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Abstract— A complex system that is governed by several 

smaller sub-systems whose coordinated functionality allows it to 

work properly over time can be challenging to analyze for faults 

on real time by an observer; moreover, if such failing system 

could work with no obvious signs of fault over time until it 

becomes catastrophic and clearly identifiable. Because the 

variables involved in such system’s functionality are usually not 

easily correlated, the different time-series they might generate 

can be extremely difficult to analyze by conventional means. 

Lately, 2-dimensional Convoluted Neural Networks (2D-CNN) 

have been used to introduce artificial intelligence into diagnosis 

and fault detection with success; however, the systems that so 

far have benefited from this are mainly those that deal with 

images, like medical diagnosis using x-ray images, or 

autonomous driving using real time pictures, although recently, 

some resent research on robotic sensor fault and signal analysis 

have been published using 1-dimensional CNN (1D-CNN) for 

time-domain signals. 

This paper proposes a novel 2D-CNN approach to fault 

identification of an unknown, discrete-time, non-linear system; 

by recognizing features that are consistent with a fault in a 

signal-image of several layers. With such signal-image being an 

artificial picture created by combining all the system signals in 

a single high-layered image format that is recognizable by a 

conventional 2D-CNN. 

This paper also includes the results of its applicability in a 

fault identification of a three-phase induction motor in a 

simulation environment and with measurements of a real motor 

with injected faults.  

Keywords—deep learning, fault identification, fault 

prediction, applied artificial intelligence. Convolutional neural 

networks non-linear systems. 

I. INTRODUCTION 

According to Bloch and Geitner in [1], machinery faults 

reveal a reaction chain of cause and effect, whose end is a 

performance deficiency. Such causes can by of several types 

like disturbances, uncertainties, erosion, over charge, fatigue, 

and even malicious intent. Once a fault has occurred, a 

process of collecting and analyzing data is started to 

determine the root cause of such fault; this process is known 

as failure analysis (FA) and it is applied in a wide variety of 

areas that range from geology, medicine, engineering to 

electronics and marketing, to mention a few. The very first 

step of the FA procedure is to determine preliminary fault 

mode, as Brady states in [2]. This means that for failure 

analysis to take place, the fault must be first clearly identified. 

Artificial Intelligence (AI) is increasingly applied in fault 

identification in a wide variety of problems, and more 

recently Deep Learning (DL) approach have been used for 

the prediction of different types of faults that can be related 

to object recognition, first proposed by Fukishima in his 

Neocognitron as a pattern recognition mechanism in [3] and 

then later applied to object recognition by LeCun in [4]. From 

there, more recent applications have been successfully 

implemented as a form of fault recognition, like the one 

shown by Shang et. al [5] in there, DL is used to recognize 

log patterns to detect early warning signals of IT systems 

fault. Or the one in [6] in where Shaheen & Hakan proposes 

a CNN to identify fractures in the Anatolian plate. Another 

AI-based approach for diagnostics is offered by Sadoughi et 

al [7] where they use a 1-Dimensional multichannel CNN to 

classify the condition of the bearing of a rotating machinery 

system. Additionally, Pan proposed a Deep CNN solution for 

sensor and actuator fault diagnosis [8] using a 1D-CNN as a 

fault diagnosis framework. 

In the medicine field, CNN application is even more widely 

spread, like the work of Park et al in [9] in where a CNN is 

successfully implemented to diagnose appendicitis in patients 

using CT scan images. Or the approach proposed by Yadav 

and Jadhav in [10] in which a Deep CNN is used to diagnose 

pneumonia. 

In the other hand, resiliency for artificial systems has caught 

the attention of scientists. In that direction, Rieger et al [1] 

defines a resilient system as one that maintains an accepted 

level of operational normalcy in the presence of faults. 

Recently, model-free control systems based on AI have been 

successfully applied for resilient control, like the one 
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presented by Alanis in [11]. Such model implemented a 

recurrent high order neural network (RHONN) for output 

trajectory tracking and to allow an inductor motor to function 

with relative normalcy even in the presence of a sensor fault. 

To be able to either diagnose a fault, root cause it, predict it 

or control a system on its presence, some form of fault 

identification needs to be implemented. For simple systems 

when the presence or absence of any given signal represent a 

fault, this step might seem trivial; however complex systems 

may have signals ranging within expected boundaries and 

present only intermittent peaks or valleys that implies an 

imminent fault but are difficult to catch on a real time basis, 

like peaks on glucose levels on a non-diagnosed diabetic 

person; such signals are clearly an early warning of a 

diagnose but standard single-time-point measurements are 

very limited to catch it due to the fact that they neglect 

glucose dynamics [12]. Even more, a system may have 

multiple signals to be between boundaries but their dynamics 

might be off, thus setting the system enroute to a fault 

scenario, like for example the complex system of an Fuse 

Deposition Modeling (FDM) 3D-printer in which the 

extruder temperature and bed temperature might be in range, 

as well as the stepping motors might be correctly aligned in 

between them but a seemingly normal cooling fan might be 

not providing enough cool air to the nozzle and ends up 

building a clough in the material after several hours of 

printing [13]. 

From the above literature review we can see that for complex 

systems in whose subsystem signal dynamics are strongly 

intertwined, single-time fault identification forms might be 

too limited to prevent a catastrophic fault. Our proposed 

methodology is motivated by previous works and their 

successful results. This paper implements an AI approach 

using a 2D-CNN structure that unlike other stablished 

methods, considers all the available subsystem signals over a 

significant operational period and their intertwined dynamics 

to identify a possible fault. The model explicitly recognizes 

the features that appear on a system`s dynamic during 

training and classify any given sample as either a fault or non-

fault. 

According to above, the main contributions of this paper can 

be defined as follows: 

1. Our work proposes a neural model for fault 

identification of several intertwined signals and 

their dynamics. 

2. This model proposes the use of conventional 2D-

CNN solution to create a signal-image that allows 

for artificial creation of a “picture” that allows the 

CNN to recognize dynamics by feature recognition, 

much like they recognize any given object.  

3. The applicability of this model is shown by 

simulation training and experimental results are 

shown using real inductor motor signals. 

This paper is organized as follows: 
Section 2 analyze the problem statement of this paper. 

Section 3 describes the proposed methodology for the design 
of a neural model for fault identification with a 2D-CNN 
approach. Section 4 presents the simulation results for an 

induction motor application. Section 5 shows the results of the 
proposed methodology applied on a real inductor motor. 
Finally in Section 6 conclusions are stated and future work is 
listed 

II. PROBLEM STATEMENT 

In [11], Alanis considers a discrete-time unknown non-

linear system, given by 

𝑥(𝑘 + 1) = 𝐹(𝑥̅(𝑘), 𝑢̅(𝑘)) + 𝑑(𝑘), 

𝑦(𝑘) = 𝐶𝑥̅(𝑘), 
(1) 

where 𝑥 ∈  ℛ𝑛 is the state vector of the system, 𝑢 ∈  ℛ𝑚 is 

the input vector, 𝑦 ∈  ℛ𝑝 is the output vector, 𝐶 is the 

output matrix, 𝑑(𝑘) is the disturbance vector, and 𝐹(∗) is a 

smooth vector field with 𝐹𝑖(∗) being its entries; therefore we 

can define (1) as follows: 

 

𝑥(𝑘) = [𝑥1(𝑘) … 𝑥𝑙(𝑘) … 𝑥𝑛(𝑘)]𝑇 

𝐹(𝑘) = [𝐹1(𝑘) … 𝐹𝑙(𝑘) … 𝐹𝑛(𝑘)]𝑇 

𝑑(𝑘) = [𝑑1(𝑘) … 𝑑𝑙(𝑘) … 𝑑𝑛(𝑘)]𝑇  

𝑥𝑖(𝑘 + 1) = 𝐹𝑖(𝑥̅(𝑘), 𝑢̅(𝑘)) + 𝑑(𝑘), 𝑖 = 1, … , 𝑛. 

𝑦(𝑘) = 𝐶𝑥(𝑘), 
(2) 

with 

𝑥̅(𝑘) = 𝑥(𝑘) + Δ𝑥 , 
𝑢̅(𝑘) = 𝑢(𝑘) + Δ𝑢 , 

 

where Δ𝑥  and Δ𝑢  represent state and input uncertainties 

respectively and they are considered unknown and bounded. 

A Schematic representation of (1) can be appreciated in Fig. 

1: 

 
Fig 1. Schematic representation of a discrete-time nonlinear system with disturbances 

at the state and at the input. 

 

For fault detection purposes, the intrinsic values of the output, 

input and state vectors and their internal dynamics of system 

(1) can result in only two possible outcomes: fault or non-

fault, which can be expressed as a classification problem 

described by 

 

 𝐺(𝑥𝑖(𝑘 + 1), 𝑦(𝑘)) =  {
𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝐺(∗) ∈ 𝑆

𝑛𝑜𝑛 − 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝐺(∗) ∉ 𝑆
 

(3) 

where 𝐺(∗) represents the dynamics governing all the signals 

of system (1) and S is the subset of all possible fault modes. 

Because for a given discrete-time nonlinear system might be 
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too difficult to entirely define S, this subset is considered only 

partially known. 

 

To be able to identify a fault scenario in system (1) using the 

dynamics shown by (3) it is necessary for the following 

assumptions to be true: 

Assumption 1.- The full state 𝑥(𝑘) =
[𝑥1(𝑘) … 𝑥𝑙(𝑘) … 𝑥𝑛(𝑘)] of system (1) is available. 

Assumption 2.- There exists a data-structure in the dynamics 

of (3) that can be identified as features in a multidimensional 

array. 

If the above assumptions are met, then we can say that it is 

possible to identify a fault scenario in system (1) by 

combining all signal inputs in a multidimensional array, or a 

t third order tensor given by:  

 

𝒜𝑙𝑚𝑛 ,   
𝑙, 𝑚 =  1, … , 𝑟 

𝑛 =  1, … , 𝑣 

(4) 

 

where 𝑟 represents the total measurements taken from system 

(1) of any given signal and 𝑣  represents the total signals 

available for that same system.  

This representation allows us to present tensor data in slices 

as defined by Newman et al in [14] and shown in Fig. 2: 

Fig 2. Graphic representation of A Tensor and the frontal data slicing 

 

III. TWO-DIMENSONAL CONVOLUTIONAL NEURAL NETWORK 

APPROACH 

The format of the data shown in Figure 2(b) will be referred 

as signal-image and it is suitable to be used with an standard 

2D-CNN methodology like the one shown in [4] to recognize 

an object which, in this paper is the fault; and in order to do 

so, the network will recognize features which in this case are 

the dynamics of the signals of system (1). 

 

This approach differs from the methodology using 1D-CNN 

shown in previous research; the main difference is that 1-

dimensional convolution samples all the inputs with the same 

kernel to create an output matrix, much like the one shown in 

Fig. 3.  

 

Therefore, when using 1-D CNN any single signal sampling 

is limited to the size of the kernel, and since modern literature 

like the one written by Goodfellow et al. in [15] defines 

standard kernel size for CNN to be values of 3x3 or 5x5 in 

some cases, this could limit the ability of the solution to 

obtain features of a complex dynamic system, especially 

when high number of inputs are involved. Another reason to 

use 2D-CNN is because by using front slices like the ones 

shown in Fig. 2(b), all of the inputs are separated as 

independent layers and convoluted among their own time-

series, which allows to include more sensors and intertwined 

dynamics simply by adding more layers to the input. 

 
The schematic representation of the proposed solution is 

shown in Fig. 4. 

Fig 3. Convolution representation of a 1-dmensional CNN 

 

 
Fig 4. Schematic Diagram of the 2D-CNN approach for fault identification of a 

discrete-time nonlinear system 

 
 

IV. SIMULATION RESULTS 

For this section, the simulation of an inductor motor like 
the one shown in Figure 5 where used. Data simulated 
corresponds to the well-known Clarke’s transformation for a 
three-phase induction motor [16] and the data extracted for 
fault identification correspond to 9 signals of the complete 
model:  

Timestamp for the simulation (t), rotor position (pos), 

angular velocity (𝜔),  stator alpha-flux (𝜓𝛼), stator beta-

flux (𝜓𝛽), stator alpha-current (𝑖𝛼), stator beta-current, 𝑣𝛼.-  
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stator alpha-voltage, 𝑣𝛽.- stator beta-voltage  

                            (5) 
 

Simulation allows to inject several fault modes into the 
motor model in a safe environment; and for this case more 

than 𝟕𝟖𝒙𝟏𝟎𝟑
samples were considered to simulate as much 

as possible the motor state-vector space that includes normal 
operation as well as several injected types of faults.  

Fig. 5 shows the Simulink model and Fig. 6 shows a small 
sample of the simulated states. 

                           Fig. 5. SIMULINK model of a three-phase motor 

Fig 6. Three-phase motor simulated data extraction. 
 

After extracting the simulation results, they were classified 
as stated in (3) and then used to train and validate the proposed 
2D-CNN model shown in Figure 4. For the experiment to take 
place, the following configuration of our novel 2D-CNN 
model for fault identification is shown in Table I. 

TABLE I.  MODEL CONFIGURATION 

Configuration Parameter Value 

Signal-Image Size 25 

Signal-Image Dimensional layers 9 

First Convolutional layer feature layers 32 

Second Convolutional layer feature layers 64 

Third Convolutional layer feature layers 128 

Kernel size for all layers 3 

Max-pooling size for all layers 2 

Perceptron First layer size 128 

Perceptron hidden layer size 64 

Batch Size 100 

Epochs 20 

Training data set 90% 

Validating data set 10% 

 

After running the experiment for a training and validating 
cycle of 20 epochs, the final loss achieved was 0.2121, and 
validation resulted in an accuracy of 0.8, the numeric results 
are shown in Fig. 7(a) and the training loss is presented in Fig. 
7(b). 

                                              Fig 7(a).Simulation results. 
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   Fig 7(b). Training and validation results 

 

To verify the stability of the network, a Monte Carlo 
experiment run of 20 cycles was performed on the training and 
the result was an average Loss of 0.2 which is shown in Fig. 
8. 

 

Fig 8. Monte Carlo results for training Loss. 
 

V. REAL SCENARIO  RESULTS 

After simulation results are obtained, the trained model was 

used in a real-time scenario with data taken from a real 

induction motor like the one shown in Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 
Fig 9. Physical induction motor for the experiment. 

 

For this case more than 𝟏𝟔𝒙𝟏𝟎𝟑 samples were considered, 

and they include normal operation as well as some real faults. 

Fig. 10 shows a small sample of the simulated states. 

 
Fig 10. Three-phase motor data measurements sample. 

 

 

The proposed model of Fig. 4 that was trained with 

simulation data is now tested with the real measurements and 

the result was an average testing accuracy of 0.6427. 

 

Finally, to check the stability of our proposed novel model 

over time, a Monte Carlo experiment run of 100 cycles of 

complete training, validating, testing phases was performed, 

and the results are listed in Table II and presented in Fig. 11. 
 

TABLE II.  ACCURACY RESULTS 

Accuracy Simulation 

Data 

Real 

scenario data 

Maximum 0.8750 0.6350 

Minimum 0.6531 0.4731 

Average 0.7450 0.6427 

 

 Fig 10. Monte Carlo experiment of 100 cycles of training-validating-testing of the 

2D-CNN Model for fault identification 

 
 

VI. RESULTS DISCUSSION AND CONCLUSIONS 

In this work, a novel 2-dimensional CNN approach for fault 

identification of an unknown non-linear discrete system was 

presented. The model was then configured for a three-phase 

inductor motor system in both simulation and real 
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environments showing good training loss and fault 

identification accuracy results in a simulation scenario and 

with real-time measurements. Furthermore, the model was 

tested for stability using Monte Carlo experiments and 

showed to be a stable solution for the problem statement of 

this paper, with simulation and real time accuracy variance 

~20 % with only one of the cycles performing significantly 

lower than the random accuracy of 0.5 in the real data 

scenario and few valleys in accuracy with real data found 

across the results shown in Figure 12. 

The resulting accuracy of the testing scenario with real data 

was lower than the simulation results since training data did 

not include any real time measurements for two reasons: the 

injected faults if the real motor were too limited for training 

purposes and by excluding the real faults, we could test the 

general capacities of the model to identify a fault not known 

before. 

The main contribution of this work is that it shows it is 

possible to achieve successful fault identification of an 

unknown non-linear discrete system using a conventional 

2D-CNN approach and gaining all the benefits of this 

technology.  

Even more, our experiment shows that it is possible to 

transform several time-series of complex non-linear systems 

into a 2-dimensional picture format with layers called 

“signal-image” and by doing so, it opens the possibility to 

take advantage of well-known 2D-CNN models like 

ResNEt50, InceptionV3, VGG16, etc. that so far have been 

successfully used for image classification; but now with the 

presented model, it could be possible to identify faults in 

unknown non-linear discrete systems in a similar way it is 

possible to identify an image by its characteristics. 

Because of the opportunities that can rise from the 

implementation of our model, future work will be focused in 

implementing variants of this model in several non-linear 

systems in a wide range of applications such as engineering, 

social or even medical scenarios.  
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