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Abstract—Engineering design has traditionally involved human
engineers manually creating and iterating on designs based on
their expertise and knowledge. In Bio-inspired Evolutionary
Development (EvoDevo), generative algorithms are used to ex-
plore a much larger design space that may not have ever been
considered by human engineers. However, for complex systems,
the designer is often required to start the EvoDevo process
with an initial design (seed) which the development process will
optimise. The question is: will a good starting seed yield a good set
of design solutions for the given problem? This paper considers
this question and suggests that sub-optimal seeds can provide,
up to certain limits, better design solutions than relatively more
optimal seeds. In addition, this paper highlights the importance
of designing the appropriate seed for the appropriate problem.
In this paper, the problem analysed is the structural performance
of a Warren Truss (bridge-like structure) under a single load.
The main conclusion of this paper is that up to a limit sub-
optimal seeds provide in general better sets of solutions than more
optimal seeds. After this limit, the performance of sub-optimal
seed starts to degrade as parts of the phenotype landscape become
inaccessible.

Index Terms—evodevo, generative design, structural engineer-
ing, genetic algorithms, neural networks

I. INTRODUCTION

It is a common practice that an experienced engineer
provides the design of engineering solutions for a given
problem, often starting from a previously well-formed design
[1]. However, in recent years novel tools have been created to
enhance the design process assisted by computational intelli-
gence techniques. Most of the early work consisted of changes
made directly in the solution [2]. While proving successful
this process proved to be slow and computationally expensive
in order to find the optimal solution in the fitness landscape,
and a question of scalability is raised. Generative design [3]
has been used, mainly for theoretical studies and seldom for
real engineering structures, alongside evolutionary techniques
to reduce time and make fitness landscape exploration more
efficient [4], [5].

Recent work has updated evolutionary (Evo) techniques
with a developmental component (Devo) inspired by the
evolutionary development (EvoDevo) in biology [6] where the
EvoDevo evolves the development rules, an overview can be
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found in [7]. Some examples of EvoDevo used to evolve design
can be found in [8]–[10]. Price et al [11] have demonstrated
the use of Devo processes to create a bracket component.
Recent work shown in [12] demonstrated the use of EvoDevo
to optimize the structure of the Warren Truss problem (i.e.
bridge-like structure). In this approach, an artificial gene
regulatory network (GRN) regulates the growth from an initial
structure (seed) to the final solution during the Devo process.
The fitness score is taken using the state of the structure at the
last Devo step by the Evo process and the GRN is optimized
with this information. One of the main motivations of EvoDevo
is that the evolved GRNs can provide efficient solutions when
subjected to different conditions.

In contrast to traditional evolutionary processes (where
random initial starting points are often chosen), in the EvoDevo
process a seed is required to start the process. The concept of
a seed, introduced in [12], is defined as an initial solution
(structure) whose main requirement is to connect the supports
and the external load and this load is fed to the Devo process.
In previous work, the seed provided to the EvoDevo process
is hand-designed and its quality is relatively good [12] where
quality in this context refers to the behaviour of a structure
of having a subjective low volume and low strain energy.
This approach of hand-designing the seed works with the
assumption that the designer has the knowledge of what a
good quality initial design (seed) looks like. This paper argues
that the shape of the seed can have a significant impact on
the quality of the solutions found by an EvoDevo process. In
this paper, the quality of the set solutions found at the end
of an EvoDevo process is analysed for four different initial
seeds each with a different degree of quality (as judged by
an engineer). This is done with the objective of testing the
following two hypotheses.

1) The relative position of the seed in the fitness landscape
has no significant impact on the location of the Pareto
front and the quality of the solutions found.

2) The design of the seed has no impact on the structure
landscape limiting the space EvoDevo can explore with.

This paper shows that the designer needs to carefully select
the appropriate seed for an EvoDevo process in order to find
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Fig. 1. Loading on a fifteen-segment truss. For all the experiments all the
structures are pinned in the vertex at the left-hand side, roller in the vertex at
the right-hand side and the load is located at the fixed vertex in the middle.
The position of each movable vertex is regulated by the ”output deltas” (δ).
At each Devo step a vertex can be moved up to 1 mm at any x and y direction.
In a single Devo process a vertex can move up to 10 mm in a direction as
shown in the vertex range.

the best engineering designs for a given problem. This is
achieved by demonstrating the counter-intuitive effect that a
relatively sub-optimal seed can find better sets of solutions
than a more optimal initial seed. Therefore, a set of diverse
seeds might need to be algorithmically produced in order to
identify the most suitable seed. The key contribution of this
paper is the first study of the impact of the seed/initial structure
on the quality of solutions found in the EvoDevo process for
an engineering problem (in this case a Warren Truss). This
study is carried out on the structural (phenotype) and fitness
(behaviour) landscapes.

II. EXPERIMENTAL METHODOLOGY

The Evolutionary Developmental (EvoDevo) approach used
in this paper is similar to that introduced in [12]. An evo-
lutionary algorithm (EA) is used to evolve populations of
Gene Regulatory Networks (GRN). Each GRN leads the
developmental process from a starting structure (seed) by
changing the locations of the vertices in the structure at each
step during the developmental process (Devo). Lastly, the EA
takes the fitness from the last Devo step as the score to generate
the new population.

The Devo process in Hickinbotham et al. [12] takes place in
a fixed set of steps (in this case 10), although it is recognised
that this is an arbitrary, and potentially limiting choice. At each
step, the locations of the vertices are changed by the GRN
which in this work is implemented by a feedforward neural
network. The amount of change is regulated by the ”output
deltas” (δ) of the neural network. It is important to highlight
that a single vertex can move up to 1 mm at each Devo step
in each x and y direction, therefore a vertex can move up to
10 mm in any direction at each development step as illustrated
in figure 1. For all the experiments, all the structures have
a pinned support on the vertex at the left-hand side, roller
support on the vertex at the right-hand side and the load is
located at the vertex in the middle, which is constrained from
moving.

This paper studies the influence of the seed in two solution
representations (phenotype and behavioural). The first repre-
sentation, phenotype, is at the structure level, a set of vertices,

at the last developmental step. The second representation, be-
havioural, is the multi-objective fitness score of the organism
when subjected to an external load.

Four different seeds are analysed in this paper and shown
in figure 2: seed 1, seed 2, seed 3 and seed 4. Seed 1 was
manually designed. Seed 2, seed 3 and seed 4 were sub-optimal
solutions taken from evolved structures in an experiment using
seed 1. These last three seeds were chosen because of their
different phenotype features and positions in the behavioural
landscape. Vertices for seed 2 are skewed in the positive y-
direction. Vertices for seed 3 are skewed towards the negative
y-direction. Vertices for seed 4 are even more skewed in the
negative y-direction than the previous seed. Seed 4 exhibits the
worst quality in the behavioural landscape and seed 1 exhibits
the best quality.

The Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [13] algorithm is used in this paper in combination with
the Neuro-Evolution of Augmenting Topologies (NEAT) [14]
algorithm to evolve the weights, biases and topologies of
initial fully connected neural networks with no hidden nodes
representing the GRNs. The optimal solutions are taken from
the set Pareto front solutions from the last generation. The
parameters used for the experiments in this paper can be found
in table I.

The two objectives to minimize for the Evo process are
volume and deflection that act as proxies for weight and
stiffness (e.g. bridge with the least material but still safe).
The volume of a single solution is defined as the sum of the
volume of each member m in the solution M and is calculated
using:

V =
∑
m∈M

AmLm (1)

where Am is the cross-sectional area of m and Lm is the
length of m. Deflection is defined as the maximum distance,
deflection, travelled of a vertex d in the solution as shown in
equation 2. The deflection is estimated using Finite Element
Analysis (FEA) software [12].

D = max[d0, ..., dn] (2)

The Mann-Whitney U test [15] is used here to test the
hypothesis that all the samples from two groups are not
independent of each other. For this, a three-star ranking system
is used where one star (*) represents p < 0.05, two stars (**)
represent p < 0.01, and *** represents p < 0.001 and p is the
probability.

The Pareto-agnostic hypervolume (HV) metric [16] is used
to measure the quality of the Pareto fronts. High values of HV
represent better Pareto fronts. Also, the HV requires a point
of reference and for this, the coordinate for seed 4 is used.

III. RESULTS

The results shown present the quality of solutions at the
end of the EvoDevo process. The analysis is carried out
by assessing the multi-objective fitness scores produced by
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Fig. 2. Seeds used for the experiments shown in this paper. Seed 1 was manually constructed, seed 2, 3 and 4 were taken from an EvoDevo experiment. The
heat maps represent the lowest deflection across all generations and all replicates found when a vertex was placed in that coordinate. The landscape is not
entirely covered for seed 2, 3 and 4 as indicated with the white cells.

TABLE I
THESE PARAMETERS ARE USED FOR EACH SEED IN THIS PAPER.

Parameter Value
Number of replicates 20
Population 50
Generations 200
Developmental steps 10
Max δ 1 mm

each seed and by showing some examples of the generated
structures.

The structure of the seed can influence the lowest deflec-
tion found at each coordinate by the EvoDevo process. The
heatmaps in figure 2 represent the lowest deflection achieved
at each coordinate in the phenotype landscape across all the
replicates (repetitions) and generations. Overall, seed 2 and
seed 3 are able to find lower values of deflection than seed 1
and seed 4 as shown in the scales in the colour bars. Also,
vertices located in the negative y direction experience the
highest values of deflection as highlighted in the darker regions
of the heatmaps.

The locations of the vertices in the seed can set hard
boundaries in the phenotype landscape limiting the optimal
solution reachability. White cells represent solutions that were
not found in any replicate in any generation at that coordinate
as shown in figure 2. In contrast to seed 1 where the entire
landscape is covered by EvoDevo, the landscape for seed 2, 3
and 4 is not entirely covered as shown with the white cells.
This occurs for two reasons: First, the number of Devo steps is
not enough to move a vertex to that location of the phenotype
space. Second, the value for δ is too small (1 mm). The white
cells are more than 10 mm apart from the closest vertex. For

example, the vertices for seed 2 are skewed towards the top-
right corner and EvoDevo is unable to reach the region in
the bottom-left corner. A similar case for seed 3 and 4 is that
vertices are skewed towards the bottom and EvoDevo is unable
to reach the top part of the landscape.

The issue of hard boundaries in the phenotype landscape can
be addressed in two ways each with a trade-off. In the first
approach, the number of Devo steps can be increased, however,
this increases the number of evaluations hence the computation
time of the EvoDevo process. In the second approach, the
δ value can be increased, however, the exploration of the
landscape will increase and with this the time that it takes
to find the global optimum.

The HV scores of the Pareto fronts produced by seed 3 are
significantly higher than the other three seeds. Figure 3a shows
the convergence of the HV values at each generation at each
replicate. Even though seed 2 is initially faster at finding higher
HV values, seed 3 finds the best Pareto fronts across the three
seeds after 50 generations. Figure 3b shows the boxplots of
the last generation where seed 3 is *** different than the other
three seeds. In other words, seed 3 experiences higher values
of HV and with this better quality of Pareto. This result rejects
hypothesis 1 and validates the statement that the position of
the seed in the fitness landscape has a significant impact on
the resulting Pareto fronts. More details about the Pareto fronts
are described next.

For the experiments shown in this paper, the farther the
seed is from the origin, the closer the Pareto front is to the
origin as shown in the behavioural landscape in figure 4 with
the exception of seed 4 which will be addressed later. Even
though seed 1 is closer to the origin than the other two starting
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(a) (b)

Fig. 3. Convergence of the hypervolume at each generation for all the replicates (a) and box plots at the last generation (b). Seed 3 is *** different than the
other three seeds.

seeds, this seed finds the least optimal set of solutions. There
are three possible reasons for this behaviour in the EvoDevo
process: 1) It can be possible that the structure for seed 1
is located at a local optimum and the EvoDevo algorithm is
unable to escape this region. 2) seed 2 and seed 3 are located in
a richer space in terms of the diversity of structure solutions.
3) The ranking nature of NSGA-II incorporates a crowding
distance measure, that pushes the solutions to extend the arms
of the Pareto front instead of pushing the solutions towards
[0,0] in the fitness landscape. Point 3) can also be visualized
in Figure 4a where the Pareto front arms are shorter for seed
3 than the other two seeds where the volume is lower than
425 and the deflection is lower than 700.

The main reason why seed 4 has worse performance than
seed 3 is that its vertices are located in a region which makes
it very difficult for the EvoDevo process to move them to the
optimal region. Many of the vertices for seed 4 are close to
the boundary at the negative y-direction, therefore the upper
region of the phenotype landscape becomes unreachable as
the distance is more than 10 mm away from the closest vertex
as shown in figure 2. This could probably be improved by
increasing the delta step as mentioned before. This result might
reject hypothesis 2 suggesting that the design of the seed has an
impact on the final structure and its position in the landscape.
This impact is shown as an unreachable region during the
Devo process that changes from seed to seed. The region with
optimal solutions is described next.

The colour of the cells in figure 5 represents the number of
solutions found at that coordinate at the last generation across
all the replicates for seed 3. From the heat map and figure 5d,
it can be visualised that many of the vertices of structures
at the last generation are concentrated at the row of positive
10 mm and the row of 0 mm in the y-direction. The row at
positive 10 mm in the y-direction is unreachable for a few
vertices for seed 4 and this demonstrates its poor performance
relative to the other three seeds.

Even though the optimality of seed 3 [391.32, 572.45] was
inferior to seed 1 [387.5, 451.39], the EvoDevo algorithm was
able to find better solutions using seed 3. Three examples of
solutions found at the knee region in the Pareto front (volume
less than 380 and deflection less than 400) for seed 3 are shown
in figures 5a, b and c. Of the three solutions, (a) has the lowest
volume with the highest deflection [371.20, 400.54], (c) has
the highest volume with the lowest deflection [384.62, 351.94]
and (b) is somewhere in the middle [375.54, 379.94]. The
white lines represent the final solution and the black lines
represent seed 3. It is important to highlight that even though
solutions in the knee region produced by seed 3 resemble more
seed 1, these solutions were not found by seed 1, suggesting
that seed 1 fails to escape the initial local optima solution.

In summary, the position of the seed in the fitness, be-
havioural, space can lead to better Pareto fronts, in this case,
a lower quality of the initial seed. However, it is important
to note that careful choice is required as the location of the
vertices at the seed can restrict the available search space at
the structural, phenotype, representation as shown with seed 4.
Therefore, careful design decision needs to be taken when
creating the seed for an EvoDevo process.

IV. CONCLUSION

The Evolutionary Development (EvoDevo) algorithms used
in generative design for engineering structures need a starting
solution (seed) to develop. In previous work, a deliberately de-
signed “good” quality seed was produced with the expectation
that this seed would develop into the best solution the EvoDevo
process could deliver. However, as shown in this paper, this is
not guaranteed.

Four different seeds with different degrees of quality were
used as starting conditions for the EvoDevo process. The
results showed that a relatively low-quality seed can find better
solutions than high-quality seeds. This concept applies as long
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(a) (b)

Fig. 4. All Pareto fronts aggregated from all the replicates for each seed as shown in (a) and (b) shows a close-up at the knee point. The Pareto front for
seed 3 is closest to the origin and the Pareto front for seed 1 is the farthest. Even though the quality of seed 4 is relatively the worst of all the seeds, the
Pareto front is closer to the origin than seed 1. The Pareto arms for seed 3 are shorter than the other three seeds.

(a) (b)

(c) (d)

Fig. 5. Figures (a), (b) and (c) represent three examples of solutions (in white) found in the knee region at the Pareto front for seed 3 (in black) each with a
coordinate of [371.20, 400.54], [375.54, 379.94] and [384.62, 351.94] respectively where (a) has the lowest volume with the highest deflection and (c) has the
highest volume with the lowest deflection. Figure (d) illustrates all the structures at the last generation for all the replicates. The colour of the cell represents
the number of solutions found with a vertex at that coordinate at the generation.

as the EvoDevo process is able to move the vertices to the
location with the highest quality of solutions.

The main two conclusions from this paper are the following:
1) Seed location in the fitness space has a significant counter-
intuitive effect on the quality of the solutions found and the
location of the Pareto front. 2) The seed can define hard
boundaries in the structural landscape.

In other words, this paper hypothesises that there is a trade-
off in the location of a seed relative to the fitness landscape.

A seed placed close to the origin can experience optimisation
problems due to the seed being located at local optima.
Whereas, a seed located too far from the origin is unable
to reach the global optimum due to the limitations in the
exploration of the structure representation.

This result raises the question: how to design/create the best
seed that produces the most optimal solutions for an EvoDevo
process? Some possibilities are described next and future work
will investigate and analyse each option in order to identify
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the best approach. In addition, further work will explore other
design problems besides the Warren Truss example.

1) An experienced qualified designer could deliberately
design a lower-quality seed, with the assumption that
this seed will yield better results. It is important that
the designer is aware of the limitations of the algorithm
including, and not only, the total distance a single vertex
can be moved in the structure landscape.

2) A set of diverse seeds could be produced with quality
diversity (QD) algorithms [17]. Each seed would be eval-
uated by the EvoDevo process and the seed providing
the best results will be chosen. This has the additional
benefit that no prior knowledge is required to create the
design of the seed with the trade-off that this might be
computationally expensive.

3) A new multi-objective algorithm could be developed that
influenced the fitness ranking to prioritise solutions in
the ‘knee’ of the Pareto front.

Regardless of how the seed is designed, one of the require-
ments is that the GRN evolved should be flexible enough that
when used with different seeds and different conditions the
Devo process will provide feasible solutions.
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