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Abstract—Protecting Internet of Things (IoT) networks from
threats is becoming increasingly important as these devices
continue to grow in adoption. Modern and unseen attacks that
require the analysis of more complex network traffic data for ef-
fective identification and mitigation are becoming more prevalent.
Traditional machine learning approaches in current intrusion
detection systems (IDS) struggle with these volumes of data,
prompting exploration into the feature selection space. One class
of such feature selection methods is evolutionary algorithms, in
which systems mimicking real-life evolution optimize solutions for
some problem. In this paper, we propose bag-of-little-bootstraps
genetic algorithm feature selection (BLB-GAFS), a novel variant
of the genetic algorithm feature selection method that maintains
a global search of the solution space while reducing computa-
tional cost. This is accomplished with the bag-of-little-bootstraps
method for approximating classifier performance. We test the
BLB-GAFS technique on three modern intrusion datasets—CCD-
INID-V1, detection_of IoT_botnet_attacks_N_BaloT, and CIRA-
CIC-DoHBrw-2020—that represent updated network patterns
and are highly dimensional. We found that the BLB-GAFS
method matches or outperforms embedded feature selection
methods on the same datasets. Furthermore, the feature sets
selected by BLB-GAFS result in significantly improved multiclass
precision, recall, and F1-score. Traditionally expensive wrapper
feature selection methods like the genetic algorithm can be used
on larger datasets through BLB-GAFS, opening the door to other
applications with highly dimensional data.

Index Terms—feature selection, genetic algorithm, IDS, bag-
of-little-bootstraps

I. INTRODUCTION

As Internet of Things (IoT) devices become more common
in consumer and enterprise environments, the frequency and
complexity of attacks on these systems have increased [1].
Consequently, solutions that identify and mitigate these attacks
have become increasingly important. The primary response
intended to fill this niche is the intrusion detection system
DS) [2].

Both detecting anomalies and identifying specific attacks
have been explored through machine learning (ML) IDSs,
which have been successful on traditional IoT datasets [3]
[4]. However, as more advanced attacks emerge, the volume
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of network data fed to these IDS implementations has in-
creased in dimensionality. Standard ML approaches struggle
to find meaningful relationships in these highly dimensional
datasets. These solutions face long training/prediction times
and reduced performance [5].

One solution to this “curse of dimensionality” is feature
selection techniques. This crucial preprocessing stage is de-
fined as the selection of a subset of the original features that
better represent each class than the original set in its entirety
[6]. Feature selection for IDSs is a well-explored topic in the
current literature. In the past, various works have highlighted
that feature selection before training results in less resource
consumption and greater interpretability [7] [8].

Feature selection techniques are often split into three cate-
gories: wrapper, filter, and embedded methods. Wrappers use
the evaluation of a classifier to score different subsets of
features in search of the ideal. These methods involve far
more computation than the other two varieties depending on
the search strategy used. Filters do not rely on a classifier,
instead selecting the optimal subset of features based on
intrinsic relationships in the data. These methods are usually
faster than wrapper selection, but they do not generate subsets
that are directly tied to classification performance. Embedded
techniques refer to the selection of an optimal feature subset in
the training process of the classifier. These methods are often
faster than wrapper methods and more performant than filter
methods, but they are specific to the classifier at hand [6].

One class of search strategies used in wrapper feature
selection is evolutionary algorithms like genetic algorithms
(GA), particle swarm optimization (PSO), and ant colony
optimization (ACO) [9]. These methods enable a global,
random search of the entire solution space while narrowing
in on the most promising subsets. This behavior avoids the
extreme computational cost of an exhaustive search while still
exploring the whole space for ideal subsets. Evolutionary algo-
rithms have been studied extensively in IDS feature selection
[10] [11].

GAs are of great interest for this feature selection problem.
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Varieties of GAs are applied to numerous optimization prob-
lems across real-world applications [12]. They are popular due
to their ability to survey large solution spaces and handle prob-
lems with multiple solutions. This capability is particularly
important for this application, considering the large volumes
of network traffic data needed to identify unseen attacks means
large feature sets are becoming more common. In the feature
selection case, GAs have produced better results with fewer
features than similar techniques [13].

Arguably the most important component of a GA is its
fitness function, which describes the performance of each
individual—or feature subset—in each generation. Many re-
searchers employ classification accuracy as a component of
the fitness function in their work [14] [15]. In some cases,
the classification performance is combined with the number
of features or another metric to frame the problem as multi-
objective optimization. The issue with this approach is that, on
larger datasets with many features, training and evaluating a
new classifier for each feature subset is an expensive process.

One alternative to training and testing on the entire, large
dataset to evaluate classifiers is the bootstrap and other
resampling-based methods. Specifically, the bag of little boot-
straps (BLB) procedure is tailored for estimating quantities
on big data with low storage and computational complexity.
By combining features of the bootstrap and subsampling,
BLB is suitable for approximating classifier performance
quickly—ideal for the fitness function that is evaluated many
times during a GA.

In this work, we explore feature selection on modern, highly
dimensional IoT attack datasets using a GA with this BLB
approximation for classifier performance. Our contributions
are:

« developing BLB-GAFS, a novel multi-objective genetic

algorithm-based feature selection method that incorpo-
rates BLB classifier performance estimation, and

e experimenting on highly-dimensional datasets
that include recent IoT  attacks—namely the
detection_of IoT_botnet_attacks_N_BaloT, CIRA-

CIC-DoHBrw-2020, and CCD-INID-V1 datasets [16]
[17] [18].

The rest of this paper is organized as follows. In Section
II, we discuss relevant works in the feature selection and
evolutionary algorithms space. In Section III, we detail our
proposed feature selection approach. Section IV introduces the
three datasets and explains our experimental setup. Section V
presents our experimental results. In Section VI, we summa-
rize our work and conclude our discussion of the proposed
approach.

II. RELATED WORK

As mentioned in the introduction, feature selection has been
explored exhaustively for machine learning applications across
many fields. Since the highly diverse traffic observed in most
network environments necessitates large feature sets to capture
enough information, feature selection is crucial for IDSs.
Many previous works have attempted to fill this need with

different combinations of feature selection and classification
methods.

Evolutionary and nature-inspired feature selection methods
have been applied to intrusion detection in the past [19] [20].
Mehmood and Rais use the ant colony optimization (ACO)
algorithm for feature selection on the KDD99 dataset before
classifying with SVM [21]. Peng et al. test their ACO-based
feature selection algorithm on the KDD99 dataset [22]. Li et
al. apply the particle swarm optimization (PSO) algorithm in
combination with random forest for feature selection on the
KDD99 dataset [23].

The GA feature selection approach has also been explored
in the current literature. Sindhu et al. apply a GA for feature
selection on the KDD Cup 99 dataset using a fitness function
that incorporates the sensitivity and specificity of a neural
network ensemble as the fitness function [24]. This ensemble
approach is then used to classify the selected set of features.
Guha et al. use a GA to narrow down the features on the NSL-
KDD Cup and UNSW-NB15 datasets before classifying with
an artificial neural network [25]. The chromosomes in their GA
represented individual feature sets, and they used classification
accuracy from a multimodal neural network for the fitness
function. Tao et al. apply a GA to optimize the feature set
and parameters used for SVM to classify on the KDD Cup 99
dataset [26]. They used chromosomes that included both SVM
parameters and feature weights during the evolution, with K-
fold cross-validation accuracy serving as the fitness function.
Khammassi and Krichen combine the accuracy of a logistic
regression classifier with the number of features selected into a
single fitness function to select features [27]. They attempted
classification with decision trees on the KDD Cup 99 and
UNSW-NBI15 datasets.

While these two works are examples of single-objective
optimization problems, GA feature selection has also been
explored with multi-objective fitness functions. Khammassi
and Krichen examine the performance of a feature selection
method based on the NSGA-II multi-objective optimization
algorithm to select the ideal feature subsets from the NSL-
KDD, UNSW-NB15, and CIC-IDS2017 datasets [28]. Like the
single-objective variants, they included classification accuracy
as one component of the fitness function. However, they also
included the number of features in the subset as the second
objective.

De La Hoz et al. also experimented with NSGA-II feature
selection, instead using the Jaccard’s coefficient between the
ground truth and predicted labels for each class as the ob-
jectives [29]. Rather than including an additional objective
focused on the reduction of the subset size like the previous
work, this approach focused on optimizing the subset for each
of the classes in the NSL-KDD dataset before classifying with
growing hierarchical self-organizing maps.

In this paper, we suggest a multi-objective, NSGA-II feature
selection approach with a fitness function consisting of a
BLB estimate of classification performance and the number
of features represented by the individual.
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ITI. PROPOSED APPROACH

The proposed feature selection solution implements the fast
NSGA-II optimization algorithm for selecting the ideal feature
subset [30]. The fitness function for this algorithm includes an
estimate of classification performance using BLB and the total
number of features represented by the individual. For each
dataset, the optimal feature set is fed into various traditional
ML classifiers—namely, naive Bayes (NB), random forest
(RF), logistic regression (LR), support vector machine (SVM),
and k-nearest neighbors (KNN)—and the classification perfor-
mance is evaluated.

The first step in BLB-GAFS is to raise a population repre-
senting a group of random feature subsets. Each of these “in-
dividuals” represents a feature subset with an array of binary
values that has a length equivalent to the original number of
features in the dataset. The binary values themselves indicate
whether the corresponding feature is included in the subset.
Much like actual chromosomes, different expressions of these
“genes” can result in wildly different feature sets. For BLB-
GAFS, we raised an initial population of 10 and created 20
“children” in each generation.

Then, fitness values are found for each individual in the
initial population. The fitness function in this stage returns two
objectives. The first objective approximates the classification
performance of a naive Bayes classifier on the included fea-
tures. This approximation is calculated using the BLB method
which is similar to the bootstrap and other resampling tech-
niques. First presented by Kleiner et al., this method averages
some performance metric found on bootstrapped samples from
multiple small subsets of the original dataset [31]. Specifically,
BLB samples s subsets of size b from the original dataset with
size n then resamples n points from each subset. A classifier
is then trained and evaluated on r of these resamples, yielding
an estimate of the chosen performance metric through Monte
Carlo approximation. Algorithm 1 details this approximation
process. The performance metric of choice for BLB-GAFS is
the ROC-AUC score since it measures the quality of model
predictions regardless of the classification threshold.

The computational benefits of this method come from the

Algorithm 1 BLB score approximation
Require: Data X,;,..., X,
Ensure: An estimate of classifier performance on X
for j =1 to s do
Randomly sample a set Z = 1, . .

., 1 of b indices from

1,...,n

for k=1 tordo
Sample (nq,...,n,) ~ Multinomial(n, 1/b)
Train classifier with (X,,,,...,X,,)
Q1 + classifier score

end for

Py r 130, Qk

end for

1 s )
return s ., P

fact that each resample can only contain b distinct points while
having a size of n. Thus, each resample can be generated by
drawing an array of counts from an n-trial uniform multi-
nomial distribution of b objects. Then, the resamples can be
represented as the b distinct items along with these sampled
counts—meaning that each resample only needs O(b) storage
space rather than O(n). This weighted representation can be
passed directly to the naive Bayes classifier (as well as other
common estimators).

The original paper presents some techniques for selecting
the hyperparameters b, s, and r in BLB [31]. They found
that a value of b = n? where ~ is 0.7 was suitable for
most problems. They also suggested an adaptive technique
for selecting the values of s and r. r is to be increased
until the computed values from the resamples have ceased
to fluctuate, as determined with a convergence assessment
algorithm presented in the paper. Similarly, s will be increased
until the computed values from each subset seem to converge.
This adaptive hyperparameter selection is shown to reduce
unnecessary computation done by BLB after reaching the
solution and is implemented in BLB-GAFS as a result.

By avoiding training and predicting on large sections of
the original dataset, the BLB approximation method is very
storage and compute efficient compared to cross-validation or
even a single train-test split. Since the subsample and resample
sizes in BLB are relatively small, the method lends itself
to more straightforward parallel computing—which, although
not explored in this study, could further reduce how long
the approximation takes. When realized over the course of
many individuals across many generations of the GA, the
performance gain attached to BLB enables the usage of BLB-
GAFS on large datasets with many features.

After evaluating each generation and selecting the top indi-
viduals with NSGA-II, the mutation and two-point crossover
operations are carried out. In mutation, each bit in the individ-
ual has a 20% probability of being flipped, turning the feature
on or off. In two-point crossover, two points are randomly
chosen from the parent chromosomes and the bits between
them are flipped. These techniques are used to create the next
generation, which then has its fitness evaluated. The entire
BLB-GAFS process is described by the flowchart in Fig. 1.

BLB-GAFS

Create
population of
feature
subsets

Generation

No
Two-point | o—"_limit reached
crossover

Update NSGA-II
| fitness values —»| selection of
with BLB best subsets

¥

Feature
extraction

Yes Selected
feature set
for training

Mutation -

Fig. 1. Description of BLB-GAFS system
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IV. DATASETS AND SETUP
A. CCD-INID-VI

This dataset was developed by the researchers in [18]. It
focuses on transmissions between edge devices and cloud
servers, like in the smart lab and smart home settings. The
NFStream library was used to engineer features. The dataset
contains 91,665 instances and 81 features. It includes five
frequently used attacks: ARP poisoning, ARP DoS, UDP
flood, Hydra bruteforce with Asterisk protocol, and SlowLoris.

B. detection_of _IoT_botnet_attacks_N_BaloT (BaloT)

This dataset was created by the group in [16]. They collected
real traffic data from nine commercial IoT devices infected
with botnets from the Mirai and BASHLITE families. The
features were extracted from this captured data using au-
toencoders. The dataset includes 7,062,606 instances and 115
features. There are ten attacks from two families: BASHLITE
Scan, Junk, UDP, TCP, and COMBO along with Mirai Scan,
Ack, Syn, UDP, and UDPplain.

C. CIRA-CIC-DoHBrw-2020 (DoHBrw)

This dataset was generated by the researchers in [17]. There
are two layers of traffic flows: DoH and non-DoH HTTPS
at the first layer, and benign/malicious DoH at the second.
Mozilla Firefox and Google Chrome are used to simulate the
non-DoH HTTPS and benign DoH traffic. dns2tcp, DNSCat2,
and Iodine are used to simulate the malicious DoH traffic. The
DoHMeter tool is used to extract statistical features from this
captured traffic. The dataset includes 1,159,241 instances and
34 features. The three tools used for the malicious DoH traffic
make up the attack classes in this dataset.

D. Experimental Setup

Our experiments were conducted on a machine equipped
with an AMD Ryzen 5 3600 CPU, 16 GB of RAM, and
an NVIDIA RTX 3070 through the Windows Subsystem for
Linux platform. Since all of our selected datasets had some
measure of class imbalance, we applied the imbalanced-learn
library to each for better performance [32]. We used the scikit-
learn library to scale the datasets, implement our GA feature
selection as a Transformer, and train/evaluate our machine
learning models [33]. To speed up training and inference for
our classifiers, we used the RAPIDS cuML library to run them
on the GPU.

For each dataset, we first split them into training and testing
sets with an 80-20 ratio (80% training, 20% testing). We then
used the edited nearest neighbors approach in the imbalanced-
learn library to balance the classes, creating separate binary
and multiclass datasets in the process.

To preprocess the CCD-INID-V1 dataset, we first used
cuML’s target encoding on the categorical features in the
dataset. The last step was to encode the target labels—O or 1
for binary classification, and 0 through 5 for multiclass attack
detection. In the BaloT dataset, several of the nine devices are
missing multiple attack types. To ensure that we could test on
as many attack types as possible, we selected the Danmini

Doorbell (that contains all 10 attacks). After filtering down to
this device, there were 1,018,298 rows left. We wrapped up
preparation by encoding the targets—again, 0 or 1 for binary
classification and O through 10 for multiclass attack detection.
The DoHBrw dataset also did not take long to preprocess. We
first used target encoding on the categorical features. Then,
we labeled the targets O or 1 for binary classification and 0
through 3 for multiclass attack detection.

To evaluate the different approaches on each dataset, we will
examine classification metrics including precision, recall, and
Fl-score. Additionally, we will review the ROC-AUC score
for the binary case.

V. RESULTS

Fig. 2, Fig. 3, and Fig. 4 show the evolution of our GA in the
feature selection stage prior to classification on all three of the
datasets. These plots are from the multiclass attack detection
case. They demonstrate how the highest ROC-AUC score in
each generation rises while the number of features selected
falls. While the feature-space gains are mostly gradual, the
performance gains show the GA escaping local minima during
the search.

Following the feature selection process, we were left with
42/115 features on BaloT, 4/34 features on DoHBrw, and
16/81 features on CCD-INID-V1 in the binary case. In the
multiclass case, the GA selected 33/115 features on BaloT,
17/34 features on DoHBrw, and 17/81 features from CCD-
INID-V1. The differences between the anomaly detection and
attack identification behaviors in the GA were interesting.
While selecting more features on the DoHBrw and CCD-
INID-V1 datasets for the more difficult multiclass task, the
GA selected fewer features for the BaloT dataset.

In Table I, we present the binary classification metrics for
our various ML models evaluated following feature selection.
We include a comparison to the XCNN and RCNN approaches
presented in Liu et al., as that work also attempted feature
selection on these three datasets [18]. For the XCNN/RCNN
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Fig. 2. Evolution of BLB-GAFS during feature selection on BaloT
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Fig. 4. Evolution of BLB-GAFS during feature selection on DoHBrw

models, this work used embedded feature selection with XG-
Boost and Random Forest. In the anomaly detection task, our
feature selection technique paired with traditional ML models
resulted in excellent performance across all three datasets.
Our classifiers match or exceed the XCNN and RCNN in
ROC-AUC score for all cases except for the naive Bayes
classifier on the BaloT dataset. There were minute differences
in ROC-AUC score between the classifiers besides the RCNN
on the CCD-INID-V1 dataset. In general, every classifier was
successful in anomaly detection on these datasets.

We present the multiclass classification results in Table II.
In multiclass detection, there is a far more obvious discrep-
ancy between our classifiers and the XCNN/RCNN. In every
dataset, the GA feature selection-based models outperform the
deep learning techniques in precision, recall, and Fl-score.
Especially in the BaloT dataset with the largest original feature
space, BLB-GAFS selected features that resulted in higher
performance than the embedded feature selection methods

TABLE I
BINARY RESULTS

Dataset Model Precision | Recall | Fl-score | ROC-AUC
RCNN 0.96 0.96 0.96 0.956
XCNN 0.99 0.99 0.99 0.998
GA-NB 1.00 1.00 1.00 0.999
CCD-INID-V1 GA-RF 1.00 1.00 1.00 0.999
GALR .00 .00 .00 0.999
GA-SVM 1.00 1.00 1.00 0.999
GA-KNN 1.00 .00 .00 0.999
RCNN 1.00 1.00 1.00 0.999
XCNN 0.99 0.99 0.99 0.999
GA-NB 1.00 1.00 1.00 0.998
BaloT GA-RF 1.00 1.00 1.00 0.999
GA-LR 1.00 1.00 1.00 0.999
GA-SVM 1.00 1.00 1.00 0.999
GAKNN .00 .00 .00 0.999
RCNN 0.99 0.99 0.99 0.986
XCNN 1.00 1.00 1.00 0.999
GA-NB 1.00 1.00 1.00 0.999
DoHBrw GARF .00 1.00 .00 0.999
GA-LR 1.00 1.00 1.00 0.999
GA-SVM .00 .00 .00 0.999
GA-KNN 1.00 1.00 1.00 0.999

TABLE II
MULTICLASS RESULTS

Dataset Model Precision | Recall | Fl-score
RCNN 0.09 0.21 0.11
XCNN 0.77 0.35 0.29
GA-NB 1.00 1.00 1.00
CCD-INID-V1 GA-RF 0.99 0.99 0.99
GA-LR 0.96 0.96 0.96
GA-SVM 0.79 0.77 0.77
GA-KNN 0.85 0.83 0.83
RCNN 0.01 0.09 0.02
XCNN 0.02 0.09 0.03
GA-NB 0.76 0.70 0.64
BaloT GA-RF 0.92 0.89 0.86
GA-LR 0.82 0.83 0.79
GA-SVM 0.78 0.79 0.76
GA-KNN 0.88 0.88 0.83
RCNN 0.16 0.25 0.19
XCNN 0.65 0.47 0.51
GA-NB 0.69 0.73 0.69
DoHBrw GA-RF 0.95 0.96 0.96
GA-LR 0.79 0.81 0.80
GA-SVM 0.73 0.74 0.73
GA-KNN 0.94 0.95 0.94

used for RCNN and XCNN, respectively. This could be at-
tributed to the more model-agnostic nature of the evolutionary
search approach relative to embedded methods. While those
techniques select features that are important for the Random
Forest and XGBoost models specifically, BLB-GAFS can find
a feature set that is optimal regardless of the classifier.

VI. CONCLUSIONS

In this work, we experimented with a novel, BLB-based
fitness function for NSGA-II feature selection for intrusion
detection. We found that BLB-GAFS’s performance approxi-
mation approach avoided repeatedly training and testing clas-
sifiers on large datasets, saving computationally. We also
observed that our feature selection system achieved high

860



precision, recall, and Fl-score on various intrusion detection
tasks, including multiclass classification. This GA-based fea-
ture selection could have applications in other cases where
big data needs preprocessing for traditional ML algorithms to
succeed.
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