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Abstract—Behavioral diversity is known to benefit problem-
solving in biological social systems such as insect colonies and hu-
man societies, as well as in artificial distributed systems including
large-scale software and swarm-robotics systems. We investigate
methods of evolving robot swarms in which individuals have
heterogeneous behaviours. Two approaches are investigated to
create swarm of size n. The first encodes a repertoire of n
behaviours on a single individual, and hence evolves the swarm
directly. The second approach uses two phases. First, a large
repertoire of diverse behaviours is evolved and then another
evolutionary algorithm is used to search for an optimal allocation
of behaviours to the swarm. Results indicate that the two phase
approach of generate then allocate produces significantly more
effective collective behaviors (in terms of task accomplishment)
than the direct evolution of behaviorally heterogeneous swarms.

Index Terms—Swarm-Robotics, Behavioral Quality-Diversity

I. INTRODUCTION

Ecological hypotheses suggest that behavioral diversity
within and between species is positively related to overall
population robustness to changes in the environment [1],
[2]. It has been proposed this same principle is applicable
to swarm-robotic system design, providing similar benefits
to system performance and adaptability, where recent work
has highlighted the potential of evolving behaviorally diverse
robotic swarms which demonstrate robustness across various
task environments [3], [4]. It has also been shown that
diverse groups of individuals tend to perform better at solving
problems and collective tasks than homogeneous groups
[5]-[7]. As a result of these purported benefits, research
interest has grown surrounding different approaches for
evolving behavioral (or functional) diversity in robot swarms.

In particular, the use of Quality-Diversity methods such as
Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
[8] to create repertoires of behaviourally diverse controllers
has rapidly increased in recent years. These methods return
an archive of solutions that are diverse with respect to a
set of characteristics defined by a user. Engebraten et. al.
demonstrate that a diverse repertoire of behavior primitives
can be created using MAP-Elites, that can be combined to
enable more effective control of a large group or swarm
of unmanned system [9]. Gomes et. al. [10] go further
in evolving a repertoire of task-agnostic primitives: the
evolutionary process is driven towards the generation of
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arbitrary but distinct swarm behaviours, thus departing from
the vast majority of previous works where automatic design
methods are used as means to solve a specific task or achieve
a specific swarm behaviour. Most recently, Montague et. al.
combined MAP-Elites with Genetic Programming to evolve
diverse fragments of behaviour-trees for a foraging task [11].
However, all of these methods produce behavioral primitives
which can be combined into a single task appropriate
behaviour allocated to all robots in the swarm.

In contrast, this study investigates methods to evolve a
repertoire of diverse neural controllers that result in a swarm
that is heterogeneous with respect to its controllers. That is,
each robot in the swarm may have a different controller.
This study’s objective is to understand how to best evolve a
behaviourally-heterogeneous swarm for a given specific task.
To address this objective, we evaluate two approaches:

o Evolving an individual that encodes n different con-
trollers to directly define a behaviourally- heterogeneous
swarm (referred to as the direct approach)

« A two-phase approach that first evolves a large repertoire
of diverse controllers, and then evolves an optimised
allocation of behaviours from the repertoire to the swarm
(referred to as the allocation approach).

For the direct approach, we compare two evolutionary
methods: the first uses a steady-state genetic algorithm (SSGA)
[12] while the second uses MAP-Elites [8]. For the allocation
approach, an evolutionary algorithm (EA) is used to allocate
behaviours from a previously obtained repertoire to a swarm.
Repertoires are created through (1) repeatedly applying an
SSGA to evolve a single controller, and combining the results
into a single repertoire, and (2) by using of MAP-Elites.
Experiments are conducted on three variants of a herding
task with varying levels of difficulty. Our results show that
the allocation methods achieve significantly improved task
performance in a collective behavior task, when compared with
the direct evolution of behaviorally heterogeneous swarms.
Furthermore, the results demonstrate that behavioral diversity
is beneficial to collective behavior task performance and can
be generated without speciation mechanisms or geographical
isolation in the environment, extending previous related work
(31, [4], [13].
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II. METHODS

This section describes the methods (section II-C) used to
evolve behaviorally heterogeneous robotic swarms (section
II-B) in a collective herding task environment (section II-A).

A. Simulation Task Environment

The collective herding task is simulated using an extended
version of the Roborobo! multi-agent simulation framework
[14]. A swarm of N robots (dogs), is assigned the objective
of capturing a dispersed flock of M agents (sheep), inside a
centrally-located target zone. Sheep actively avoid entering the
target zone, unless pursued by a dog. Once they enter the
target zone, they are considered captured and removed from
the simulation. The 2D environment is bounded on all sides by
walls. The collective herding task was selected as it represents
a uniquely dynamic interaction between swarm and task en-
vironment [4]. This task not only encourages robots to adapt
to a dynamic environment, but also to a collective behavior
task with differing solutions. Since the herd’s movement is
randomly generated for each simulation, the task environment
promotes the evolution of robots equipped with more general
herding approaches rather than specialized robots attuned to a
few specific herd configurations. Also, this task environment
allows us to investigate the general applicability of our swarm
behavior evolution methods (section II-C).

B. Robots: Dogs and Sheep

1) Dogs: Dog robots use fully connected feed-forward
Artificial Neural Network (ANN) controllers (all hidden
and output nodes use tanh activation functions) adapted via
various evolutionary methods for the collective herding task.
Dogs have a simple, circular morphology supporting an array
of radar-type proximity sensors about the periphery. These
sensors detect the nearest instance of each type of object
(dog, sheep and wall) within a specific range and field of
view (table I). Dog ANN controller topology comprises
nine input nodes, ten hidden nodes and two output nodes.
This thus corresponds to 110 evolvable connection weights
values in each dog’s genotype. Each sensory input node uses
distance and angle values from three radar sensors (one for
each object type), and distance and angle values from a target
zone sensor. Distance values are normalized in the range [0.0,
1.0], where 0.0 denotes undetected and 1.0 denotes an object
is as close as possible to the dog. Angle values are also
normalized in the range [-1.0, 1.0], where -1.0 corresponds
to -180 degrees and 1.0 corresponds to +180 degrees. The
two motor output nodes are the dog’s translation value
normalized to [-1.0, 1.0], where -1.0 is maximum translation
speed backwards and +1.0 is maximum forward translation
speed, and the dog’s rotation value normalized to [-1.0,
1.0], such that -1.0 denotes maximum rotation speed to the
left and +1.0 denotes the maximum rotation speed to the right.

2) Sheep: Sheep robots use a pre-defined heuristic behavior
causing them to collectively wander as a herd. Sheep use
the same morphology and sensory configuration of the dog
robots with the same radar-type proximity sensors. However,
different range and field of view values are set (table I). A
Boids [15] algorithm variant is used to control sheep collective
(movement) behavior. This sheep controller is not adapted by
evolutionary methods and controls sheep collective behavior
using simple avoidance and flocking rules. Avoidance rules
use proximity thresholds for each type of object, ordered by
priority, so as sheep first avoid dogs and then avoid the target
zone. Flocking rules use coherence and alignment parameters,
where coherence controls the speed with which sheep move
towards one other. Alignment is the degree to which sheep
follow the average direction of neighboring sheep. While dogs
adapt their speed, all sheep move at a constant speed (table I).

C. Behavior Evolution Methods

The ANN dog controllers are evolved as genotypes encoded
as strings of floating point weights (normalized to the range
[-1.0, 1.0]). These genotypes are evolved with the objective
of optimizing collective (herding) behavior (section II-D).
Evolutionary methods applied for dog controller adaptation
(collective herding evolution) use the SSGA [16] or MAP-
Elites [8] methods (detailed in sections II-C1 — II-C6).

1) SHOM: SSGA Homogeneous: A genotype population is
randomly initialized, where each genotype corresponds to a
dog controller, and the same controller is used by all dogs in
the group (homogeneous swarm). Thereafter, per generation,
genotypes are selected using tournament selection (tournament
size of 3). These genotypes undergo two-point crossover and
Gaussian mutation [17], with a given probability (table I),
prior to evaluation in the task. These offspring genotypes then
replace the previous population to become the next generation.

2) SHET: SSGA Heterogeneous: SHET is similar to
SHOM, except each genotype comprises floating point values
(weights) for N dog controllers. Each genotype is evaluated as
a heterogeneous swarm and each dog uses a unique controller
subset (ANN weights) from the swarm genotype.

3) MHOM: MAP-Elites Homogeneous: We use the
standard version of MAP-Elites [8]. This evolves a repertoire
of solutions in a single run that are diverse with respect
to a desriptor containing d user-defined characteristics that
define a d-dimensional archive discretised into b bins. Each
solution is mapped to a bin according to its descriptor.
Each bin retains a single solution which has the best fitness
found so far for that bin. We define 3 characteristics: (1)
the average distance between each dog and the nearest dog;
(2) the average distance between each dog and the nearest
sheep; (3) the average distance between each dog and the
target zone. Each characteristics is normalized to the range
[0.0, 1.0], where 0.0 is the minimum average distance and
1.0 is the maximum average distance observed. A genotype
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Neuro-Evolution Parameters

Replications per experiment (runs) 20
Generations per experiment run 200

Trial evaluations per individual 3

Initial population size 100
ANN nodes: Input / Hidden / Output 9/10/2
MAP-Elites archive: Dimensions / Bins 3/729
Operator probability: Crossover / Mutation 0.5/0.2

Simulation Parameters

Time steps per trial evaluation 800

Initial agent positions Random

Dog swarm size: Easy/Medium/Difficult 20/ 15/ 10
Sheep swarm size: Easy/Medium/Difficult 10/ 15720
Dog speed: Easy/Medium/Difficult 1/0.7570.5
Sheep speed: Easy/Medium/Difficult 05707571
Arena size (width X height) 600px x 600px
Target zone size (radius) 100px

Dog radar proximity sensor: Range/FOV (Opx,100px]/[-90°,90°]
(Opx,50px]/[-180°,180°]
15px / 50px / 5px

50px / 0.25

Sheep radar proximity sensor: Range/FOV

Sheep object avoidance: Wall/Dog/Sheep

Sheep zone avoidance: Radius/Strength

TABLE I: Neuro-evolution and simulation parameters. For
all experiments in the simulated collective herding task.

population is randomly initialized. As with SHOM, genotypes
are evaluated as a homogeneous swarm and adapted using
the same crossover and mutation operators used by the
SSGA-based methods. Individuals are selected from the
archive using tournament selection (size 3).

4) MHET: MAP-Elites Heterogeneous: MHET is the same
as MHOM, except genotypes comprise floating point values
(ANN weights) for N dog controllers. Thus, each genotype
is evaluated as a heterogeneous swarm and each dog uses a
unique subset of ANN weights from the swarm genotype.

5) ASHET: Allocate SSGA Heterogeneous: In this
approach, the objective is to optimize a swarm allocation of
ANN controllers previously evolved by SHOM. Since SHOM
is based on SSGA, its final population contains the same
number of genotypes as the initial population (100). These
genotypes are not guaranteed to be unique and are likely to
demonstrate controllers with behavioral similarities given the
SSGA tendency to converge on variations of high-performing
solutions. Thus, before commencing allocation evolution,
the final SHOM populations (from multiple experimental
runs) are projected into MAP-Elites archives based on the
tracked behavioral characteristics (see section II-C3) for
each genotype. These archives are aggregated into a single
reference archive containing only the elite solutions across all
populations. The M genotypes in this reference archive are
each assigned a unique index. Using this reference archive
of ANN controllers, a population (100) of random allocation

genotypes is initialized. Each genotype consists of N indices
selected, with replacement, from the range [0, M — 1].
The number of dogs in the swarm, N, depends on the task
environment difficulty being simulated. These genotypes
are evaluated as heterogeneous swarms in which each dog
is allocated an ANN controller from the reference archive
based on its index. Thereafter, per generation, genotypes are
selected using tournament selection (tournament size of 3),
keeping the population size constant (as per SSGA). These
genotypes undergo two-point crossover and uniform integer
mutation [17], each with a given probability (table I), before
being evaluated in the task. These offspring genotypes then
constitute the next generation of genotypes.

6) AMHET: Allocate MAP-Elites Heterogeneous: As with
ASHET, this method optimizes a swarm allocation of pre-
evolved ANN controllers. However, in this case, the controllers
being allocated are pre-evolved by MHOM. Since MHOM is
based on MAP-Elites, its final population is already contained
in a MAP-Elites archive of behaviorally unique individu-
als. To produce a reference archive for AMHET, the final
MHOM population archives from multiple experimental runs
are aggregated together. The M genotypes in this reference
archive are each assigned a unique index. Using this reference
archive of ANN controllers, a population (100) of random
allocation genotypes is initialized. Thereafter, evolution of
these allocation genotypes continues as for ASHET (using
SSGA) until the maximum number of generations (table I).

D. Dog Fitness Evaluation

Dog genotypes are evaluated according to the number of
sheep captured, c, out of all sheep, ¢, over the course of the
simulation. Hence, a zero evaluation score corresponds to no
sheep captured and a score equal to one means that all sheep
are captured. Given that the task environment is stochastic
(sheep positions are randomly initialised), genotype fitness is
averaged across n evaluation trials (equation 1).

III. EXPERIMENTS

Experiments' evaluated the direct behavior versus allocation
evolution (section II-C) methods for heterogeneous robot
group (swarm) behavior across three task environments (table
II), where results are averaged over 20 runs per experiment.
First, we conducted direct behavior evolution experiments,
using the SHET and MHET methods, where both evolved
behaviorally heterogeneous swarms. Second, we conducted
allocation evolution experiments, using the ASHET and
AMHET methods. Both ASHET and AMHET use SSGA to
evolve optimal swarm controller allocations, but use different
reference archives of pre-evolved controllers. ASHET uses
aggregate archives produced by SHOM using SSGA [12]
(section II-C1) whereas AMHET uses aggregate archives
produced by MHOM using MAP-Elites [8] (section II-C3).
Experiments also recorded the number of unique behaviors

ISource code: https://anonymous.4open.science/r/ssci23-sheepdogai
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Evolution . Task Environment
Algorithm
Type Easy | Medium | Difficult
SSGA SHET SHET SHET
Direct
MAP-Elites MHET MHET MHET
ASHET ASHET ASHET
Allocation | SSGA
AMHET | AMHET | AMHET

TABLE II: Experiment Setup. Experiments are based on evo-
lution type (direct or allocation), controller evolution method
(SSGA or MAP-Elites) and variant (SHET, MHET, ASHET,
AMHET) and task environment (easy, medium and difficult).

in evolved swarm allocations to measure behavioral diversity.

Task difficulty is varied by altering the ratio of dogs to
sheep and their relative maximum translation speeds. The
easy task had more dogs moving faster than sheep, while
the difficult task had more sheep moving faster than dogs.
The three behavioral characteristics (see section II-C3) were
recorded for individuals across all experiments. Although not
used in SSGA, these values enabled post-processing of evolved
populations and projecting them into 3D solution archives so
that they could directly be compared with those produced by
MAP-Elites for behavioral diversity. Table I presents experi-
ment and method parameter values.

F:Z(E) “n (1)
=1

IV. RESULTS AND DISCUSSION

Given this study’s research objective (section 1), we
focus our discussion on comparing behavior and allocation
evolution experiment (section III) results. Specifically, this
section reports archive size, maximum fitness, QD scores?,
and pairwise t-tests to determine any statistical significance
between comparative method results. Figures 1 and 2
present average archive size, maximum fitness and QD
scores, for the direct behavior and allocation evolution
methods, respectively. Figure 2(d) also presents the average
number of unique behaviors in swarms over evolutionary time
for each allocation evolution method in each task environment.

First, we assess statistical differences between average
results of the heterogeneous behavior evolution (SHET,
MHET) and behavior allocation evolution (ASHET, AMHET).
Pairwise t-tests indicate direct behavior evolution methods
(SHET, MHET) produce significantly greater (p < 0.05)
archive sizes than allocation evolution methods (ASHET,
AMHET) across all task environments. Conversely, for
maximum fitness, ASHET and AMHET significantly

2This metric captures both quality and diversity and is obtained by summing
the highest fitness values found in each grid bin Q;, i.e. as Y ;—1" Q;, [18]

outperform (p < 0.05) the direct behavior evolution methods
for all task environments. For QD scores, ASHET achieves
significantly higher (p < 0.05) scores than SHET across all
environments. However, AMHET only achieves significantly
higher (p < 0.05) QD scores than MHET in the easy
task environment and MHET achieves significantly higher
(p < 0.05) scores in the medium and difficult environments.

Across all environments, results indicate that the allocation
evolution methods (ASHET, AMHET) produce the highest
quality solutions for the collective herding task. In terms of
behavioral diversity, MAP-Elites behavior evolution (MHET)
produces significantly more diverse solution populations than
those based on SSGA, where QD score results reflect this
pattern (figures 1 and 2). For example, MHET achieves the
highest QD scores in all environments and also produces the
highest archive size for all environments (figure 1). This is a
result of MAP-Elites archives retaining behaviorally unique
solutions while SSGA does not but rather converges on similar
solutions. Though, observing maximum fitness, allocation
evolution (ASHET, AMHET) outperforms direct behavior
evolution, and SHET and MHET yield the worst-performing
solutions for all environments (figures 1 and 2).

Results comparing behavior allocation (ASHET, AMHET)
versus direct behavior evolution (SHET, MHET) methods,
indicate that ASHET and AMHET achieve significantly
higher average task performance than SHET and MHET,
across all environments (figures 1 and 2). Despite the higher
average solution quality of ASHET and AMHET, the final
solution archives (figure 3) indicate these allocation evolution
methods explore a lower proportion of the behaviour space
than the behaviour evolution methods (SHET, MHET). The
final populations generated by each method (over 20 runs)
were aggregated to produce these solution archives. Since
both ASHET and AMHET evolve solutions using SSGA as
the underlying algorithm, they do not produce MAP-Elites
archives. Therefore, the final populations are projected
into archives using the task behavioural characteristics for
solutions (section II-C3) before being aggregated (figure 3).

While archive sizes are significantly lower for ASHET and
AMHET than SHET and MHET (for all environments, figures
1 and 2), the QD score results (providing a combined measure
of solution fitness and diversity) favor the allocation evolution
over the behaviour evolution methods. That is, the ASHET
and AMHET methods achieve significantly higher QD scores
across all task environments, highlighting that the greater
solution quality yielded by these behavior allocation methods
outweighs their lower solution diversity, thus outperforming
the behaviour evolution methods overall (figures 1 and 2).

In terms of the number of unique behaviours allocated to
a swarm for the behavior allocation evolution experiments,
results indicated AMHET on average allocated more unique
behaviours to swarms than ASHET (figure 2). This metric
was constrained by swarm size, where swarms of 20, 15 and
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Direct Behavior Evolution
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Fig. 1: Direct behavior evolution. Archive size (left), max fitness (middle) and QD score (right) results (averaged over 20
runs), for evolved heterogeneous swarms (SHET and MHET) in easy (green), medium (blue) and difficult (red) tasks.
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Fig. 2: Behavior allocation evolution. Archive size (a), max fitness (b), QD score (c) and unique behaviors in swarm (d) results
(averaged over 20 runs), for the easy (green), medium (blue) and difficult (red) task environments (ASHET and AMHET).

10 dogs were evolved for the easy, medium, and difficult task
environments, respectively. For all environments, AMHET
allocated a number of unique behaviors close to the swarm
size, further supporting the benefits of Map-Elites (section
II-C6) for enabling behavioral diversity in evolved controller
allocation of swarms (figure 2). Despite using different
reference archives for evolving swarm controller allocations,
ASHET and AMHET both produce solutions occupying
similar regions of the behaviour search space (figure 3). Most
of this behaviour space remains unexplored by both methods,

which results from SSGA optimising for solution quality
(when evolving the controllers to be later allocated) rather than
diversity. Thus, comparing ASHET and AMHET with SHOM
and MHOM (evolution of homogeneous swarm behavior) [4],
we observed that despite ASHET and AMHET not modifying
(further evolving) the controllers generated by SHOM and
MHOM, both ASHET and AMHET (especially) produce
behaviorally heterogeneous swarms with significantly greater
task performance than SHOM and MHOM. This further
supports this study’s approach of optimising allocations of
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pre-generated behaviors in a swarm, compared to direct
swarm behavior evolution, as a means to achieve behavioral
diversity necessary for suitably high swarm task performance.

Overall, results support the hypothesis that evolving be-
haviorally heterogeneous swarms via optimising allocation of
pre-generated controllers produces significantly greater swarm
task performance than direct controller evolution. This holds
even with lower population diversity, where the combined QD
score for allocation evolution algorithms still exceeds that of
behavior evolution algorithms. Results also support existing
work indicating that behavioral diversity is evolvable without
speciation mechanisms or geographical isolation [3], [4].

V. CONCLUSIONS AND FUTURE WORK

This study investigated the impact of varying methods
for collective herding behavior evolution in a swarm-robotic
system given increasing task difficulty. Heterogeneous swarm
behavior was optimized using direct behavior evolution meth-
ods (SHET, MHET), compared with methods for evolving
allocations of pre-evolved controllers (ASHET, AMHET).
Results indicated significantly improved task performance for
heterogeneous swarms generated by evolved behavior alloca-
tion (ASHET, AMHET). This supports our hypothesis that
evolving behavioral allocation, compared to direct behavior
evolution, is more suitable for adapting behaviorally hetero-
geneous swarms across increasing task difficulty. As such, the
introduction of our multi-step approach for evolving swarm-
controller allocations (ASHET, AMHET) represents the main
contribution of this work. Future work will focus on evaluating
the approach in a wider range of other collective behavior
tasks. We also plan to use the QED method [13] to generate
solution archives based on environmental characteristics rather
than explicitly-defined behavioral characteristics.
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