis. To do this,
we use Shapley Additive Explanations (SHAP) [11], a state-
of-the-art approach for calculating feature importance by using
concepts from game theory. The main goal of this paper is to
compare the SHAP values of two different models introduced
in our prior work. The first, which we will refer to as the
original model, was trained and tested on different problem
sets and achieved poor performance. The second, which we
will call the alternative model, was trained and tested on
only the BBOB problems. We analyze the SHAP values of
the two models both by directly comparing the mean SHAP
values and by visualizing them using t-sne [12] to reduce the
dimensionality of the SHAP values to two.
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This paper is structured in the following way. In Section
II we provide an overview of related work, including a brief
overview of the original model presented in our prior work
[10]. In Section III we present our experimental structure. In
Section IV we present the results of our experiments. Finally,
in Section V, we present the conclusion of our research.

II. BACKGROUND

In our prior work [10] we presented several automated
algorithm selection models that used exploratory landscape
analysis and random forests, with the goal of determining
how well ELA can generalize information between different
problem sets. The models that we presented differed in the
problems that they were trained and tested on, with five
models examined in total. We concluded that models where
the training data is different than the testing data in terms of
their landscape features produce poor performance, while the
models where the training and testing data are similar produce
good performance.

In this paper, we aim to perform a more detailed analysis
of these models’ predictions in order to explain the perfor-
mance of the models as it relates to the landscape features.
Specifically, we want to explain the difference between two
specific models out of the five introduced by the paper. The
first, which we will call the original model, is trained on
a set of artificially generated problems and evaluated on
the BBOB problems. This model originally achieved poor
algorithm selection performance because the data used to train
the model differed greatly from the data used to test the model,
with ELA unable to generalize between the two different
datasets. The second, which we will call the alternative model,
is trained and tested on the BBOB problems using cross-
validation. This model performed much better than the original
model. These two models were chosen because the former was
the best-performing of the models examined, while the latter
was the worst-performing, and because both of these models
were evaluated on the same dataset. Both of the models are
tasked with classifying which one out of a specific set of 10
algorithms achieves the best performance on a given problem,
with the performance of the algorithms defined as the number
of evaluations needed to reach a certain target precision.

The artificial problems are generated by a generator pre-
sented in [13]. The artificial problems are generated by using
a tree structure which is randomly modified by the addition of
different mathematical operators, as well as by the process
of difficulty injection, which gives the function additional
properties that are known to present difficulties to optimization
algorithms, for example by introducing noise or multimodal-
ity to the problem. In addition, the generator evaluates the
performance of 10 different optimization algorithms on each
generated problem, and the best-performing algorithm is se-
lected as the prediction class of each problem. The models use
50 problems for each of the 10 algorithms in order to ensure
a balanced dataset, for a total of 500 problems.

The BBOB problems consist of 24 problems that are
commonly used in numerical single-objective optimization

benchmarking. For each of the 24 problems, the benchmark-
ing platform allows the generation of an infinite amount of
problem instances, which are small variations of the problem
that should not affect algorithm performance. The models
used 15 instances for each of the 24 problems, for a total
of 360 instances. This data is much more imbalanced than
the artificial problem data. For example, only seven of the
10 algorithms present in the training data were present in the
testing data.

Both of the models used ELA to calculate the landscape
features that were used for the machine learning models. Using
ELA allows for the transformation of problem samples into
numerical descriptors called landscape features which estimate
the underlying properties of the problem instance, for example,
its modality or its skewness. In total, 44 landscape features
were used. Landscape features have shown great results when
used for the task of algorithm selection [5], however, there
has only been a limited amount of research into how well
they generalize between different problem sets

To explain the difference in performance between the two
algorithms, we use Shapley Additive Explanations [11], which
allow us to calculate for each landscape feature its individual
contribution towards a model’s prediction for each problem in-
stance. This approach has been used to explain the importance
of ELA values in machine learning, for example in papers by
[14], or [15]. The model we examine in this study differs from
these by examining a classification rather than a regression
model.

III. EXPERIMENTAL SETUP

In order to more thoroughly evaluate the effect of the
individual landscape features on the model’s predictions, we
examined the SHAP values on the level of predictions on
each individual instance. The overview of this experiment is
as follows:

1) Train the two algorithm selection models to be analyzed:
the original model, and the alternative model. These two
models use different training sets but are both evaluated
on the same testing set of 360 BBOB instances.

2) For each model prediction, calculate the SHAP values
that explain the feature importance that the model used
for this prediction.

3) Plot the collected SHAP data on a 2D plane using t-sne.
In the first step, we train the two models that we will

examine in this paper: the original model and the alternative
model. To do this, we use the same training data and model
definitions as in our original paper [10]. All parameters are
unchanged from prior work, which used the default parameters
for the random forest models with the number of trees set at
1000.

In the second step, we calculate the SHAP data for the
two models to obtain explanations for the models’ chosen
predictions, based on the same training and testing used in
our prior work [10]. The SHAP values are computed using
the Tree SHAP algorithm [16] provided by the Python library
shap [17] using the default parameters provided by the library.
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For each prediction, we obtain 44 SHAP values, one value for
each landscape feature that was used to train the algorithm
selection learning model. The landscape features used are
based on our prior work [8], which has shown these landscape
features to be promising in terms of algorithm selection.
For each instance, each of the 44 individual SHAP values
represents the contribution of the corresponding landscape
feature towards the model’s decision to assign the selected
class as the predicted class. The sum of all 44 SHAP values
represents the probability that the model assigns to the class.

In the third step, as the 44 SHAP values cannot easily
be visualized, we transform them into a two-dimensional
representation using t-sne [12], and plot them visually on a 2D
plane so that the predictions with similar SHAP values appear
close together. The visualizations are performed using 10 000
iterations and a perplexity of 15. The number of iterations
was fixed at 10 000 because further iterations produced no
improvements. The perplexity parameter is conventionally set
to a number between 5-50 but has to be determined manually,
as it depends on the data being visualized. The parameter was
set to 15 experimentally, as this produced good results, al-
though other values produced roughly similar results. In order
to achieve consistent visualizations and ensure repeatability,
the random seed of the t-sne algorithm was set to 0 for all
visualizations. As with the perplexity parameter, different seed
values still produced similar results.

This approach does have several limitations. First, we are
limited to the data, models, and methodology that we used
in the original paper. Second, by performing dimensionality
reduction using t-sne, some information is naturally lost.
In addition, caution has to be used when interpreting t-
sne visualizations, as the distances between clusters can be
nondeterministic, and therefore do not carry significant infor-
mation. As such, only the presence of clusters themselves
should be considered significant, but not specific distances
between them. Finally, the TreeSHAP algorithm used can
only approximate the true SHAP values, as computing them
precisely is computationally demanding.

IV. RESULTS

In this Section, we present the results of our investigation.
First, we examine the individual SHAP values of all model
predictions. Then, we examine smaller subsets of predictions
for a more detailed analysis. Finally, we aggregate the SHAP
values across an entire prediction class to examine which
specific landscape features the models consider important.

Figure 1 shows the t-sne visualization of the SHAP values
of all predictions made by the two models, with the colors
representing the true class of each prediction, and the shapes
representing the model and whether or not the prediction was
correct. The lines in the Figure connect the predictions from
the original model to the predictions on the same instance from
the alternative model. We can see that the SHAP values of the
two models are very different overall, as the predictions of the
two models are almost entirely separated in the 2D space, with

Fig. 1. A t-sne representation of the SHAP values of all predictions by both
the alternative model and the original model, with each point representing a
single instance that was predicted by the models. We highlight two groups of
instances that we examine in more detail.

Fig. 2. A t-sne representation of the SHAP values of all predictions by both
the instance split alternative model and the original model, with each point
representing a single instance that was predicted by the models. We highlight
two additional groups of instances that we examine in more detail.

the alternative model occupying the left side of the figure, and
the original model occupying the right side.

We can see that some of the predictions form well-defined
clusters on the edges of the visualization. The BBOB problem
set that was used to calculate the SHAP values contains 24
problems and 15 instances per problem. As the instances
are just small variations of a problem, an accurate algorithm
selection model should be able to group individual instances
into a single cluster. We also see that both models produce one
large cluster of problems each. These two clusters are marked
as 1 and 2 in the visualization. These clusters contain instances
of many different problems with many different corresponding
true classes. This indicates that both models are unable to
distinguish between some types of problems.

In summary, from Figure 1, it appears that the predictions
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from both the alternative and the original model can be split
into two groups. In the first group are the predictions made
on the BBOB problems that can be easily distinguished and
separated from the rest of the problems. In the second group
are the BBOB problems that appear more difficult to cate-
gorize, and that the models categorize into one large cluster.
A major difference between the original and the alternative
models is that the alternative model is able to correctly
predict the instances in the first group. On the other hand,
the original model largely misclassifies the first group. Both
models perform poorly on the second group, and this group
represents the majority of misclassification for the alternative
model.

Figure 2 shows the same visualization, but with the predic-
tions colored by the predicted rather than the true class. When
looking at the smaller, individual clusters, we can see that both
the alternative and the original model predict them entirely as
a single class, which is expected, since the models consider
these instances as similar to one another. If we examine the
original model, we can see that the large group on the top right
is predicted entirely as CSO, while the smaller group at the
top is predicted entirely as DE, and the group on the bottom
right as CMA-ES.

In reality, most of the smaller clusters identified by the
original model actually represent multiple different types of
BBOB problems. We can determine this by examining the
lines that map each of the predictions of the original model
with a corresponding prediction of the alternative model. We
can see that most of the clusters of the original model are
connected to multiple smaller clusters of the alternative model.
It appears that the original model has given more importance to
landscape features which might not correctly group the BBOB
problems and is not able to distinguish between different types
of problems within this cluster in the same way that the
alternative model is able to. To examine this in more detail,
we will look at the clusters marked as 3 and 4 in Figure 2.
As these relations are hard to see in the overall plot, we will
examine the clusters separately.

Figure 3 shows a more detailed analysis of only the predic-
tions belonging to cluster 3. We can see that the predictions
of the original model map to several different groups of
the alternative model. While the alternative model was able
to separate these groups and predict them with the correct
classes, the original model grouped all of these instances
together and predicted them as a single class. In addition,
the class chosen by the original model for the prediction,
CMA-ES, is almost entirely incorrect, as it is only correct
for a single prediction. This further indicates that the original
model is unable to distinguish between these problems, while
the alternative model can by considering different landscape
features for making the prediction.

Figure 4 shows a similar visualization as Figure 3, but
examining the cluster marked as 4 in Figure 2. Once again,
we can observe similar results: the cluster belonging to the
original model corresponds to multiple clusters of the alter-
native model, and the original model makes only a single

Fig. 3. A smaller subset of SHAP values showing just the bottom right
group of the original model that was marked as cluster 3, as well as the
paired alternative model predictions. Colors represent the predicted class of
the instance.

Fig. 4. A smaller subset of SHAP values showing just the bottom right group
of the original model that was marked as cluster 4.

prediction. In this case, the original model achieves slightly
higher accuracy on this cluster, since its prediction matches
more problems. However, the general pattern of behavior
remains the same.

Figure 5 shows the same instances as Figure 4, but colored
by whether or not the prediction of the model was correct. To
make this figure more readable, we allow the t-sne algorithm
to reposition the instances, placing them farther apart, so that
we can better see the instance pairs. Interestingly, this plot
shows that despite its poor performance, the original model is
still able to correctly predict some instances that the alternative
model does not.

Figure 6 shows the same instances as Figures 1 and 2, but
with the individual instances colored by whether or not the
prediction was correct. This allows us to more easily analyze
where the models made mistakes. As we have seen previously,
the alternative model is able to correctly predict most of its
smaller clusters, while the original model predicts most of
these clusters incorrectly. On the other hand, the two large
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Fig. 5. The SHAP values from Figure 4, but visualized further apart, and
colored by whether or not the model predictions were correct.

Fig. 6. A t-sne representation of all predictions by both the instance split
alternative model and the original model, colored by whether or not the
predictions were correct.

clusters in the center contain a mix of correct and incorrect
predictions.

Figure 7 shows similar data as Figure 6, but by following
an alternate evaluation methodology described in [10] where
a prediction is considered correct as long as the predicted
algorithm achieves performance that similar to the absolute
best performing algorithm from the perspective of statistical
significance, as determined by a Wilcoxon statistical test. Such
an evaluation naturally improves the results of the models. If
we look at the data from the original model, it particularly
improves its results in the large central group. These findings
can also be observed in the alternative model. From this,
we can conclude that the two large central groups contain
instances that are solved well by multiple algorithms. On the
other hand, the performance of the smaller outlying clusters
is not improved for the original model.

Finally, in order to understand which specific landscape
features the models consider important, Figure 8 shows the
aggregated mean SHAP values of correct predictions of the

Fig. 7. A t-sne representation of all predictions by both the instance split
alternative model and the original model, colored by whether or not the
predictions were correct using the multi-label evaluation.

Fig. 8. Mean SHAP values of the original and the alternative models on the
correct predictions of instances with the class CMA-ES.

original and the alternative models for the class CMA-ES.
Each bar represents the mean individual contribution of a
specific landscape feature toward the model’s decision to
classify the problem with the class CMA-ES. Plots for other
classes are not included here due to space constraints but
are included in the supplemental data of the paper. These
other plots all show similar broad results, i.e., that the two
models consider vastly different landscape features, but the
exact landscape features considered important vary depending
on the specific class.

We can see that there are large differences between the
original and the alternative models, which is unsurprising
given the poor performance of the original model. For the
CMA-ES class, the landscape feature ic.h.max is the most
important feature for the alternative model, while it is not
considered important by the original model. The feature ic.ep
s.max is likewise important for the alternative model, but on
average gives negative contributions to the original model. A
similar result can be observed for the landscape features lim
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o.avg length.reg and limo.length.mean. On the other hand,
the original model considers the landscape features disp.ratio

median 25, disp.diff median 25, and disp.diff mean 25 as
much more important.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a case study of how SHAP
values can be used to extract more information about an auto-
mated algorithm selection model based on landscape features.
We used these values to compare two different automated
algorithm selection models. The first was a model that was
trained on one set of data, and tested on a different unrelated
set of data. This model performed poorly. The second was a
model that was both trained and tested on the same set of data
using cross-validation. This model performed well.

We show that the explanations of both of these models
separate the testing instances into multiple smaller clusters
that correspond to individual classes. However, it appears
that the original model does not distinguish between different
groups of instances in the same way that the alternative
model can, which leads to mispredictions of the problems
belonging to these groups. Interestingly, the original model
is able to correctly predict a small number of problems that
the alternative model cannot. In addition, both models also
contain one large cluster which seems to primarily correspond
to instances that can be solved equally well by multiple
algorithms. These findings reinforce the findings of the paper
that originally introduced the model, as they show that training
data that is different from the testing data in terms of how the
problems are designed and the information that they contain in
terms of landscape features produces poor model explanations.
However, this paper represents only a preliminary investiga-
tion, and more work is needed in order to determine why
certain features showed such large differences between the
two models

Overall, these findings show the machine learning models
that were used in our previous study could not generalize
the information provided by the landscape features to the
extent that it could have been used for performance prediction
between completely different types of problems because the
two models relied on entirely different features to make their
predictions. A shift to different problem representations, or to
different machine learning models could potentially improve
these results.

In this paper, we only examined two out of five models
that we presented in our original paper [10], as we were
interested in comparing the worst-performing model with the
best-performing model. This analysis could be expanded to
other three models as well. In addition, metrics other than
SHAP could be used for the analysis. As noted above, different
problem representation methods might also provide better
results and would require additional analysis to explain their
usefulness, as well as to explain the complementarity between
these new representation methods and existing landscape
features. Other problem-generation methods should also be
analyzed, as it is possible that the specific artificial problems

used in this study contained very different problem landscapes
from the BBOB problems. Finally, we have used a limited set
of 44 landscape features which were shown to be promising in
our prior work, but it is possible that the inclusion of additional
features, including those that are not available in the flacco
library, could produce different and more generalizable results.
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space in single-objective numerical optimization using exploratory land-
scape analysis,” Applied Soft Computing, vol. 90, p. 106138, 2020.

[9] A. Kostovska, A. Jankovic, D. Vermetten, J. de Nobel, H. Wang,
T. Eftimov, and C. Doerr, “Per-run algorithm selection with warm-
starting using trajectory-based features,” in Parallel Problem Solving
from Nature–PPSN XVII: 17th International Conference, PPSN 2022,
Dortmund, Germany, September 10–14, 2022, Proceedings, Part I.
Springer, 2022, pp. 46–60.
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“Identifying minimal set of exploratory landscape analysis features for
reliable algorithm performance prediction,” in 2022 IEEE Congress on
Evolutionary Computation (CEC), 2022, pp. 1–8.

[15] R. Trajanov, S. Dimeski, M. Popovski, P. Korošec, and T. Eftimov,
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