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Abstract—High-throughput phenotyping (HTP) of seeds is the
comprehensive assessment of complex seed traits and the mea-
surement of parameters that form more complex traits [1]. The
key aspect of seed phenotyping is cereal yield estimation. While
mechanized seed kernel counters are available in the market
currently, they are often priced high and sometimes outside the
range of small scale seed production firms’ affordability. The de-
velopment of object tracking neural network models such as You
Only Look Once (YOLO) enables computer scientists to design
algorithms that can estimate cereal yield inexpensively. The key
bottleneck with neural network models is that they require a
plethora of labelled training data before they can be put to task.
We demonstrate that the use of synthetic imagery serves as a
feasible substitute to train neural networks for object tracking.
Furthermore, we propose a seed kernel counter that uses a low-
cost mechanical hopper, trained YOLOv8 neural network model,
and object tracking algorithms on StrongSORT and ByteTrack
to estimate cereal yield from videos. The experiment yields a
seed kernel count with an accuracy of 95.2% and 93.2% for Soy
and Wheat respectively using the StrongSORT algorithm, and
an accuray of 96.8% and 92.4% for Soy and Wheat respectively
using the ByteTrack algorithm.

Index Terms—YOLOv8, Artificial Intelligence, Domain Ran-
domization, Object Tracking, Seed Counter

I. INTRODUCTION

The advent of technology in agriculture commenced over
a century ago, and several studies have been conducted
since the 1990s to improve production efficiency [2]. High-
throughput Phenotyping (HTP) of seeds is the comprehensive
assessment of complex seed traits and the measurement of
parameters that form more complex traits [1]. Currently, seed
production firms have to use expensive mechanized seed
counting machinery to pack seed kernels by count. This
paper demonstrates leveraging videos of seed kernels rolling
down a platform to estimate seed kernel count using low-
cost hardware components (described in section II) and the
object tracking neural network model, You Only Look Once
(YOLO). Supervised neural network models require a plethora
of labelled information to train for tasks. However, labeled
training data is not always readily available for entities such
as seed kernels. We demonstrate that the use of synthetic
image datasets, generated following the principles of Domain
Randomization [3]–[5], is a feasible alternative to train neural
network models.

II. RELATED WORK

Neilsen et al. [6] proposed an image processing algorithm
to conduct seed kernel counting from videos. It is based
on tracking each of the seed kernels as they flow down a
backlit platform. However, the image processing algorithm
is highly sensitive to the video’s frame rate. GridFree [7]
is a Python package for image analysis of interactive grain
counting and measurement. It uses K-Means to and principal
component analysis (PCA) on both raw image channels and
their color indices. It exhibits great performance on multiple
crop types. Parico et al. [8] performed real-time pear fruit
detection and counting using YOLOv4 models and Deep
SORT algorithm. The region-of-interest (ROI) line technique
was used to estimate the number of pear fruits detected by
the neural network model. Wu et. al. [9] performed detec-
tion of Camellia oleifera fruit in complex scenes by using
YOLOv7 and data augmentation. The experiment yielded a
Mean Average Precision, Precision, Recall, F1 Score, and
average detection time of 96.03%, 94.76%, 95.54%, 95.15%,
and 0.025 seconds per image respectively.

III. HARDWARE COMPONENTS

We propose a low-cost setup for the capture of seed
kernel videos for algorithmic analysis using YOLOv8. Fig.
1 shows the seed kernel image capture setup designed for
the experiment. The mechanical hopper delivers seeds at a
constant rate. The mobile phone is placed on a 3-D printed
stand to ensure that the camera is always held orthogonal to
the surface to eliminate any skew that may result during the
capture of the video. The 3-D printed platform at the bottom
channels the seed kernels ensuring that the seed kernels
remain in the field of view of the camera as they roll down
the lightbox. The mobile phone used for image capture is
a Google Pixel 2 XL mobile phone whose default capture
frame rate is 60 fps. Fig. 2 shows a frame of the wheat
seed kernel video captured using the proposed setup in Fig. 1.

IV. DOMAIN RANDOMIZATION AND IMAGE DATASETS

Domain Randomization (DR) trains neural network models
on a small sample of images containing simulated objects that
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Fig. 1. Mechanical hopper delivering seed kernels

Fig. 2. Wheat seed kernels flowing down the light box

translate closely to real-world objects. Fig. IV shows soy seeds
being captured by the proposed image capture setup. Images
of 25 seed kernels of soy and wheat are captured using the
setup shown in Fig. 3. Using the synthetic image generator
developed as part of a previous work [3] synthetic images
containing seed kernels of soy and wheat are developed. The
synthetic images allow for about 25% overlap at the maximum
to account for clustered seed kernels as the frames of the video
are processed. Datasets are created for the seed types of soy
and wheat, wherein each dataset consists of 200 images of size
320x320x3 with each image containing between 25 and 50
seed kernels overlaid on a light background, as shown in Fig.
4. The generator outputs annotation files that contain location
coordinates pertinent to each seed kernel in the image in the
TXT format for YOLOv8 to consume and process during
training. An additional 35 synthetic images containing 30 seed
kernels of each seed kernel type are generated for testing on
YOLOv8.

Fig. 3. Image capture of soy seed kernels

Fig. 4. Image capture of soy seed kernels

V. YOLOV8 AND OBJECT TRACKING ALGORITHMS

The YOLO model is a single-shot detector [10]–[12] that
uses a fully convolutional neural network as the backbone
to process the input image. The YOLOv8 [13] model was
released in January 2023 by Ultralytics. It comprises a convo-
lutional neural network divided into two parts: backbone and
head. The backbone, CSPDarknet53 [14], consists of 53 con-
volutional layers. The head consists of multiple convolutional
layers followed by a series of fully connected layers. Object
tracking requires that the object be detected in every frame
across the video. Several object tracking algorithms [17]–
[19] have been proposed over the years. This paper considers
two object tracking algorithms for experimentation, namely,
StrongSORT and ByteTrack.

A. StrongSORT

The StrongSORT [17] algorithm is an improvement over
the DeepSORT [18] algorithm. It is a two-branch framework
consisting of an Appearance branch and a Motion branch.
The Appearance branch identifies the features of each of the
objects detected in a given frame. BoT [20] is leveraged
as the feature extractor by the StrongSORT algorithm. The
appearance state for the ith tracklet within frame t, eti, is
updated as the exponential moving average (EMA) given by
eti = αet−1

i + (1-α)f t
i where f t

i is the appearance embedding
of the current matched detection and α = 0.9, is a variable
momentum term. The Motion branch leverages Kalman Filter
[23] to predict the position of the object in the frame based
on a constant velocity model. The StrongSORT algorithm uses
the NSA Kalman Filter algorithm borrowed from the GIAO
tracker [24].

B. ByteTrack

ByteTrack [21] algorithm leverages bounding boxes at all
confidence levels agnostic of any threshold and attempts to
identify all objects in a frame. It uses Tracklets queue to store
all the objects (and bounding boxes) that have been detected
by the object detector (YOLOv8). The bounding boxes are
separated into high score (Dhigh) and low score (Dlow) based
on threshold. Each of the objects in the Tracklets queue is
tracked across each frame of the video using Kalman Filter
[23]. Firstly, the position of each of the objects in the tracklets
queue is predicted in the subsequent frame. The predictions
are matched with the actual detections made by the object
detector using Motion Similarity score which is computed with
Intersection over Union (IoU) between the predicted and actual
bounding boxes. Initially, tracklet matching is done between
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the predicted and high score (Dhigh) bounding boxes. The
tracklets that do not match with any of the high score bounding
boxes are matched with low score (Dlow) bounding boxes.
Any tracklet that is not matched is preserved for a predefined
number of frames to test for rebirth in case of occlusion.
Finally, the tracklet is removed from the queue if a match
is never found.

VI. EXPERIMENT

The development of the Seed Counter using YOLOv8 and
object tracking algorithms involves three steps: Seed detection,
Seed Tracking, and Seed Counting.

A. Seed Detection
The YOLOv8 model is trained on the image dataset (de-

scribed in section IV) using transfer learning. 80% of the
image dataset is used for training and 20% is used for
validation. The test dataset consists of 100 images, 50 of soy
and 50 of wheat, each containing 20-30 seed kernels. Model
weights from the YOLOv8 model pre-trained on the COCO
image dataset are leveraged as provided by Uralytics. The
hyperparameters used to train the model are as shown in Table
I. The results of seed kernel detection on the test dataset are
evaluated using the metrics of Precision, Recall, and Average
Precision (PR). The metrics are briefly described below and
the obtained results are presented in Table II.

TABLE I
HYPERPARAMETERS FOR YOLOV8

Hyperparameter Value
Learning Rate 0.001

Batch Size 32
Input Image Size 320x320x3 px

Bounding Box Confidence Threshold 0.4
Non-Maximum Suppresion Threshold 0.4

Intersection-over-Union Threshold 0.5
Activation Function LeakyReLU

Filters in Each Layer 64
Dropout yes

Pretrained Model Weights yolov8x

Precision: Precision is given by true positives/ (true positives
+ false positives).
Recall: Recall is given by true positives/(true positives + false
negatives).
Average Precision: The Average Precision is computed for
an 50% overlap between ground truth and predicted bounding
boxes for the purposes of this paper, given by AP50.
Note: Average Precision is only reported for the validation
data set but not test data set because the images in the test
set do not have ground truth bounding boxes plotted around
them.
From the results in table II, high recall scores of 91% and
90% on soy and wheat respectively for the test set indicates
that the model albeit being trained on synthetic images detects
real seed kernels well. The precision scores of 93% and 92%
indicate that the model classifies the seed kernels correctly on
most instances. The reason for high precision might be due to
the clear morphometric distinction between soy and wheat.

TABLE II
EVALUATION RESULTS

Seed Kernel Validation Set Test Set
Precision Recall AP50 Precision Recall

Soy 98% 92% 92% 93% 91%
Wheat 97% 93% 89% 92% 90%

TABLE III
UNIQUE ID COUNT ON VIDEO OF WHEAT SEED KERNELS BY

STRONGSORT

Frame Rate Seed Kernel Count Unique IDs
30 250 306
60 250 381
120 250 533

B. Seed Tracking

The Seed Tracking phase applies StrongSORT and Byte-
Track algorithms on videos with 250 seed kernels of each
seed type captured at three different frame rates, 30, 60, and
120. Both algorithms are applied using the detection weights
obtained in the Seed Detection phase as input. The algorithms
apply a unique ID to each seed kernel detected in the video and
track them throughout the video. The seed kernels in the video
are clustered in parts, occluded, and prone to sudden deviations
in trajectory, as shown in Fig. 2. These issues lead to the risk
of object tracking algorithms assigning different unique IDs to
the same seed kernel in different frames of the video, leading
to a discrepancy. The number of unique IDs generated by the
algorithms on each of the videos captured for the wheat seeds
are shown in Tables III and IV respectively. The results show
that either of the algorithms consistently overcount the number
of seed kernels in the video.

C. Seed Counting

Seed Counting uses a region of interest (RoI) established at
a common location across each frame in the video. Any seed
kernel that crosses the RoI is accounted to be one seed kernel.
The total number of seed kernels is given by the total number
of tracks that cross the RoI. Tables V and VI show the
results obtained by applying the StrongSORT and ByteTrack
algorithms on each of the videos. The performance of the
algorithms improves as the frame rate increases. The key issue
faced by the algorithms is sudden changes in trajectory due to
the seed kernels touching one another and deviating from their
present trajectory. This phenomenon affects the object tracking
algorithms’s ability to predict the location of the seed kernel
accurately in subsequent frames.

TABLE IV
UNIQUE ID COUNT ON VIDEO OF WHEAT SEED KERNELS BY

BYTETRACK

Frame Rate Seed Kernel Count Unique IDs
30 250 322
60 250 406
120 250 592
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TABLE V
RESULTS OF SOY AND WHEAT KERNEL COUNT USING STRONGSORT

Seed Type Frame Actual YOLOv8 Accuracy
Rate Count Count

Soy 30 250 238 95.2
Soy 60 250 214 85.6
Soy 120 250 188 75.2

Wheat 30 250 233 93.2
Wheat 60 250 207 82.8
Wheat 120 250 166 66.4

TABLE VI
RESULTS OF SOY AND WHEAT KERNEL COUNT USING BYTETRACK

Seed Type Frame Actual YOLOv8 Accuracy
Rate Count Count

Soy 30 250 242 96.8
Soy 60 250 211 84.4
Soy 120 250 194 77.6

Wheat 30 250 231 92.4
Wheat 60 250 209 83.6
Wheat 120 250 171 68.4

From the results in tables V and VI, the seed count is
most accurate on videos captured at a frame rate of 30 and
least on videos captured at a frame rate of 120 for either seed
type, and object tracking algorithm demonstrating that a lower
frame that captures a higher level of detail positively influences
the performance of object tracking algorithms. However, both
algorithms undercount the number of seed kernels agnostic of
frame rate due to the clustering of seed kernels.

VII. PITFALLS, FUTURE WORK, AND CONCLUSION

The key pitfall of the experiment is that the videos used
for the experiment consist of seed kernels that are clustered.
As a result, the object tracking algorithms failed to track
each seed kernel accurately. In further experiments, the video
capture mechanism will be altered to ensure that the videos
do not contain clustered (or occluded) seed kernels. Over-
all, the experiment demonstrates the feasibility of synthetic
images to train object tracking neural network models, and
their application in seed kernel counting aimed at the seed
production industry. As the results are encouraging, future
work will involve the development of a mobile application
(Android/iOS) and a robust video capture mechanism.
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