
1

Cryptocurrency Portfolio Optimization by Neural
Networks

Quoc Minh Nguyen∗, Dat Thanh Tran∗, Juho Kanniainen∗, Alexandros Iosifidis†, Moncef Gabbouj∗
∗Department of Computing Sciences, Tampere University, Finland

†Department of Electrical and Computer Engineering, Aarhus University, Denmark

Abstract—Many cryptocurrency brokers nowadays offer a va-
riety of derivative assets that allow traders to perform hedging or
speculation. This paper proposes an effective algorithm based on
neural networks to take advantage of these investment products.
The proposed algorithm constructs a portfolio that contains a
pair of negatively correlated assets. A deep neural network, which
outputs the allocation weight of each asset at a time interval,
is trained to maximize the Sharpe ratio. A novel loss term is
proposed to regulate the network’s bias towards a specific asset,
thus enforcing the network to learn an allocation strategy that
is close to a minimum variance strategy. Extensive experiments
were conducted using data collected from Binance spanning
19 months to evaluate the effectiveness of our approach. The
backtest results show that the proposed algorithm can produce
neural networks that are able to make profits in different market
situations.

Index Terms—Deep learning, portfolio optimization, financial
engineering, cryptocurrency, decision making.

I. INTRODUCTION

Portfolio optimization is the process of distributing wealth
over a universe of assets to satisfy specific criteria (e.g., maxi-
mize accumulated return, Sharpe ratio, or minimize volatility).
One of the pioneering works in this field is the modern
portfolio theory [1], which takes advantage of the diversifi-
cation of the portfolio to reduce volatility, given the same
level of portfolio returns. Recent research has incorporated
machine learning into the model-based approach or designing
a Reinforcement Learning (RL) framework in which an agent
learns how to trade from market feedback, or even for training
an end-to-end model to output the portfolio weights. Regarding
different approaches, portfolio diversification still plays a
vital role in the success of portfolio optimization algorithms.
However, asset selection can be challenging since the universe
of assets can be large and correlation properties between assets
change over time.

In modern portfolio theory, the optimal weights are the solu-
tion to the optimization problem that uses the expected returns
and covariance matrix as parameters. These two quantities
are estimated from the historical returns, which have a low
signal-to-noise ratio, and this is likely to affect the accuracy
of the estimations. Many attempts have been made to bypass
the need for the estimation step. One common approach is to

Q. M. Nguyen, D. T. Tran, J. Kanniainen and M. Gabbouj are with the De-
partment of Computing Sciences, Tampere University, Tampere, Finland. (e-
mail: {quoc.nguyen,thanh.tran, juho.kanniainen, moncef.gabbouj}@tuni.fi).
A. Iosifidis is with the Department of Electrical and Computer Engineering,
Aarhus University, Denmark (e-mail: ai@ece.au.dk).

design an RL framework [2], [3], [4] that uses an agent to
take action based on market information (e.g., prices, returns,
volumes) for maximizing the expected accumulated reward.
For adapting the RL framework to the portfolio optimization
problem, the action could be a vector of allocation weights the
agent needs to allocate for constructing the portfolio. At the
same time, the state can be created from the previous trading
action, asset prices, and volumes. Another less-discussed but
also promising approach is the end-to-end framework [5], [6],
[7]. In this approach, the asset information forms an input to
be introduced to a neural network which outputs the allocation
weights. This paper will focus on the latter approach.

Choosing the market from which to construct the portfolio
is also an important factor. Cryptocurrency is a type of virtual
currency that uses cryptography technology so that it is not
possible to make a counterfeit. The best-known example
of cryptocurrencies is Bitcoin (BTC), which has a market
capitalization of over 800 billion dollars1 and is the highest
market capitalization among other cryptocurrencies. In 2020,
Binance, which is the largest cryptocurrency exchange in terms
of the daily trading volume of cryptocurrencies, introduced
Binance Leverage Tokens (BLVTs), with the first two of them
called BTCUP and BTCDOWN. Those tokens are essentially
tokenized versions of future positions of BTC allocated by
Binance. This investment product lets traders perform hedging
or speculate on BTC’s future price movements (up or down)
and achieve leveraged profits without liquidation risk.

This paper proposes to use an end-to-end machine learning
framework to optimize the Sharpe ratio of a portfolio contain-
ing BTCUP and BTCDOWN. We estimate the price relation of
the two assets and utilize this information to design a loss term
that regulates the model’s bias towards a specific asset. When
combined with the Sharpe ratio, this loss term can enforce
the model to make allocations close to a neutral position and
profit by taking arbitrage in these assets. In the ideal situation,
the portfolio at the neutral position is invariant with respect to
changes in BTCUP and BTCDOWN prices, and this position
is constant over time. However, due to Binance’s proprietary
allocation mechanism that affects the leverage effect and the
trading activity of BLVTs on the market, this position changes
all the time. Hence, our portfolio value can go up or down,
even when we initially bought a portfolio of BTCUP and
BTCDOWN at a neutral position.

This work makes several contributions. First, we study how

1Data reference from https://coinmarketcap.com on April 8, 2022

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 25



2

to construct a portfolio from a pair of BLVTs. Second, we
adopt an end-to-end machine learning framework to allocate
a profitable BLVT portfolio in no-cost and cost-included set-
tings. Finally, we make further improvements to the portfolio
performance by exploiting the negative correlation character-
istic of the BLVTs pair through a custom loss term. To the
best of our knowledge, this is the first work that uses BLVTs
for a portfolio optimization problem.

II. RELATED WORK

Modern portfolio theory [1], or the so-called mean-variance
framework, is widely used to benchmark other portfolio opti-
mization strategies. The goal is to maximize returns at a given
risk level. Its variant, the Global Minimum Variance portfolio
(GMVP) [1], can be constructed by setting the objective
function in the optimization step to the portfolio variance. This
strategy is suitable for risk-averse investors whose focus is on
reducing portfolio risk. Another common benchmark method
is the capitalization-weighted portfolio [8] which is used to
build market indices such as S&P500. In the capitalization-
weighted approach, a large amount of money is distributed
over a small set of high-capital assets, while the low-capital
assets have little contribution to the portfolio performance.
Hence, the diversification of the portfolio is decreased. This
drawback is overcome by the Equal-weighted portfolio (EWP)
[9], in which the total wealth is distributed equally to all assets.
On the other hand, an equally-weighted risk contributions
portfolio [10] implements the idea of having the portfolio
components contribute equal risk. Authors in [10] state that
this method offers a volatility level higher than the GMVP
portfolio but lower than the EWP, allowing a trade-off between
two approaches in terms of the absolute level of risk, risk
budgeting, and diversification.

In the machine learning context, a natural approach for
portfolio optimization is the RL framework since the problem
involves interacting with a market via actions like asset alloca-
tion and received rewards such as portfolio returns. In the work
of [2], the authors explored how the asset allocation problem
can be addressed using the RL method. The experiments
conducted with multiple trading agents showed superior results
over some model-based portfolio optimization strategies. Deep
Portfolio Management (DPM) [3] introduces many improve-
ments to the RL framework in the portfolio optimization
problem. The most important proposal in this work is to use a
neural network architecture that enables sharing of network
weights between different assets. This approach allows the
network to assess an asset based on patterns learned from
other assets. Since the network weights are not specialized to
any asset, this method can update the portfolio’s constituents
or even the size of the portfolio. Going further toward a real-
world trading system, Hierarchical Reinforced trading system
for Portfolio Management (HRPM) [4] is an RL framework
that decomposes the trading process into hierarchical tasks
of portfolio optimization and allocation or trading. In this
framework, each task is associated with a separate policy. The
high-level policy manages the portfolio optimization task that
determines the portfolio weights at a lower frequency, such as

Fig. 1. Rolling correlation of the returns (top) and the prices (bottom) of
BTCUP and BTCDOWN from May 2020 to July 2021. The correlation
window length is 72 hours, and the timeframe between price samples is 1
hour.

days, while the low-level policy operates at a higher frequency
and places limit orders to fulfill goals from the high-level
policy.

In the RL frameworks, the objective function is an expected
cumulative reward, whereas popular risk-adjusted metrics like
the Sharpe ratio [11] cannot be decomposed into immediate
rewards. To be able to use the Sharpe ratio as the optimization
objective, the authors in [5] proposed an end-to-end frame-
work that directly outputs allocation weights from the asset
prices and returns via a Long Short-Term Memory (LSTM).
Risk-based allocation in [7] takes a similar approach. This
method trained a fully connected neural network to output the
allocation of risk contribution and solve the weight allocation
from that risk contribution using an implicit optimization layer
embedded in the neural network. The framework proposed in
[5] has the flexibility to be extended to incorporate different
types of portfolio constraints such as cardinality, leverage, or
maximum position for individual assets by utilizing several
custom neural network layers. Overall, the end-to-end frame-
work is simpler than the RL approach in terms of framework
complexity, and it can be easier to design specialized compo-
nents for a specific problem.

A special case of the portfolio optimization problem is the
portfolio of Binance Leverage Tokens considered in this paper.
Every BLVT is associated with a price called Net Asset Value
(NAV). At this price, the owner can redeem their tokens to
Binance and receive USDT1 back. The NAV is updated based
on the fluctuation in the value of the future position basket
that each BLVT represents. However, the BLVTs can also be
traded in the spot market, where their prices follow around
NAVs. These prices on the spot market also reflect speculation
on the future price movements of the underlying assets in the
futures market. The first available BLVTs are BTCUP and
BTCDOWN. BTCUP aims to generate leveraged gains when
the price of BTC goes up, while BTCDOWN aims to generate
leveraged gains when the price of BTC goes down. From that
property, every pair of UP and DOWN tokens in BLVTs have

1USDT is a stablecoin. This type of cryptocurrency aims to keep cryptocur-
rency valuations stable. USDT pegs the US dollar, so the value of 1 USDT
is very close to 1 US dollar.

26



3

a consistent negative correlation over time. Figure 1 illustrates
this correlation between BTCUP and BTCDOWN.

III. METHOD

This section describes the proposed strategy to construct
a portfolio that consists of two leveraged tokens that are
negatively correlated. In addition, this section presents the
formulation of a novel loss function that is used to optimize a
neural network generating the portfolio reallocation weights.
The proposed loss function consists of two terms. The for-
mer maximizes the Sharpe ratio, while the latter is used to
regularize the network’s bias toward specific assets.

A. Mathematical Formulation

Given an initial amount of capital, an agent allocates all
capital into two assets, denoted as asset A and asset B. At each
time interval, the agent adjusts the amount of the two assets so
that the portfolio contains only asset A and asset B (without
any cash). The allocation of each asset in the portfolio is
restricted to the long-only and budget constraints. The goal is
to design a reallocation strategy that maximizes some portfolio
metrics over time, for example, the Sharpe ratio. We start by
constructing the mathematical formulation for a portfolio of
N assets as in [3]. Later, we restrict N = 2 for our specific
problem. A portfolio of N assets at time t − 1 is associated
with a weight vector

wt−1 = (wt−1,0, wt−1,1, . . . , wt−1,N−1), (1)

which is the relative value of each asset compared to the
portfolio value. At any time t, the long-only constraint is
realized as

wt,i ≥ 0 ∀i ∈ {0, 1, . . . , N − 1}, (2)

and the budget constraint can be written as
N−1∑
i=0

wt,i = 1. (3)

Let denote period [t − 1, t] is the period between time t − 1
and time t. At the beginning of period [t−1, t], the asset price
vector is denoted as

yt−1 = (yt−1,0 , yt−1,1 , . . . , yt−1,N−1), (4)

and the volume vector for the whole period is

vt−1 = (vt−1,0 , vt−1,1 , . . . , vt−1,N−1). (5)

The asset value vector at time t−1, which denotes the absolute
value (monetary value) of N assets, is

at−1 = yt−1 ⊙ vt−1 (6)

where ⊙ is the element-wise multiplication operator. The
portfolio value is pt−1, which is computed by summing over
the absolute value of N assets

pt−1 = 1T
N at−1 =

N−1∑
i=0

yt−1,i vt−1,i, (7)

where 1N is the one-vector of size N .

Reallocation

time

Fig. 2. Illustration of the effect of price change and allocation to the portfolio
quantities. In period [t−1, t], the price of assets in the portfolio changes from
yt−1 to yt, which results in the return vector rt. This price change adjusts
pt−1, at−1, and wt−1 to p′t, a′

t, and w′
t. The price change does not affect

the volume vector vt−1. At the end of period [t − 1, t], the reallocation
activity adjusts the previously mentioned quantities to pt, at, and wt. By the
effect of transaction fee and other fees, the portfolio value p′t is shrunk to pt
by a factor of µt. By the reallocation, the volume vector has a new value.

At the end of period [t − 1, t], before we make any
reallocation, the portfolio value is denoted as p′t, and the asset
price vector is yt. Here we assume that we only reallocate
the portfolio at the end of each period, and asset prices at the
beginning of the incoming period are equal to the prices at the
end of the current period. The asset returns vector in period
[t− 1, t] is

rt = ((yt − yt−1)⊘ yt−1)

=

(
yt,0

yt−1,0
− 1,

yt,1
yt−1,1

− 1, . . . ,
yt,N−1

yt−1,N−1
− 1

)
,

(8)

where ⊘ denotes the element-wise division operator. Right
before making the reallocation in period [t− 1, t], the volume
vector is determined by

vt−1 = pt−1wt−1 ⊘ yt−1, (9)

and the asset value vector is

a′t = yt ⊙ vt−1 = pt−1wt−1 ⊙ (yt ⊘ yt−1) . (10)

Following Eq. (8) and Eq. (10), the portfolio value at time t,
before making reallocation, is

p′t = 1T
N a′t = pt−1

N−1∑
i=1

wt−1,i(1 + rt,i). (11)

The corresponding portfolio weight vector for this portfolio
value is

w′
t =

1

p′t
(yt ⊙ vt−1). (12)

At the end of period [t − 1, t], the agent needs to decide
the weight vector wt for the next period [t, t+ 1] and makes
the reallocation accordingly. This reallocation is executed via
trading on the market, which requires trading fee. The cost
reduces the portfolio value by a shrinkage parameter

µt =
pt
p′t
, (13)

where 0 < µt ≤ 1. If there is no trading fee, the portfolio value
will remain unchanged after the reallocation, which means µt

is 1. Figure 2 summaries the relationship between portfolio
quantities in period [t− 1, t].

27



4

The portfolio return in period [t − 1, t] is computed by
comparing the portfolio value at the start of the current and
incoming periods

Rt =
pt

pt−1
−1 =

µtp
′
t

pt−1
−1 = µt

(
N−1∑
i=0

wt−1,i(1 + rt,i)

)
−1.

(14)
The portfolio return of consecutive periods will be used to
calculate the Sharpe ratio for training the neural networks
model. This return is an essential input to compute other
portfolio performance metrics.

B. Transaction and Management Fee

Transaction fee resulting from portfolio reallocation in the
general case of N assets has no analytical formula [12], but
it can be solved iteratively [3]. In our portfolio optimization
problem, there are only two assets, called A and B, and cash is
not allowed. When trading occurs, exactly one asset needs to
be sold, and all the cash received afterward is used to buy
the other asset. We can find the closed form of shrinkage
parameter using this portfolio properties.

At the end of period [t− 1, t], we need to adjust the weight
vector from w′

t to wt by reallocation. If the new weight for
asset A satisfied

w′
t,A p′t > wt,A pt ⇐⇒ w′

t,A > µt wt,A, (15)

then the allocation for this asset is decreased. In this case, we
need to sell asset A, and the money obtained is used to buy
more asset B. It can be shown that when the portfolio contains
only two assets, the selling condition above is equivalent to
w′

t,A > wt,A. Similarly, asset B is needed to buy more if and
only if w′

t,B < wt,B .
We suppose that at the end of period [t−1, t] the sold asset

is asset A and the bought asset is asset B. When we perform
buying and selling, these actions induce transaction fee. The
change in the portfolio value before and after reallocation
is caused only by these transaction fee. Therefore, the total
trading fee from reallocation is p′t−pt. This cost can be broken
down into the cost associated with selling and buying. We set
the cost rate for selling and buying is equal and is denoted as
0 ≤ c < 1. The cost generated from selling asset A is

c (w′
t,A p′t − wt,A pt) = c p′t (w

′
t,A − wt,A µt). (16)

The change in absolute value after reallocation of the bought
asset B is

wt,B pt − w′
t,B p′t = p′t (wt,B µt − w′

t,B). (17)

However, to account for the trading fee, the buying order is
larger than this value change by a multiple of 1/(1−c). Then,
the cost generated from buying asset B is

c
p′t(wt,B µt − w′

t,B)

1− c
. (18)

The sum of selling cost and buying cost equals the difference
between the portfolio values after and before reallocation

c p′t(w
′
t,A −wt,A µt)+ c

p′t(wt,B µt − w′
t,B)

1− c
= p′t − pt. (19)

Solving µt from this equation, the shrinkage parameter of the
portfolio for reallocation is

µt =
(1− c) + c (w′

t,B − w′
t,A(1− c))

(1− c) + c (wt,B − wt,A(1− c))
. (20)

In case the sold asset is B, and the bought asset is A, we just
need to exchange the index A and B of the weights in Eq.
(20) to obtain the right formula.

BLVTs are also associated with the management fee. This
fee is charged at 00:00 UTC directly on the net portfolio value.
To consider this type of fee, we multiply µt by a multiplier
(1−m) every 24 hours, where 0 ≤ m < 1 is the management
fee rate.

C. Baseline Loss Function

The Sharpe ratio integrates two important aspects of port-
folio performance, that is, profitability and risk, into one
measure. More specifically, it is defined as the excess portfolio
expected return over the portfolio volatility. Since the portfolio
return distribution is unknown, we estimate the Sharpe ratio
with the portfolio return samples. For T trading periods
{[0, 1], [1, 2], . . . , [T − 1, T ]}, the sample mean of portfolio
return is

ER =
1

T

T∑
t=1

Rt, (21)

where Rt is determined by Eq. (14) and the portfolio volatility
is computed by the sample standard deviation of portfolio
returns, which is

σR =

√√√√ 1

T − 1

T∑
t=1

(Rt − ER)2. (22)

The Sharpe ratio, which omits the risk-free rate for simplicity,
is

SRT =
ER

σR
. (23)

In this paper, we train a neural network model, represented
by the function Fθ(·), to output the portfolio weights in an
end-to-end manner [5].

wt = Fθ(xt), (24)

where xt is the market information available at time t. The
Sharpe ratio in Eq. (23) is a function of portfolio weights.
Therefore, it can be used as the loss function for training. We
refer to this approach as the baseline method, which involves
training a neural network model using the negative Sharpe
ratio as the loss function.

LBL = −SRT . (25)

Minimizing this loss function is equivalent to maximizing the
Sharpe ratio. The long-only and budget constraints are fulfilled
by adding the Softmax activation layer as the final layer in the
neural network model.

28



5

D. Neutral Position Constrain

In this section, we form a constrain for the training of neural
networks for the optimal allocation of two tokens: BTCUP and
BTCDOWN. This is based on linear regression to model the
relationship between the price of the two tokens:

yt,u = α+ βmarket yt,d + ϵt, (26)

The terms yt,u and yt,d denote the prices of BTCUP and
BTCDOWN at time t, respectively. The error term ϵt is a
zero-mean random variable with variance of σ2. We assume
that ϵt is independent with yt,d. The coefficients βmarket

and α are unknown parameters. Figure 3 illustrates the price
relationship of two tokens and the corresponding estimated
values of βmarket.

Suppose that in period [t, t + 1], the price of BTCDOWN
changes by ∆yt+1,d to

yt+1,d = yt,d +∆yt+1,d. (27)

Then Eq. (26) implies that

yt+1,u = yt,u +∆yt+1,d β
market + (ϵt+1 − ϵt). (28)

At the beginning of period [t, t + 1], we hold a portfolio
of BTCUP and BTCDOWN with volumes vt,u and vt,d ,
respectively. The portfolio value at time t is

pt = yt,u vt,u + yt,d vt,d. (29)

The portfolio value at the end of the period [t, t+1] just before
the portfolio reallocation is

p′t+1 = yt+1,u vt,u + yt+1,d vt,d

= pt + (βmarket vt,u + vt,d)∆yt+1,d + vt,u ∆ϵt+1,
(30)

where ∆ϵt+1 = ϵt+1 − ϵt.
Our regularization strategy is based on the idea that the

value of the portfolio at t + 1 just before the portfolio real-
location, p′t+1, is immune for changes in yt+1,d. In this way,
our strategy is not dynamically dependent on instantaneous
changes in the token prices, but is static. To exclude the second
term in Eq. (30), which captures the dependency on yt+1,d,
we set

vt,d
vt,u

= −βmarket. (31)

This does not guarantee that p′t+1 = pt as ϵt+1−ϵt has certain
variance, and for that reason, the portfolio value can change
due to the residual component. However, assuming that ϵt+1

does not correlate with yt+1,d, this strategy minimizes the
influence of ∆yt+1,d on the ∆p′t+1 = p′t+1 − pt.

We call the weight values that satisfy Eq. (31) the neutral
weights and denote them as w∗

t,u, and w∗
t,d. Then by rewriting

the volumes in terms of portfolio weights, we get

w∗
t,d

w∗
t,u

= −βmarket

(
yt,d
yt,u

)
. (32)

Suppose we explicitly set the portfolio weights to neutral
weights in every period. In that case, the portfolio has no
bias toward specific assets and is neutral regarding asset price
change. One can expect the portfolio value to be stable in the

Fig. 3. Scatter plot and ordinary least squares linear regression line of the
prices of BTCUP and BTCDOWN. In each plot, the prices are sampled every
1 hour and there are 48 samples. Even though the price relation is a straight
line, simple linear regression does not fit well in some cases.

successive trading period, and the maximum drawdown over
the long term will be low. This strategy resembles the GMVP
strategy because both aim to minimize portfolio volatility.
However, when using the above analysis instead of GMVP,
we directly exploit the linearity relation of a pair of BLVTs.

To compute the value of these neutral weights, we estimate
the value of βmarket using the ordinary least squares method
using data from the K most recent period. Then

ŵt,d

ŵt,u
= −β̂market

t

(
yt,d
yt,u

)
, (33)

where β̂market
t is the estimate at time t of βmarket, and ŵt,d,

and ŵt,u are the estimates of w∗
t,d, and w∗

t,u, respectively. Eq.
(33), together with the budget constraint, determines the value
of ŵt,u, and ŵt,d.

E. Variance-controlled Loss Terms

Controlling the neutrality of a portfolio has some benefits.
First, gearing the portfolio towards neutral position will lower
directional risk, hence possibly improving the Sharpe ratio.
Second, reducing the network’s bias toward a specific assets
can reduce portfolio lost in case the asset has worse per-
formance compare to its past. Finally, the region around the
neutral weights by a margin will always contain some weight
values that the model can make profits or at least preserve
the portfolio value. If we encourage model outputs to be in
this region, it might be easier for the network to learn how
to take profits rather than searching from random portfolio
weight values.

To control the neutrality of the portfolio, we first rewrite
the approximate portfolio variance

Var[p′t+1] ≈ (βmarket vt,u + vt,d)
2 Var[∆yt+1,d]

= v2t,u(β
market − βmodel

t )2 Var[∆yt+1,d],
(34)

where
βmodel
t = − vt,d

vt,u
= −yt,u wt,d

yt,d wt,u
(35)

29



6

Here βmodel
t is a parameter computed from model allocation

weights. At training time, we use the estimate β̂market
t for

βmarket. Our purpose is to constrain the variance via the term
(βmarket

t − βmodel
t )2 within a margin

(βmarket
t − βmodel

t )2 ≤ (γβmarket)2

⇐⇒ (1 + γ)βmarket ≤ βmodel
t ≤ (1− γ)βmarket

t .
(36)

This condition is equivalent to{
C1 = βmodel

t − (1 + γ)βmarket
t ≥ 0

C2 = (1− γ)βmarket
t − βmodel

t ≥ 0.
(37)

where γ ≥ 0 is the parameter that controls the degree of
neutrality of the portfolio. We design the following loss terms
that take the form of hinge loss

A1(wt; γ) = max(0,−C1 C2), (38)

and

A2(wt; γ) = max(0,−C1)
2 +max(0,−C2)

2. (39)

These two loss terms will only penalize the model when the
βmodel
t lies outside the constrained region. When βmodel

t lies
in the range defined in Eq. (36), the two loss terms will vanish.
Otherwise, the penalized terms will be equal to the following
positive terms

A1(wt; γ) = −C1C2, (40)

and

A2(wt; γ) =

{
C2

1 if C1 < 0,

C2
2 if C2 < 0.

(41)

We have conducted experiments where we train the neural
network with loss functions that is the negative Sharpe ratio
combined with A1(wt; γ) or A2(wt; γ). The obtained Sharpe
ratios are significantly lower than the baseline. We suspect
that the model output in a fraction form wt,d/wt,u in the
proposed loss terms may cause difficulty for the model to learn
the optimal allocation. We solve this problem by multiplying
the proposed loss terms with square BTCUP volume v2t,u to
eliminate the fraction form and observe better results. The final
forms of the proposed loss terms are

HL1(wt; γ) = v2t,u A1(wt; γ)

= max
(
0,−v2t,u C1 C2

)
,

(42)

and

HL2(wt; γ) = v2t,u A2(wt; γ)

= max(0,−vt,u C1)
2 +max(0,−vt,u C2)

2.
(43)

The proposed loss function is the negative Sharpe ratio,
combined with the variance-controlled loss terms

L1 = −SRT + ξ
1

T

(
T∑

t=1

HL1(wt; γ)

)
, (44)

and

L2 = −SRT + ξ
1

T

(
T∑

t=1

HL2(wt; γ)

)
, (45)

TABLE I
DATA RANGE FOR TRAINING AND TESTING.

Train data range Test data range

Period 1 2020-05-15 00:00 to 2021-07-03 23:00 2021-07-04 00:00 to 2021-09-01 23:00
Period 2 2020-05-15 00:00 to 2021-09-01 23:00 2021-09-02 00:00 to 2021-10-31 23:00
Period 3 2020-05-15 00:00 to 2021-10-31 23:00 2021-11-01 00:00 to 2021-30-12 23:00

where ξ is the parameter that controls the effects of the
additional loss terms. We define the proposed methods as
training a machine learning model that uses the proposed loss
functions L1 or L2.

IV. DATASETS AND EVALUATIONS

In this section, we present empirical experiments on the
baseline and proposed methods. Before that, details about the
dataset, model architecture, feature selection, and hyperparam-
eters setting are described.

A. Dataset Description

We pulled the 1-hour timeframe of OHLCV data of three
assets with tickers name BTCUSD (BTC), BTCUPUSDT
(BTCUP), and BTCDOWNUSDT (BTCDOWN) using Bi-
nance API. OHLCV is an aggregate form of market data
standing for Open, High, Low, Close, and Volume. The entire
dataset spans 19 months and starts from the introduction of
BTCUP and BTCDOWN. The data is split following the
forward validation split scheme, where the previous training
and the test dataset are merged to form a new training dataset.
The new test dataset is the data available right after the new
training dataset. In our experiment, we use three test datasets.
A summary of the data range in training and testing is shown
in Table I. The test periods are selected so that all have a
duration of two months and try to cover different price trends
of BTC. In the first and second periods, BTC has an uptrend
price movement, whereas BTC lost about 25% of its value in
the third period.

B. Model Architecture and Feature Selection

The input features for the neural network are derived from
OHLCV data and return data for all the assets in the portfolio.
Returns for individual assets are computed from the closing
prices of two sequential periods, as defined in Eq. (8). Given
the heterogeneity in price and volume ranges among assets,
we apply normalization for all data, including returns. For
each type of data, the mean and standard deviation in Lnorm

consecutive periods are computed, and these statistics are then
used to perform the z-score normalization for the successful
Lnorm periods. This forwarding normalization scheme guaran-
tees that information from the future does not flow backward
in time.

After normalization, the feature of each ticker is organized
into a matrix where the columns are concatenated from the
OHLCV and return features. The features of the three assets
are combined along the column dimension. Figure 4a visual-
izes the input feature. To estimate the portfolio weights wt,

30



7

Open Low CloseHigh Volume Return

Open Low CloseHigh Return

BTC feature

BTCUP or BTCDOWN feature

(a) Feature selection

LSTM

FCN with Softmax

Output: BTCUP and
BTCDOWN weights

Loss function

BTC BTCUP BTCDOWN

Market
information

(b) Model architecture

Fig. 4. In (a), the elements of feature matrices are the z-score normalization
data. (b) shows the forward computation of the model and its structure. The
market information are the BTCUP and BTCDOWN close prices, their future
returns, and βmarket

t .

the model uses a lookback window containing data from the
most recent L periods, including period [t− 1, t].

Our choice of network is a Long Short-Term Memory
(LSTM) [13] with one layer and the hidden feature size of
64, followed by a fully connected layer with the Softmax
activation function. While there exist numerous specialized
network architectures, such as [14], [15], [16], [17], [18], [19],
proposed for the purpose of financial forecasting, our choice
leans towards LSTM (Long Short-Term Memory). This is
primarily due to its robust validation through extensive testing
in portfolio optimization [5]. Figure 4b summarizes the model
architecture.

C. Experiment Protocols

We perform a hyperparameter search using the following
parameters. The batch size is selected from the set
{64, 128, 256, 512}, while the number of epochs ranged
between 80 and 140 in increments of 20. We use Adam
optimizer [20] and a cosine annealing learning rate scheduler
[21] with the start learning rate chosen from the set
{1e-5, 3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3}. The weight decay
is chosen from {0.0, 1e-4, 3e-4, 5e-4, 1e-3}. The value
of γ is chosen from the set {0.0, 0.1, 0.2, . . . , 1.0}.
The parameter ξ is selected from the set
{1e-6, 3e-6, 5e-6, 1e-5, 3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3}.
We conduct experiments under both fee-included and no-fee
configurations. In the no-cost scheme, µt is set to 1, and no
management fee is imposed. Conversely, the cost-included
scheme incorporated the Binance trading fee for BLVTs,
setting the trading fee rate c at 0.075%, and the daily
management fee m at 0.01%. Lastly, the length of the
normalization window is fixed at Lnorm = 12 and the
number of periods used to estimate βmarket and the length
of the lookback window is fixed at L = K = 48.

Due to the random initialization of the model parameters,
the performance of the trained models differs for each training
session. Each parameter configuration is run five times, and
the reported metric is the mean and standard deviation of the
average Sharpe ratio over three testing periods across five runs.

D. Experimental Results

We compare our proposed methods with the baseline
method (NS). The proposed methods are presented under the
name SVC1 for model training with loss function L1, and
SVC2 for loss function L2. We also include other benchmark
methods for a comprehensive comparison. The Neutral-Weight
Portfolio (NWP) involves the allocation of estimated neutral
weights as outlined in Eq. (33). The Equal-Weight Portfolio
(EWP) [9] uniformly distributes weights between BTCUP and
BTCDOWN for each allocation period. The Global Minimum
Variance Portfolio (GMVP) [1] determines optimal weights
that minimize the estimated return covariance matrix, using
a window length of 48 hours for estimation. Finally, the
performance of the underlying cryptocurrency of BTCUP and
BTCDOWN, which is BTC, will be presented for reference.
For holding BTC, the performance when the trading fee and
management fee are included does not affect the portfolio
performance since we do not conduct any trading, and holding
BTC is not required the management fee.

The findings presented in Table II indicate that our proposed
methods enhance the performance of the baseline method in
most cases. Other strategies such as NWP, EWP, and GMVP
yield Sharpe ratios near zero, underscoring the advantages of
deploying neural network-based methods over conventional
ones. The performance of BTC is much lower than the perfor-
mance of neural network-based methods because the profits of
BTC gains in the first and second periods are eroded by the
downtrend price movement in the third period, while the neural
network-based methods can put more weight on BTCDOWN
to speculate on the decreasing BTC price. Therefore, these
results show the benefit of holding a pair of BLVTs over the
underlying asset.

In Tables III, and IV, we choose the median result in
the 5 runs to show a breakdown of the performance of
all methods over three testing periods to observe how each
method performs in different market situations. In addition,
the final accumulated portfolio value (fAPV) is presented as a
profitability metric. We set the initial portfolio value to 1. Then
the fAPV will reflect the accumulated return over each testing
period. The Maximum Drawdown (MDD) is also considered
to highlight the risk associated with each method.

These tables show that the NWP, EWP, and GMVP methods
usually have the lowest MDD in all test periods, whether
the trading and management fee are considered. While these
methods are effective in reducing portfolio risk, they do so
at the expense of portfolio profitability. The fAPVs of these
methods show that they can only preserve the original portfolio
value and cannot make profits. The Sharpe ratios from the
proposed methods outperform the baseline method in mostly
every period in different settings. When BTC loses one-fourth
of its value in the third period, the proposed methods can
profit and achieve a higher Sharpe ratio than both BTC and
the baseline method.

31



8

TABLE II
AVERAGE SHARPE RATIO OVER THREE TESTING PERIODS.

NS SVC1 (proposed) SVC2 (proposed) NWP EWP GMVP BTC

No fee 0.033 ± 0.008 0.035 ± 0.005 0.033 ± 0.004 -0.005 0.004 -0.001 0.012
Fee included 0.030 ± 0.007 0.033 ± 0.003 0.032 ± 0.002 -0.008 -0.003 -0.010 0.012

TABLE III
EXPERIMENT RESULTS WITH NO TRADING FEE AND MANAGEMENT FEE.

Period 1 Period 2 Period 3
Sharpe fAPV MDD Sharpe fAPV MDD Sharpe fAPV MDD

NS 0.040 1.338 0.147 0.034 1.385 0.221 0.029 1.258 0.218
SVC1 0.079 1.878 0.142 0.033 1.401 0.220 -0.010 0.855 0.398
SVC2 0.056 1.299 0.060 0.043 1.438 0.167 0.002 0.973 0.329
NWP 0.003 1.007 0.050 -0.016 0.956 0.053 -0.001 0.995 0.053
EWP -0.006 0.983 0.077 -0.009 0.972 0.088 0.026 1.057 0.038
GMVP -0.004 0.991 0.038 -0.017 0.958 0.054 0.019 1.035 0.033
BTC 0.041 1.419 0.156 0.024 1.220 0.231 -0.028 0.754 0.335

TABLE IV
EXPERIMENT RESULTS WITH TRADING FEE c = 0.075% AND DAILY

MANAGEMENT FEE m = 0.01%

Period 1 Period 2 Period 3
Sharpe fAPV MDD Sharpe fAPV MDD Sharpe fAPV MDD

NS 0.075 1.939 0.097 0.017 1.189 0.311 -0.005 0.848 0.472
SVC1 0.074 1.891 0.123 0.025 1.319 0.319 0.003 0.995 0.214
SVC2 0.075 1.862 0.113 0.026 1.324 0.323 -0.005 0.868 0.459
NWP 0.000 0.998 0.050 -0.019 0.948 0.056 -0.005 0.987 0.056
EWP -0.012 0.965 0.087 -0.015 0.954 0.094 0.018 1.038 0.039
GMVP -0.013 0.973 0.046 -0.025 0.940 0.069 0.009 1.016 0.034
BTC 0.041 1.419 0.156 0.024 1.220 0.231 -0.028 0.754 0.335

V. CONCLUSION

This work adopts the approach of using deep learning for the
portfolio optimization problem with the Sharpe ratio as the loss
function. A pair of BLVTs is chosen to construct a portfolio to
benefit from their consistent negative correlation. The portfolio
contains only two assets that allow us to investigate the neutral
position of the portfolio using simple mathematical analysis.
Additional loss terms are designed to control the neutrality
of the portfolio. We compare the proposed methods with the
baseline and other non-learning approaches. Experimental re-
sults show that holding a portfolio containing a pair of BLVTs
is superior to holding only the underlying asset, especially for
a high-volatility market like cryptocurrency. In addition, the
proposed methods show their effectiveness in improving the
baseline method and gaining the best results compared to other
methods in all different settings.

REFERENCES

[1] H. Markowitz, “Portfolio Selection,” The Journal of Finance, vol. 7,
no. 1, pp. 77–91, 1952, publisher: [American Finance Association,
Wiley]. [Online]. Available: https://www.jstor.org/stable/2975974

[2] A. Filos, “Reinforcement Learning for Portfolio Management,” Sep.
2019, arXiv:1909.09571 [cs, q-fin, stat] version: 1. [Online]. Available:
http://arxiv.org/abs/1909.09571

[3] Z. Jiang, D. Xu, and J. Liang, “A deep reinforcement learning frame-
work for the financial portfolio management problem,” arXiv preprint
arXiv:1706.10059, 2017.

[4] R. Wang, H. Wei, B. An, Z. Feng, and J. Yao, “Commission Fee
is not Enough: A Hierarchical Reinforced Framework for Portfolio
Management,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 1, pp. 626–633, May 2021, number: 1. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/16142

[5] Z. Zhang, S. Zohren, and S. Roberts, “Deep learning for portfolio
optimization,” The Journal of Financial Data Science, vol. 2, no. 4,
pp. 8–20, 2020, publisher: Institutional Investor Journals Umbrella.

[6] C. Zhang, Z. Zhang, M. Cucuringu, and S. Zohren, “A Universal
End-to-End Approach to Portfolio Optimization via Deep Learning,”
Nov. 2021, arXiv:2111.09170 [q-fin]. [Online]. Available: http:
//arxiv.org/abs/2111.09170

[7] A. S. Uysal, X. Li, and J. M. Mulvey, “End-to-End Risk
Budgeting Portfolio Optimization with Neural Networks,” Jul. 2021,
arXiv:2107.04636 [q-fin]. [Online]. Available: http://arxiv.org/abs/2107.
04636

[8] J. C. Hsu, “Cap-Weighted Portfolios are Sub-Optimal Portfolios,”
Social Science Research Network, Rochester, NY, SSRN Scholarly
Paper 647001, Dec. 2004. [Online]. Available: https://papers.ssrn.com/
abstract=647001

[9] V. DeMiguel, L. Garlappi, and R. Uppal, “Optimal Versus Naive
Diversification: How Inefficient is the 1/N Portfolio Strategy?” The
Review of Financial Studies, vol. 22, no. 5, pp. 1915–1953, May 2009.
[Online]. Available: https://doi.org/10.1093/rfs/hhm075

[10] S. Maillard, T. Roncalli, and J. Teı̈letche, “The Properties of
Equally Weighted Risk Contribution Portfolios,” The Journal of
Portfolio Management, vol. 36, no. 4, pp. 60–70, Jul. 2010,
publisher: Institutional Investor Journals Umbrella. [Online]. Available:
https://jpm.pm-research.com/content/36/4/60

[11] W. F. Sharpe, “The Sharpe Ratio,” The Journal of Portfolio Management,
vol. 21, no. 1, pp. 49–58, Oct. 1994, publisher: Institutional Investor
Journals Umbrella Section: Primary Article. [Online]. Available:
https://jpm.pm-research.com/content/21/1/49

[12] M. Ormos and A. Urbán, “Performance analysis of log-optimal portfolio
strategies with transaction costs,” Quantitative Finance, vol. 13, no. 10,
pp. 1587–1597, 2013, publisher: Taylor & Francis.

[13] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Oct. 1997, conference Name:
Neural Computation.

[14] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj,
and A. Iosifidis, “Forecasting stock prices from the limit order book
using convolutional neural networks,” in 2017 IEEE 19th conference on
business informatics (CBI), vol. 1. IEEE, 2017, pp. 7–12.

[15] D. T. Tran, M. Magris, J. Kanniainen, M. Gabbouj, and A. Iosifidis,
“Tensor representation in high-frequency financial data for price change
prediction,” in 2017 IEEE Symposium Series on Computational Intelli-
gence (SSCI). IEEE, 2017, pp. 1–7.

[16] D. T. Tran, A. Iosifidis, J. Kanniainen, and M. Gabbouj, “Tempo-
ral attention-augmented bilinear network for financial time-series data
analysis,” IEEE transactions on neural networks and learning systems,
vol. 30, no. 5, pp. 1407–1418, 2018.

[17] D. T. Tran, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Data-driven
neural architecture learning for financial time-series forecasting,” arXiv
preprint arXiv:1903.06751, 2019.

[18] D. T. Tran, N. Passalis, A. Tefas, M. Gabbouj, and A. Iosifidis,
“Attention-based neural bag-of-features learning for sequence data,”
IEEE Access, vol. 10, pp. 45 542–45 552, 2022.

[19] D. T. Tran, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Data normal-
ization for bilinear structures in high-frequency financial time-series,”
in 2020 25th International Conference on Pattern Recognition (ICPR).
IEEE, 2021, pp. 7287–7292.

[20] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
Dec. 2014. [Online]. Available: https://arxiv.org/abs/1412.6980v9

[21] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

32


