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Abstract—Musculoskeletal disorders (MSDs) are pervasive in
the workforce and constitute the single largest category of work-
related illness. The root cause for MSDs is complex. However,
there is little dispute that MSD morbidity is primarily due to
physical and psychosocial risk factors, and these two domains
of risk factors share a common upstream determinant. A work
organization influences both the physical load patterns and
psychosocial features. In this paper, we propose a technology-
facilitated intervention program that could lead to an improved
safety culture in workplaces. The program is aimed at address-
ing one of the physical risk factors, i.e., rest breaks, and a
psychosocial risk factor, i.e., social support. First, a wearable
soft orthosis is used to detect the types of physical activities and
load patterns, and to derive an intelligent rest break schedule
for each type of activity and load patterns. The orthosis would
also remind the participant to take a rest break at appropriate
times. Second, a mobile app is developed to cultivate a learning
community where the participants could seek and provide social
support and increase their awareness of occupational safety.
We collected some preliminary app usage data and developed
a methodology of identifying app usage patterns using both
supervised and unsupervised learning. The feasibility of the
method is validated using synthesized data derived from the
collected data.

Index Terms—Musculoskeletal disorders, occupational safety,
load pattern, orthosis, learning community, KNN, Gaussian
naive Bayes, decision tree, k-means clustering, the elbow
method.

I. INTRODUCTION

The total cost of workplace musculoskeletal disorders
(MSDs) in the US is over $1 billion US dollars per year. The
reported cost varies significantly, from a very conservative
estimate of $2 billion direct medical cost per year [1] to
over $100 billion per year for lower back injuries alone [2].
MSDs constitute the single largest category of work-related
illness [3]. In 2004, MSDs represented a third or more of
all registered occupational diseases in the United States [3].
According to the US Bureau of Labor Statistics (https://
www.bls.gov/iif/oshwc/case/msds.htm), the fraction of MSDs
has been slightly decreasing in recent years and in 2015,
the fraction has been dropped to below 30% of cases. This
reduction is presumably a positive outcome of the investment
in the research and development for the promotion of the un-
derstanding of the risk factors of MSDs and the intervention
methods/programs to reduce MSDs. Nevertheless, the MSDs
still comprise the largest category of work-related illness and
there is still a lot that could be done to further reduce their
occurrences.

The root cause for MSDs is complex as reported by numer-
ous studies [4]–[6]. The study by Punnett and Wegman [3]
appears to give the most holistic view on the root cause for
workplace MSDs, and the major risk factors were identified.
As shown in Fig. 1, the risk factors for workplace MSDs can
be categorized into two groups: (1) physical load patterns,
and (2) psychosocial features. Both groups of factors can
be heavily influenced by the work organization, and some
of the factors are strongly correlated, for example, a high
job demand typically would lead to a fast work pace, and
low decision latitude and low skill utilization would typically
mean repetitive physical load.
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Fig. 1. Major risk factors for workplace MSDs.

The negative impact of MSDs among workers far exceeds
the cost of workers’ compensation. Studies have shown that
persistent pain from the injury reduces job satisfaction and
the quality of services/productivity of the worker, which
degrades the staff morale and could lead to poisonous work-
place culture. Ultimately, this could lead to high turn-over
rate, which requires a business owner to constantly look
for and train new hires. Hence, there is an urgent need to
systematically address the issue of MSDs in workplaces.

This paper makes the following research contributions:
• We provide a concise overview of the risk factors

for workplace MSDs and the interventions programs
reported in the literature.

• We propose to focus on two specific risk factors that are
not well studied: (1) lack of rest breaks; and (2) lack of
social support.

• We outline a method to derive an intelligent rest break
schedule based on the data collected by wrist and waist
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soft orthosis.
• We developed a mobile app that can be used to facilitate

the formation of a learning community for prompting
occupational safety and minimizing the occurrences of
MSDs, and for strengthening social support for work-
ers. Furthermore, we present a methodology based on
supervised and unsupervised learning to identify app-use
patterns.

II. RELATED WORK

Over the past several decades, we have seen great ef-
forts in addressing the MSD problem in workplaces [7]–
[20]. The US Department of Labor Occupational Safety
and Health Administration (OSHA) and many state-level
administrations have established guidelines and best prac-
tices for protecting workers. The recommended process from
OHSA (https://www.osha.gov/ergonomics) includes: (1) pro-
vide management support, (2) involve workers, (3) provide
training, (4) identify problems, (5) encourage early report-
ing of MSD symptoms, (6) implement solutions to control
hazards, and (7) evaluate progress. For recent interventions
aimed at reducing workplace MSDs, Sundstrup et al. pro-
vided an excellent comprehensive review [21]. Major types of
interventions include: (1) physical exercises; (2) ergonomics;
(3) multifaceted; (4) stress management; (5) rest breaks
and reduced work hours; (6) cognitive behavior training;
(7) technology-facilitated compliance program [22], [23].
Current studies show that only physical exercises [24] and
adding rest breaks [25] are effective interventions.

III. PROPOSED INTERVENTION FOR REDUCING
WORKPLACE MSDS

Not all factors contributing to MSDs can be easily
changed, such as the work condition factors. However, there
are opportunities to adjust work pace and provide rest breaks
at the right time and to improve social support. That is
why we propose to target two important but lesser studied
risk factors: (1) lack of rest breaks and (2) low social
support. Providing adequate rest breaks has been proven to
be effective for farm workers [25]. We aim to automatically
determine rest breaks at the appropriate frequency towards
reducing MSDs among workers. Even though low social
support has been identified as a risk factor, we are not aware
of any existing intervention program that targets this risk
factor. The mobile app will be used as a vehicle to mitigate
this risk factor by facilitating peer social support and the
formation of a learning community among the participating
workers.

A. Intelligent Rest Breaks via Soft Orthosis

In order to understand the workers’ actual workload pat-
terns, and to identify the intervention points for a break
rest, a novel wearable soft orthosis is developed. Orthosis,
as a type of wearable mechanical device, has a long his-
tory in the application of monitoring MSD patient patholo-
gies and providing rehabilitation for patients with impaired
mobility [26]. However, as discussed previously, besides

monitoring actual workload and repetitiveness, the orthosis
device for occupational safety and health has some unique
requirements that it should be able to avoid altering the
routine of the workers and/or intruding on workers’ privacy.
Conventional orthosis that has bulky size, heavy actuation
and lower portability should be excluded for this application.
Skin-attaching monitoring systems, though light and in small
size, should be avoided as well since they are not convenient
for the workers to attach and detach, and usually create
discomfort for the workers [27]. The system based on camera
and image processing has a risk to intrude workers’ privacy
and lack ability to measure the workload [18].

The novel orthosis system has unique features of high
adaptability, easy don-doff design, light weight and compact
size [28]. More specifically, wrist orthosis and waist orthosis
have been developed to monitor work pace in the wrist and
waist joints for preventing the two common MSDs including
back pain and epicondylitis (injury of tendons that bend the
wrist toward palm) [29].

B. Social Support via Learning Community

Participating in a learning community has been proven to
be an effective way to improve learner engagement levels
in the context of both formal and informal education [30].
The learning community emphasizes collaborative learning
and peer support [31], and it could happen both online
and offline (i.e., in-person). Learning community increases
the participants’ social capital [32] and enhances their self-
efficacy [33] in several aspects [34]. The social capital of an
individual refers to the resources one has access to in his
or her social structure [35], which is instrumental to one’s
social support.

The formation of a learning community connects people
who otherwise barely have any opportunity to communicate
with each other, which could become each other’s social
capital. The learning community also promotes two key
cornerstones in self-efficacy: (1) participants would get to-
gether sharing their knowledge, experiences, and opinions
in the community, which promotes closeness and sense of
belonging; (2) unlike in the workplace where there is a formal
hierarchy among the workers, participants of a learning
community are basically equal and everyone has a chance
to voice his or her opinion, which helps develop a strong
sense of autonomy.

Another important benefit of learning community is that it
helps enhance awareness of occupational safety among both
workers and managers because it has a convenient platform
for the participants to share their experiences, observations,
and insight regarding potential issues and solutions on occu-
pational safety at their workplaces. While doing so, valuable
new knowledge could also be created regarding how to reduce
MSDs by those who are working on the frontline.

IV. IMPLEMENTATION OF THE SOFT ORTHOSIS

As shown in Fig. 2 (a) and (b), the wrist orthosis is made
of a regular cloth wrist wrap embedded with two types of
sensors, including one Force Sensitive Resistor (FSR) sensor
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Wrist Orthosis

Waist Orthosis

Fig. 2. Wrist and waist orthosis.

for gripping force measurement at the edge of the palm thenar
and two flex bend sensors at the hand back for wrist motion
tracking. After wrapped around the human hand, the Velcro
tape will fix the sensors to the right places for measurement.
As the human hand mostly interacts with the palm thenar
in gripping, choosing it for gripping force measurement will
largely reflect actual interaction force f . The two bending
sensors fit align with axes for the Flexion/Extension (F/E) and
Radial/Ulnar deviations (R/U) motion of the wrist; thus, they
also accurately measure the rotation of the two movement of
F/E and R/U as θ and β respectively. With this information,
we can get the instant power P of the wrist, and the energy E
consumed during a period of δt. The biomechanics and body
physical parameters are denoted as α, which mainly includes
the lengths and locations of the detected parts, and the user’s
weight and estimated weight distributions. The power and
accumulated energy will be used as important parameters for
the worker’s work pace tracking.

The waist orthosis, as shown in Fig. 2 (c), is also made
with a regular cloth back belt embedded with sensors. For
the waist joint tracking, two flexible bend sensors are fixed
across the lower back to track the waist bent angle γ. Directly
measuring the torque/force is impossible; thus, the orthosis
system still uses the gripping force f measured by the wrist
orthosis and merge the worker’s biomechanics and body
physical parameters to calculate the torque/force in the waist.
With this information, we can also derive the instant power
and energy consumed in the waist joint.

Some preliminary results are shown in Fig. 3. For the wrist
orthosis testing, a person was fastening a screw where the F/E
motion is tracked. For the waist orthosis testing, the motion of
waist bend motion of lifting and lowering box was measured.
These preliminary results demonstrate the functionality and
the feasibility of the proposed orthosis method.

Fig. 3. Preliminary result for using the wrist and waist orthosis to measure
(a) the F/E motion of the hand and (b) the waist bend motion.

The implementation model of the two orthoses follows
the same pattern and control flow as shown in Fig. 4. The
model mainly includes two sections: offline modeling and
real-time intervention. For the offline modeling, the orthosis
is used to measure the force/torque and motion data, and the
data are transformed into instant power and energy. Then,
surveys from the workers and the physical therapist’s input
will be merged into the data collected from the orthosis to
identify the risk points that appear in the power spectrum. The
offline model is embedded into a real-time control system.
The orthosis is used to track the force/torque and motion
information to identify break moment and rest duration for
the rest intervention and generate vibration/buzz to remind
the worker for a break.

Fig. 4. Key components in the orthosis.

V. IMPLEMENTATION OF THE MOBILE APP

The learning community mobile app has two primary
components: (1) content related to occupational safety and
how to minimize MSDs; and (2) social networking. The con-
tent component is for increasing awareness of occupational
safety related to MSDs. The social networking component is
for providing social support to workers. The mobile app is
developed using the Expo framework (https://docs.expo.dev/)
using the JavaScript programming language. The big advan-
tage of using the Expo framework is that the application
developed can be deployed on both the Web and the mobile
interfaces (including both iOS and Android devices). The
Google Firebase cloud service is used as the backend to
provide user authentication and data storage. Firebase of-
fers very straightforward application programming interfaces
(APIs) for its services. Furthermore, for low network traffic,
Firebase incurs no charges.

The mobile app consists of a set of screens, with each
screen having a clearly defined functionality. Fig. 5 shows
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some of the screens, including the login screen, the dashboard
a user would see after login, a few screens designed for users
to learn about MSDs.

Fig. 5. Selected screens in the mobile app for social support and MSD
education.

To establish the feasibility and acceptability of long-term
use of the online portal for increased awareness of occu-
pational safety and for seeking social support in a learning
community, a user-specific log is collected by the app. Each
log is identified by a pseudonymous user identifier to protect
the user’s privacy. The log contains the timestamps of each
event, such as logging in, logging out, loading a particular
screen, submitting a practice game, connecting to a peer, the
amount of text exchanged and the time spent communicating
with another peer or a group (the content is not analyzed to
protect the privacy of the participants). The data logging and
processing methodology follows our previous work reported
in [36]. All data were recorded by the first author using his
smartphone (Huawei P30) running the learning community
app. During the analysis, we choose to use only the logged
time for the app. Each entry has the form of (year-month-
day-time, duration), referring to each time the user used the
app continuously for a period of time.

The daily-usage statistics of the learning community app
is shown in Fig. 6. We can make the following observations

(a)

(b)

Fig. 6. The daily usage statistics of the app in a 7-day window. (a) The
box-and-whisker plot; (b) The daily mean, median, standard deviation, and
daily total duration of the app usage.

from the app daily-usage statistics: (1) the total app usage
duration varies significantly from day to day; (2) the daily
mean, median, and standard deviation of the per-use duration
are relatively stable from day to day; (3) as evidenced by the
fact that the median is lower than the mean, short-duration
app-use is the dominating pattern.

It would be interesting to establish patterns of the app-use
among different users. To explore the feasibility and develop
a methodology in recognizing different patterns, we created a
set of synthetic data based on the collected data. Ideally, we
should be using the actual data collected in a formal human
subject trials. Unfortunately, this is not yet possible with very
limited funding and the very early stage of the development.

From the collected data (which we refer to as the first
class C1), three additional classes (C2, C3, and C4) of app-
use behavior are derived. The four classes are based on the
observation that the behavior of most people is cyclic for
each week. C1 reflects the pattern of heavy users throughout
the entire week. C2 reflects the pattern of light use during
the week days (e.g., due to the job) and heavy use of the
app during the weekend. C3 reflects the pattern of heavy app
use during the week days and light use during the weekends
(e.g., due to family duty). C4 reflects the pattern of light
app use throughput the week. Data for C2, C3, and C3 are
generated by following a normal distribution of each app use
(using the Python Numpy library) with the mean standard
deviation of the collected data and a reduced mean for the
weekdays and/or weekend days. We used three levels of mean
reduction: at 25%, 50%, and 75%. We generated 10,000
samples for each class. The feature vector consists of the
per-use duration for each day of the 7-day week, i.e., the
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feature vector has the form < f1, f2, f3, f4, f5, f6, f7 >.
Three models, the k-nearest neighbor (KNN), Gaussian

Naive Bayes (GNB), and Decision Tree (DT) (part of the
scikit-learn python library) were used to classify the four
types of patterns with 10-fold cross-validation. The classi-
fication results are shown in Fig. 7. Fig. 7(a) shows the
the classification accuracy for the three levels of reductions
for the three models. The performance of KNN and GNB
differ very little and are significantly better than that of
DT. Fig. 7(b), (c), and (d) show the confusion matrices
corresponding to the three levels of reduction. It is obvious
why the classification accuracy is better when the reduction
level is increased. The confusion matrices reveal very similar
trends regarding the prediction mistakes. C1 is most often
confused with C3, and second most often confused with
C2, due to the similarity between C1 and C3 during the
weekdays, and the similarly between C1 and C2 during the
weekends. C2 confuses with C4 the most due to the similarity
during the weekdays, and C2 confuses with C1 the second
most due to the similarity during the weekends. C3 confuses
with C1 the most due to similarity during the weekdays,
and confuses with C4 the second most due to the similarity
during the weekends. C4 confuses with C2 the most due to
the similarity during the weekdays, and confuses with C3 the
second most due to the similarity during the weekends.

25% reduction in mean

50% reduction in mean 75% reduction in mean

(a) (b)

(c) (d)

Fig. 7. The classification accuracy for KNN, GNB, and DT for three
different levels of mean reduction and the confusion matrices at the three
levels using the classifier that has the best accuracy.

It is also interesting to see if unsupervised clustering could
be used to identify app-use patterns. We choose to use the k-
means clustering algorithm as part of the scikit-learn python

library. The first step is to find the optimal number of clusters
using the elbow method. According to the elbow method,
we calculate the within-cluster sum of square (WCSS) for
different number of clusters from 1 to 10. The WCSS is the
highest when the number of cluster is one. When the number
of clusters increases, the WCSS would decrease. However, at
some point, the rate of reduction in WCSS will flat off. This
point is referred to as the elbow (because the shape of the
WCSS curve looks like an elbow). The WCSS vs. number
of clusters curve for our data is shown in Figure 8(a). As
can be seen, the elbow point happens at cluster number four,
which corresponds to the four classes that we created. The
elbow curve has similar shape and identical elbow point for
all three levels of reduction.

To illustrate the clusters in app-use patterns, we will have
to reduce the dimension of the feature vector from 7 to 2. We
perform the dimensional reduction by exploiting the fact that
the daily patterns for weekdays are similar, and daily patterns
for weekends are also similar. To respect the 5-day weekdays
and 2-day weekends, the new 2-dimension feature vectors are
weighted accordingly (i.e., the weekday component carries a
weight of 5/7, and the weekend component carries a weight
of 2/7). The clusters with the 2-dimensional feature vectors
are illustrated in Figure 8(b), (c), and (d). As can be seen, the
clusters are more separated with greater degrees of reduction
in the mean per-use duration.

25% reduction in mean

50% reduction in mean 75% reduction in mean

Elbow Point

(a) (b)

(c) (d)

Fig. 8. The elbow curve (a), and clusters for the four app use patterns with
mean reduction of 25% (b), 50% (c), and 75% (d).

VI. CONCLUSION

In this paper, we provided a concise overview of the risk
factors for workplace MSDs and the interventions programs
reported in the literature. We then described a technology-
facilitated intervention program that could lead to an im-
proved safety culture at workplaces. The proposed interven-
tion program focuses on two specific risk factors that are
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not well studied: (1) lack of rest breaks; and (2) lack of
social support. First, we argued that an intelligent rest break
schedule could be determined based on the data collected
by wrist and waist soft orthosis. The data collected could
be used to detect the types of physical activities and load
patterns, and subsequently to derive an intelligent rest break
schedule for each type of activity and load patterns. Second, a
mobile app has been developed to facilitate workers to gain
the knowledge regarding MSDs, the risk factors, and how
to minimize MSDs, and to make it easy for the workers to
communicate with each other for social support. We collected
some pilot app usage data and developed a methodology
for identifying app usage patterns using both supervised
and unsupervised learning. The feasibility of the method is
validated using synthesized data derived from the pilot data.
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