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Abstract—In evolutionary algorithms and metaheuristics,
defining when applying a specific operator is important. Besides,
in complex optimization problems, multiple populations can
be used to explore the search space simultaneously. However,
one of the main problems is extracting information from the
populations and using it to evolve the solutions. This article
presents the inequality-based multi-population differential evo-
lution (IMDE). This algorithm uses the K-means to generate
subpopulations (settlements). Two variables are extracted from
the settlements, the diversity and the Gini index, which mea-
sure the solutions’ distribution and the solutions’ inequality
regarding fitness. The Gini index and the diversity are used in
the IMDE to dynamically modify the scalation factor and the
crossover rate. Experiments over a set of benchmark functions
with different degrees of complexity validate the performance of
the IMDE. Besides comparisons, statistical and ranking average
validate the search capabilities of the IMDE.

Index Terms—Differential evolution, Multi-population, Gini
index, Diversity, K-means

I. INTRODUCTION

Evolutionary algorithms (EA) are essential for solving
complex optimization problems in multidimensional search
spaces [1]. EAs employ operators and rules to explore and
exploit the search space for optimal solutions. The Differen-
tial Evolution (DE) [2] is an EA that uses crossover, mutation,
and selection to modify candidate solutions.

DE is widely used; it has applications in feature selection
for classification [3], controller design in power electron-
ics, and parameter extraction of photovoltaic models [4].
However, like other EAs, DE faces premature convergence,
resulting in suboptimal solutions [5]. This is often due to a
loss of diversity in the population, which is crucial for proper
search space exploration [6]. Diversity provides essential
information and guides exploration decisions during iteration.

The Gini index (GI) is a statistical tool used to measure
equity in the distribution of resources in a population [7]. It
ranges from 0 (equality) to 1 (inequality). The GI is used
to verify inequality in the values of a variable [8]. It is

represented graphically by the Lorenz curve. It has several
applications, such as geostatistics. Although it is a powerful
tool, it has not been used in EA.

Regarding the DE, it has two main parameters that affect
its behavior: the amplification or scaling factor (F ) used
for the mutation, the most studied DE parameter due to the
importance of the mutation stage in the algorithm [9]. The
crossover rate (pCR) controls when to apply the crossover
operator, permitting the creation of a new solution from a
mutated individual.

The pCR is a parameter commonly studied [10]. All itera-
tions use A fixed value for pCR and F . This paper proposes
a version of the DE with the main population divided into
subpopulations. The parameters pCR and F are adapted at
each iteration using the subpopulations’ diversity and the
GI. The proposal, called inequality-based multi-population
DE (IMDE), creates the subpopulations (settlements) using
the K-means algorithm. The Gini index is then computed
for each settlement based on the fitness of its elements.
Each settlement’s diversity and GI are then used in the DE
process as a dynamic F and pCR. The GI then measures the
inequality of each settlement, and the diversity analyzes the
distribution of solutions. If a subpopulation has a lower GI
index, they are more probability of applying the crossover.

A number of well-known benchmark functions were used
to test the IMDE [11]. For comparison purposes, other
state-of-the-art EAs have also been under test. Statistical
analysis and average rank test were performed to validate
the effectiveness of the IMDE . The remainder sections
are organized as follows: Section II provides the concepts
related to DE, Gini index, diversity, and K-means. Section
III explains the methodology and inspiration of the IMDE.
Section IV presents the experiments and results. Finally,
Section V discusses some conclusions and future work.

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1547



II. BACKGROUND

A. Differential evolution algorithm

Differential Evolution (DE) has a population containing
N solution vectors with d dimensions [2]. This EA consists
of four main stages: initialization, crossover, mutation, and
selection.

1) Initialization: N individuals are randomly generated
by Eq. 1.

xt
i =

{
xt
1,i, x

t
2,i . . . , x

t
d,i

}
, ∈ RD (1)

2) Mutation: The most popular mutation for the DE is the
DE/rand/1, defined in Eq. 2.

vt+1
i = xt

p + F (xt
q − xt

r) (2)

At the generation t for each vector xi, initially, three
vectors are randomly selected xp, xq , and xr. Notice that
p, q, and r are random indexes. A donor vector is constructed,
where F ∈ [0, 2] is the scale or amplification factor.

3) Crossover: This stage is guided by the crossover rate
(pCR), which takes a constant value in the range of [0,1].
The crossover comprises every d component of the vector
vi. Considering a random variable ri ∈ [0, 1]. Then the j-th
components of vi are modified as follows:

ut+1
j,i =

{
vti,j if ri ≤ pCR,

xt
i,j otherwise,

(3)

where j = 1, 2, . . . , d. Then, each component has a
probability of the be from the donor vector of the xi to
construct the mutated vector u.

4) Selection: Here, the performance of the solutions u is
evaluated. The fitness of ui is compared with xi, where the
vector with the fittest continues in the population in the next
generation.

xt+1
i =

{
ut
i,j if f(ut+1

i ) ≤ f(xt
i),

xt
i,j otherwise,

(4)

B. K-means algorithm

The K-means algorithm works by dividing a set of particles
by the quadratic error criterion, minimizing the performance
index of the clusters. This division is an unsupervised learn-
ing clustering mechanism proposed in [12]. Given a set of
d-dimensional observations (x1, x2, . . . , xn), the algorithm
divides the n observations into k sets S = (Si, Si+1, . . . , Sk);
where k refers to the number of centroids set to group
the data. The condition of the algorithm is that each data
point can pertain to only one group. To minimize the sum
of squares within the cluster Si, (i.e., the variance). The
objective is to find the equality shown in Eq. 5, where µi

is the mean of the data in Si.

argmin(S)

k∑
i=1

∑
x∈Si

∥x−µi∥2 = argmin(S)

k∑
i=1

|Si|V arSi

(5)

C. Dimension-wise diversity

Balancing the exploration and exploitation phases is cru-
cial in EAs. The exploration disperses candidate solutions
across the search space. In contrast, the exploitation con-
centrates solutions in a promising area and performs an
exhaustive search. There is no established balance, as dif-
ferent problems require different approaches. Improving this
balance involves analyzing the problem and the population’s
behavior toward potential solutions. Population diversity
gives us a measurement of how concentrated or sparsed
are the search agents along the search space. In this paper,
Dimension-wise diversity [13] measurement is employed to
know the behavior of the search agents. Population diversity
is calculated by Eq. 6, where N is the total number of
search agents, median(xj) represents the median of the j-
th dimension in the entire population, and (xij) is the j-th
dimension of the i-th search agent.

Divj =
1

N

N∑
i=1

|median(xj)− xij | (6)

After calculating the dimension-wise distance of each
particle i, the average Divj of all particles is obtained. Av-
eraging Divj in each dimension brings the whole population
diversity, calculated through Eq. 7, where D is the problem
dimensionality.

Div =
1

D

D∑
j=1

Divj (7)

Eq. 8 is used to calculate the total percentage of diversity,
where Div is the total diversity of the present iteration, and
Divmax is the maximum diversity obtained since the first
diversity measurement.

Div% =
Div

Divmax
(8)

D. Inequality measurement

1) Gini index (GI): It is a coefficient presented by Corrado
Gini in 1912 [14]. The GI allows for measuring the equity in
distributing some goods among the population. It has been
proved that the GI is the numerical representation of the
double area between the Lorenz Curve and the straight line
representing perfect equity. Besides, the GI can be formulated
in different ways [14]. Among all the formulations, there is
a version suitable for non-clustered data, which can be seen
in Eq. 9 [15].

GI =

∑n−1
i=1 (Pi − Yi)∑n−1

i=1 Pi

(9)

Assume the existence of a resource y distributed among
the n individuals of a given population p. The individuals
are ordered in increasing order concerning the value of the
distribution of the good: y1 ≤ y2, . . . ,≤ yn. A simple
(pi) and a cumulative (Pi) relative frequency distribution
is constructed for the population under study and another
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for the distributed variable (yi and Yi). The GI is based
on the sum of the differences (Pi − Yi) and is divided
by

∑n−1
i=1 Pi to normalize the output values to the interval

[0, 1]. For calculating the cumulative relative frequency of
the population, we use Eq. 10, where Xi is the cumulative
absolute frequency of the population.

Pi =
Xi

n
∗ 100 (10)

The relative frequency of the distributed variable is con-
structed by Eq. 11, where xi is the number of individuals
in the population to which the value yi of the distributed
variable corresponds.

Yi =

∑n
i=1 yixi

wn
∗ 100 (11)

III. METHODOLOGY AND PROPOSAL

A. Inequality-based multi-population DE

The original concept of the inequality-based multi-
population DE (IMDE) is based on the idea that a community
improves when each community member can access enough
goods produced as a society to have a good living. It is
not a secret that where there are resources, communities
of individuals are more likely to prosper. Since ancient
times, humans have founded populations depending on the
availability of resources in determining areas. The approach
of the resources by a community has led to the growth or
eventual disappearance of the population.

In this article, the general structure of the original DE
algorithm is used. However, instead of using a single popu-
lation, multiple populations (settlements) are created by the
K-means. Similar to human settlements, these populations
are expected to evolve in the pursuit of better production,
measured by each individual’s fitness. The GI assesses the
concentration or dispersion of production within a popula-
tion.

B. IMDE Methodology

The methodology used to design the proposed algorithm
is based on three main points:

• Modify the DE structure using the K-means to create
multiple populations in the initialization stage. The DE
then operates the populations independently.

• Analyze the evolution of the scaling factor (F ) and
crossover rate (pCR) values using dimension-wise di-
versity and the GI, respectively.

• Compare the proposed IMDE with relevant state-of-the-
art DE modifications and other EAs.

C. IMDE algorithm: general structure

The flowchart of Fig.1 presents the structure of the IMDE.
The initialization and the iterative process are explained in
this subsection.

1) Initialization : Two critical parameters for the opera-
tion of IMDE are the number of particles N , and the number
of settlements k. By setting the population, particles normally
distributed over the search space are randomly generated
and clustered into the k settlements (not uniformly sized)
by K-means. For this purpose, we perform the sensitivity
analysis of the Subsection III-D. The last important step
in the initialization stage is calculating each settlement’s
diversity and best solution.

2) Iterative process : The first brings a significant change
concerning the original DE because the scaling factor (F )
is no longer a constant but a dynamic parameter calculated
using Eq. 12. The scaling factor is calculated at each iteration
for each settlement. After that, the GI is computed using
Eq. 9. The algorithm sets pCR = GI or a random value
(Eq. 13), depending on the GI value previously obtained.
IMDE performs the standard DE stages for each settlement
when both parameters are calculated. This process continues
until the stop criteria is reached and the best solution is
selected.

D. Sensitivity tests for adjusting initialization parameters

In the IMDE the K-means generate the settlements. How-
ever, k is an extra parameter and should be properly tuned. A
sensitivity test has been performed to identify the best k. For
this test, the population is set as N = 100, and four functions
were selected, one of each group (multimodal, unimodal,
hybrid, and shifted), all in 10 dimensions. The value of k
changes along the test from 1 to 10 one by one.

To numerically analyze the influence of the k, 30 indepen-
dent runs were performed. Table I shows the results of the
average (AVG) and standard deviation (SD) of the fitness.
In Table I sensitivity tests, it is evident that k = 2 is the
best settling value, as this number of clusters provides the
lowest AVG and STD across all four functions. k = 3 is
also a good choice for the multimodal and shifted functions.
However, the behavior is to be expected since the multimodal
and shifted functions have complex landscapes where more
clusters benefit the search by escaping local optima. However,
the excessive use of populations also affects the performance
of the proposed approach. For this reason, k = 2 is the
initialization parameter used in the IMDEto perform the
experiments.

TABLE I: Statistical analysis of the sensitivity test.
Function IMDE k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
Multimodal f6 AVG 3.80E+00 1.07E-15 1.07E-15 1.42E-15 1.78E-15 7.11E-15 3.14E-10 7.92E-13 2.89E-08 9.23E-03

SD 6.16E+00 1.72E-15 1.72E-15 1.83E-15 1.87E-15 1.51E-14 9.93E-10 1.83E-12 9.04E-08 2.40E-02
Uni-modal f1 AVG 1.53E+02 8.34E-46 1.11E-32 1.32E-26 1.43E-21 7.01E-17 9.23E-12 1.25E-08 4.96E-03 6.02E-02

SD 4.85E+02 2.62E-45 3.50E-32 3.75E-26 4.03E-21 2.18E-16 1.97E-11 3.89E-08 1.10E-02 1.90E-01
Composite f31 AVG 1.22E+02 1.30E-26 1.29E-25 7.10E-25 1.46E-20 9.06E-17 6.54E-13 2.39E-01 6.96E-12 1.23E-02

SD 3.85E+02 1.20E-26 1.77E-25 8.26E-25 4.26E-20 2.86E-16 2.06E-12 7.54E-01 1.43E-11 3.62E-02
Shifted f35 AVG 4.19E+00 0.00E+00 0.00E+00 1.07E-15 1.07E-15 6.06E-13 4.58E-14 6.53E-11 2.63E-03 1.65E-01

SD 6.79E+00 0.00E+00 0.00E+00 1.72E-15 1.72E-15 1.91E-12 9.07E-14 2.06E-10 8.32E-03 5.20E-01

E. Evolution of scaling factor using dimension-wise diversity

Typically, the scaling factor F value is commonly set with
values of 0.8, 0.9, or 1. However, for a particular class of
problems fixed, this parameter causes premature convergence.
In this work, dimension-wise diversity is used to determine
the diversity among the elements of a specific population
[13]. We use this criterion to determine each settlement’s
dimensional diversity in each iteration. The diversity is then
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Fig. 1: Flowchart of the proposed IMDE algorithm.

normalized with values from 0 to 1, which allows us to work
with divmax, which is equal to the sum of the diversities of
all settlements. This value is normalized as 1 or the maximum
diversity reached in the initialization, representing 100% of
the diversity. The second value is the divmin, corresponding
to a percentage of the maximum diversity, also expressed
in values between 0 and 1. After this, a scaling factor F is
calculated as:

F = divmin + (divmax − divmin) · rand (12)

Where rand is a random number between 0 and 1,
allowing to set a value for F between the range of divmin

and divmax. Fig. 2 (a-d) shows four graphs corresponding to
each of the chosen functions (same as the sensitive analysis).
In blue and orange, each of the settlements is differentiated;
these were plotted based on the optimal parameter k = 2.
The Y axis represents the values of the parameter F as a
function of the historical of the diversity for each settlement
represented on the X axis.

In Fig. 2, we can observe in both settlements that, when
the diversity is higher, commonly in the first stages of the
iterative process, the scaling factor F tends to have high
values which is very convenient in the initial stages. In
contrast, when the diversity decreases, the range increases,
propitiating that the scaling factor F has more diverse values
between the range of 0.1− 0.9 approximately. Finally, when
the diversity tends to 0, i.e., in the final stage of the iterative
process with diversities inferior to 0.1 that represents 10% of
the total diversity, the values of F commute quickly between
0 and 1. This means that the algorithm in the exploitation
stage can continue finding the diversity of solutions or
intensify and refine the solutions.

F. Evolution of crossover probability using the GI
Once the mutation is performed and depending on whether

the pCR is high or low, this operator will create a new
solution based on the elements selected during the mutation
process. The values for the pCR should be low, typically
fixed to 0.2 or 0.3. However, here is implemented a pCR
that varies dynamically according to the GI. The process to
establish the pCR first involves calculating the GI, normal-
ized from 0 to 1, and determining using the fitness of each

(a) Uni-modal function f6. (b) Multi-modal function f1.

(c) Composite function f31. (d) Shifted function f35.

Settlement 1 Settlement 2

Fig. 2: Dynamic adjustment of F based on the diversity of
each settlement.

and the number of individuals per settlement using the Eq. 9.
Once the GI has been computed, there are two cases:

Case 1: When the GI is less than or equal to 1, the value is
equated to the crossover probability (pCR), i.e., pCR = GI .

Case 2: When the GI cannot be calculated due to the na-
ture of the data, the crossover probability pCR will be chosen
from a range of 0.1− 0.5 with the following expression:

pCR = 0.1 + (0.5− 0.1) · rand (13)

The analysis of the evolution of the pCR parameter as a
function of the GI shows interesting results. In Fig. 3, the
four graphs of different classes of functions show similar
behaviors although, with different values. It is evident that
while the fitness value is high in the initial stages of the
algorithm, the GI is low, which indicates a good diversity
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(a) Multimodal function f6. (b) Uni-modal function f1.

(c) Composite function f31. (d) Shifted function f35.

Settlement 1 Settlement 2

Fig. 3: Dynamic adjustment of pCR based on the Gini index
of each settlement.

of solutions and different fitness values between each settle-
ment, obtaining pCR values between the ranges of [0.1−0.3]
for Fig. 3 (a), values of [0.1−0.6] for Fig. 3 (b), pCR between
[0.35− 0.55] approximately for Fig. 3 (c) and, finally pCR
with a range of [0.1 − 0.3] for Fig. 3 (d), these ranges of
values are very appropriate considering that the ideal values
for pCR should be low as evidenced by several articles of
the state of the art. On the other hand, all the plots show that
when the fitness diversity is very low in the final stages of
the algorithm, the GI tends to 1, but for a very short time.
This could benefit if, in some complex functions where the
algorithm suffers from premature convergence, allowing it to
escape from local optima. The direct relationship of the GI
with the pCR is then given by the fitness in each settlement,
which allows a lower probability of crossover in the early
stages of the algorithm. At the same time, in the algorithm’s
late steps, the PCR can be more random with high values,
which would provide diversity in the solutions of promising
zones.

IV. EXPERIMENTS SETUP AND RESULTS

We choose four types of benchmark functions that test
different aspects of the algorithms. The test set consists of
43 functions divided into five unimodal, 25 multimodal, four
composite, and nine shifted. The obtained results from testing
IMDE are compared against some DE and Particle Swarm
Optimization (PSO)variants. The algorithms used to compare
our proposal are Self-adaptive DE (JADE) [16], Linear Pop-
ulation Size Reduction with Adaptive DE (L-SHADE) [17],
Differential Evolution (DE) [2], Estimation of Distribution
Algorithm (EDA) [18], Autonomous Particles Groups for

PSO (AGPSO) [19], Improved PSO (IPSO) [20], PSO with
asymmetric time-varying (MPSO) [21], and Particle Swarm
Optimization (PSO) [22]. The experiments were performed
under the same conditions setting as stopping criteria 50,000
function accesses for 30 dimensions, the population size
for each algorithm was 50 search agents. In the case of
algorithms working with dynamically changing populations,
the initialization parameters were set as suggested by the
authors in the original publications.

Tables II and III present the statistical results of the AVG
and the SD after 30 executions of the nine algorithms for
each problem considering 30 dimensions. The algorithms are
evaluated in each run until the maximum number of function
accesses is reached. The results that achieved the minimal
AVG value and SD are highlighted in bold. Table III shows
that the IMDE algorithm obtained the best results in four
out of five unimodal functions using 30 dimensions for both
statistical results. The algorithm that won in the F5 instance
is the IPSO.

The study conducted statistical tests and used a ranking
average to compare different algorithms on 43 optimization
functions. Tables II and III show that the IMDE outperformed
other algorithms, achieving the best results in most functions
and obtaining the highest rank in 28 of them. In the case
of composite functions (Table II), the proposed algorithm
performed well, obtaining the best results for two out of
four instances. However, the LSHADE algorithm outper-
formed in the remaining instances. For shifted functions, the
proposed algorithm achieved minimum values in more than
half of the tested instances. Overall, the results demonstrate
the efficiency and effectiveness of the proposed method in
optimizing various types of problems and finding optimal
solutions with stability.
TABLE II: Results of Composite and Shifted functions
considering 30 dimensions.

Function IMDE DE JADE LSHADE EDA PSO AGPSO IPSO MPSO
F31.fx15 AVG 1.41E-13 5.67E+03 7.69E-01 1.65E-05 6.14E+03 4.86E-04 5.57E-04 4.15E-04 3.68E+03

SD 4.94E-14 3.60E+03 3.93E+00 1.55E-05 5.91E+03 3.05E-04 1.40E-03 8.05E-04 7.21E+03
Rank AVG 1 8 6 2 9 4 5 3 7

F32.fx16 AVG 2.90E+01 2.39E+02 3.33E+01 2.90E+01 2.57E+02 6.29E+01 8.15E+01 1.00E+02 9.45E+01
SD 3.61E-10 4.30E+01 3.66E+00 1.91E-08 7.38E+01 1.69E+01 1.42E+01 2.16E+01 2.38E+01

Rank AVG 1 7 2 1 8 3 4 6 5
F33.fx17 AVG 1.53E+02 1.30E+06 1.63E+02 3.20E+01 1.31E+07 9.01E+01 4.26E+01 3.55E+01 5.07E+01

SD 2.97E+01 2.48E+06 9.82E+01 4.40E-05 1.13E+07 2.37E+01 8.58E+00 3.05E+00 1.74E+01
Rank AVG 6 8 7 1 9 5 3 2 4

F34.fx18 AVG 4.41E+01 2.93E+02 3.56E+01 2.90E+01 4.57E+02 4.96E+01 8.10E+01 9.97E+01 3.22E+02
SD 2.62E+01 5.59E+01 7.61E+00 8.40E-05 5.80E+02 1.54E+01 1.71E+01 2.38E+01 2.66E+02

Rank AVG 3 7 2 1 9 4 5 6 8
F35.ShiftedAckley AVG 2.63E-11 1.09E+01 5.69E+00 1.64E-06 1.07E+01 6.60E-04 1.78E+00 9.00E-01 1.17E+00

SD 2.27E-11 1.34E+00 1.24E+00 1.00E-06 1.86E+00 4.55E-04 5.19E-01 7.87E-01 2.56E+00
Rank AVG 1 9 7 2 8 3 6 4 5

F36.ShiftedPowell AVG 2.43E-01 1.29E+02 9.40E-01 2.92E-06 6.12E+02 5.96E-03 9.91E+00 6.09E+01 2.81E+02
SD 2.13E-01 7.50E+01 5.15E+00 1.92E-06 4.73E+02 2.82E-03 2.69E+01 7.69E+01 3.70E+02

Rank AVG 3 7 4 1 9 2 5 6 8
F37.ShiftedRastringin AVG 2.67E-12 1.71E+02 1.74E+01 1.12E+01 8.55E+01 4.47E+01 4.99E+01 8.08E+01 9.79E+01

SD 3.01E-12 3.29E+01 3.26E+00 2.39E+00 1.98E+01 1.26E+01 1.91E+01 2.28E+01 2.53E+01
Rank AVG 1 9 3 2 7 4 5 6 8

F38.ShiftedRosenbrock AVG 4.13E+02 7.66E+04 2.36E+01 2.11E+01 5.03E+04 4.79E+01 2.17E+03 2.14E+02 4.90E+04
SD 6.24E+02 4.36E+04 1.04E+01 6.31E-01 5.09E+04 3.68E+01 8.48E+03 4.22E+02 3.61E+04

Rank AVG 5 9 2 1 8 3 6 4 7
F39.ShiftedRothyp AVG 5.80E-22 1.97E+04 2.92E-06 3.85E-10 1.93E+04 5.77E-05 1.43E+02 2.00E+03 1.03E+04

SD 5.59E-22 7.49E+03 9.47E-06 3.51E-10 9.13E+03 7.33E-05 7.84E+02 4.61E+03 1.10E+04
Rank AVG 1 9 3 2 8 4 5 6 7

F40.ShiftedSchwefel2 AVG 1.79E-20 6.99E+05 3.47E-03 1.67E-08 7.42E+05 6.67E+02 3.40E+04 1.54E+05 5.41E+05
SD 2.51E-20 3.44E+05 1.89E-02 1.35E-08 4.40E+05 2.54E+03 8.59E+04 2.00E+05 6.20E+05

Rank AVG 1 8 3 2 9 4 5 6 7
F41.ShiftedSchwefel22 AVG 9.77E+00 6.65E+10 7.48E+00 1.40E-01 2.67E+02 5.43E+01 8.13E+01 1.62E+02 4.47E+02

SD 1.69E+01 1.76E+11 4.87E+00 2.21E-01 6.90E+01 1.65E+02 1.32E+02 1.07E+02 2.68E+02
Rank AVG 3 9 2 1 7 4 5 6 8

F42.ShiftedSphere AVG 3.43E-26 1.17E+01 1.34E-09 1.34E-13 9.59E+00 3.57E-08 9.09E-11 4.17E-11 8.33E-10
SD 1.10E-26 3.81E+00 3.28E-09 1.12E-13 4.49E+00 4.87E-08 1.64E-10 1.30E-10 2.03E-09

Rank AVG 1 9 6 2 8 7 4 3 5
F43.ShiftedSum2 AVG 5.03E-24 4.47E+02 1.16E-07 8.12E-12 4.93E+02 8.57E-07 1.33E+01 1.67E+01 1.57E+02

SD 5.64E-24 1.30E+02 3.02E-07 8.43E-12 2.87E+02 1.24E-06 4.34E+01 4.61E+01 2.31E+02
Rank AVG 1 8 3 2 9 4 5 6 7

V. CONCLUSIONS

In this paper, the DE algorithm has been improved with
two specific changes: a multi-population scheme and a strat-
egy to dynamically adjust the pCR and F tuning parameters
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according to the diversity of the subpopulations (settlements)
and with the Gini index. The proposed algorithm, called
IMDE, creates the settlements using the K-means. The Gini
index is then computed for each settlement based on the
fitness of its elements. Each settlement’s diversity and Gini
index are then used in the DE process as a dynamic F and
pCR. First, as the scaling factor, F governs the magnitude
of the changes in the mutation. Dynamically adjusting it
based on the population diversity allows the algorithm to
better adapt to the specific challenges that each optimization
function entails. On the other hand, the pCR parameter
greatly influences the crossover. Adjusting it based on the
Gini index allows the algorithm to maintain a healthy pop-
ulation along the search. The experiments and comparison
validate the good capabilities of the IMDE to overcome
different optimization problems.
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TABLE III: Results of Unimodal and Multimodal functions
considering 30 dimensions.

Function IMDE DE JADE LSHADE EDA PSO AGPSO IPSO MPSO
F1.Rothyp AVG 1.83E-22 1.98E+04 7.92E-06 4.01E-10 2.05E+04 7.23E-05 3.78E-06 1.15E+03 6.59E+03

SD 3.66E-23 9.22E+03 3.94E-05 2.65E-10 1.20E+04 1.15E-04 1.44E-05 2.51E+03 7.46E+03
Rank AVG 1 8 4 2 9 5 3 6 7

F2.Schwefel2 AVG 2.46E-20 7.32E+05 7.54E-04 3.20E-08 8.46E+05 2.68E-03 7.00E+03 8.20E+04 4.98E+05
SD 2.75E-20 3.00E+05 3.37E-03 2.73E-08 3.86E+05 5.37E-03 1.88E+04 1.52E+05 3.71E+05

Rank AVG 1 8 3 2 9 4 5 6 7
F3.Sphere AVG 1.03E-25 1.09E+01 1.55E-09 2.06E-13 9.89E+00 3.60E-08 3.44E-11 5.04E-12 4.25E-09

SD 9.51E-26 4.09E+00 6.46E-09 4.35E-13 6.26E+00 8.50E-08 7.09E-11 1.59E-11 2.06E-08
Rank AVG 1 9 5 2 8 7 4 3 6

F4.Sum2 AVG 2.72E-24 4.75E+02 2.29E-07 1.06E-11 5.12E+02 1.71E-06 6.73E-07 1.67E+01 1.73E+02
SD 2.40E-24 2.41E+02 8.04E-07 2.60E-11 2.10E+02 2.25E-06 3.66E-06 4.61E+01 2.20E+02

Rank AVG 1 8 3 2 9 5 4 6 7
F5.Sumpow AVG 9.31E-29 3.34E-02 6.04E-18 8.77E-32 2.07E-02 1.18E-28 3.97E-27 8.05E-45 2.01E-30

SD 1.61E-28 1.81E-01 1.43E-17 3.31E-31 3.33E-02 2.80E-28 1.62E-26 2.03E-44 1.10E-29
Rank AVG 4 9 7 2 8 5 6 1 3

F6.Ackley AVG 1.90E-11 4.82E+00 6.40E+00 1.54E-06 1.02E+01 7.80E-04 1.75E+00 1.07E+00 9.79E-01
SD 8.07E-12 1.80E+00 3.01E+00 7.53E-07 1.72E+00 5.16E-04 5.83E-01 7.37E-01 8.59E-01

Rank AVG 1 7 8 2 9 3 6 5 4
F7.Dixon AVG 7.57E-01 2.12E+03 6.67E-01 6.67E-01 3.80E+04 7.92E-01 3.61E+00 3.36E+01 6.72E+01

SD 1.57E-01 2.89E+03 2.52E-03 7.94E-11 2.28E+04 2.85E-01 1.54E+01 8.35E+01 1.08E+02
Rank AVG 2 7 1 1 8 3 4 5 6

F8.Griewank AVG 0.00E+00 6.06E+00 1.04E-03 2.22E-10 3.35E+01 1.33E-02 4.72E-02 1.64E-02 1.30E-02
SD 0.00E+00 4.64E+00 2.32E-03 2.14E-10 1.36E+01 1.93E-02 3.62E-02 2.08E-02 1.46E-02

Rank AVG 1 8 3 2 9 5 7 6 4
F9.Infinity AVG 8.69E-42 1.94E-03 2.11E-22 1.06E-34 5.01E-02 6.10E-18 1.05E-28 4.46E-33 8.44E-28

SD 1.50E-41 2.52E-03 1.12E-21 1.88E-34 4.98E-02 8.55E-18 3.91E-28 1.27E-32 2.64E-27
Rank AVG 1 8 6 2 9 7 4 3 5

F10.Levy AVG 1.51E-24 1.97E+00 3.34E-02 3.79E-12 1.13E+01 5.33E-01 3.54E-01 1.54E+00 3.63E+00
SD 8.11E-25 1.30E+00 1.16E-01 3.77E-12 4.73E+00 8.33E-01 5.74E-01 1.31E+00 4.30E+00

Rank AVG 1 7 3 2 9 5 4 6 8
F11.Mishra1 AVG 2.00E+00 4.68E+00 2.00E+00 2.00E+00 1.83E-01 2.53E+01 2.00E+00 2.00E+00 2.70E+00

SD 0.00E+00 2.18E+00 0.00E+00 0.00E+00 3.98E-01 1.13E+02 0.00E+00 0.00E+00 2.14E+00
Rank AVG 2 4 2 2 1 5 2 2 3

F12.Mishra2 AVG 2.00E+00 4.69E+00 2.00E+00 2.00E+00 4.22E-01 1.06E+01 2.00E+00 2.00E+00 2.60E+00
SD 0.00E+00 2.00E+00 0.00E+00 0.00E+00 4.99E-01 1.58E+01 0.00E+00 0.00E+00 1.81E+00

Rank AVG 2 4 2 2 1 5 2 2 3
F13.Mishra11 AVG 0.00E+00 3.23E-05 0.00E+00 1.48E-05 4.02E-02 9.96E-20 1.33E-06 3.24E-11 0.00E+00

SD 0.00E+00 7.79E-05 0.00E+00 5.00E-05 1.03E-02 1.81E-19 7.27E-06 1.78E-10 0.00E+00
Rank AVG 1 6 1 5 7 2 4 3 1

F14.MultiModal AVG 0.00E+00 0.00E+00 6.94E-49 9.23E-79 1.79E-232 1.80E-64 9.81E-97 4.72E-100 1.23E-107
SD 0.00E+00 0.00E+00 3.63E-48 4.81E-78 0.00E+00 9.86E-64 5.37E-96 2.59E-99 6.74E-107

Rank AVG 1 1 8 6 2 7 5 4 3
F15.Penalty1 AVG 7.28E+01 4.09E+05 2.78E+02 7.45E+01 1.13E+07 8.13E+01 8.22E+01 8.38E+01 8.38E+01

SD 1.78E+00 5.50E+05 1.49E+02 9.64E+00 8.83E+06 3.28E+00 3.26E+00 2.80E+00 3.04E+00
Rank AVG 1 7 6 2 8 3 4 5 5

F16.Penalty2 AVG 9.85E+01 8.10E+05 1.32E+02 1.10E+02 1.43E+07 1.04E+02 1.00E+02 1.02E+02 1.02E+02
SD 1.61E+00 1.43E+06 1.69E+01 3.77E+00 1.67E+07 4.11E+00 5.41E+00 5.17E+00 5.03E+00

Rank AVG 1 7 6 5 8 4 2 3 3
F17.Plateau AVG 3.00E+01 3.06E+01 3.00E+01 3.00E+01 3.69E+01 3.00E+01 3.00E+01 3.01E+01 3.09E+01

SD 0.00E+00 8.90E-01 0.00E+00 0.00E+00 3.02E+00 0.00E+00 0.00E+00 7.30E-01 1.78E+00
Rank AVG 1 3 1 1 5 1 1 2 4

F18.Powell AVG 1.33E+01 5.57E+01 1.86E-01 2.73E-06 7.51E+02 5.01E-03 9.38E+00 2.43E+01 3.30E+02
SD 2.11E+01 4.95E+01 1.02E+00 2.46E-06 5.62E+02 1.77E-03 2.23E+01 4.02E+01 1.21E+02

Rank AVG 5 7 3 1 9 2 4 6 8
F19.Qing AVG 9.39E-14 4.38E+08 9.98E+00 9.05E-01 3.09E+09 3.35E-01 1.70E-04 9.83E-06 3.99E-03

SD 1.04E-13 6.04E+08 9.05E+00 3.87E+00 2.34E+09 5.18E-01 3.85E-04 4.24E-05 8.78E-03
Rank AVG 1 8 7 6 9 5 3 2 4

F20.Quartic AVG 1.06E+01 9.55E+00 1.11E+01 9.16E+00 1.34E+01 9.58E+00 1.04E+01 1.03E+01 1.11E+01
SD 1.79E-01 5.34E-01 4.80E-01 3.87E-01 2.41E+00 3.85E-01 7.79E-01 7.00E-01 1.21E+00

Rank AVG 6 2 7 1 8 3 5 4 7
F21.Quintic AVG 4.33E-08 1.98E+02 2.03E+00 1.62E-03 3.65E+03 2.40E-03 1.17E-01 6.87E-02 7.07E-01

SD 7.40E-08 1.92E+02 1.08E+00 1.24E-03 2.54E+03 1.65E-03 2.98E-01 1.64E-01 1.80E+00
Rank AVG 1 8 7 2 9 3 5 4 6

F22.Rastringin AVG 3.80E-08 1.38E+01 1.77E+01 1.07E+01 8.52E+01 4.34E+01 4.46E+01 7.73E+01 1.00E+02
SD 6.58E-08 4.19E+00 2.82E+00 3.00E+00 1.81E+01 1.27E+01 1.31E+01 2.50E+01 3.15E+01

Rank AVG 1 3 4 2 8 5 6 7 9
F23.Rosenbrock AVG 4.20E+01 3.68E+03 2.84E+01 2.08E+01 4.12E+04 5.54E+01 8.68E+01 2.06E+02 1.09E+04

SD 3.90E+01 3.48E+03 2.10E+01 7.87E-01 4.31E+04 3.97E+01 1.90E+02 5.03E+02 2.57E+04
Rank AVG 3 7 2 1 9 4 5 6 8

F24.Schwefel22 AVG 1.07E-09 1.32E+01 7.74E+00 1.36E-01 3.17E+02 1.04E+02 3.96E+01 1.68E+02 4.28E+02
SD 8.13E-10 2.39E+01 4.86E+00 1.87E-01 1.06E+02 2.13E+02 5.52E+01 1.27E+02 2.08E+02

Rank AVG 1 4 3 2 8 6 5 7 9
F25.Schwefel26 AVG -1.25E+04 -1.16E+04 -9.68E+03 -1.20E+04 -5.73E+04 -6.77E+03 -1.01E+04 -9.78E+03 -8.68E+03

SD 6.84E+01 2.61E+02 5.80E+02 1.66E+02 1.04E+05 7.16E+02 6.08E+02 4.82E+02 6.89E+02
Rank AVG 2 4 7 3 1 9 5 6 8

F26.Step AVG 0.00E+00 7.24E+02 0.00E+00 0.00E+00 3.38E+03 3.33E-02 3.00E-01 2.43E+00 2.50E+00
SD 0.00E+00 7.04E+02 0.00E+00 0.00E+00 1.89E+03 1.83E-01 5.96E-01 6.22E+00 2.70E+00

Rank AVG 1 6 1 1 7 2 3 4 5
F27.Stybtang AVG -1.17E+03 -1.13E+03 -1.16E+03 -1.17E+03 -8.73E+02 -1.02E+03 -1.07E+03 -1.05E+03 -1.06E+03

SD 1.61E-13 2.41E+01 1.46E+01 4.31E+00 4.66E+01 3.31E+01 2.77E+01 3.58E+01 3.59E+01
Rank AVG 1 3 2 1 8 7 4 6 5

F28.Trid AVG 5.64E+03 7.03E+04 -3.95E+03 -4.93E+03 2.20E+05 -1.33E+03 4.90E+03 5.88E+03 2.20E+05
SD 1.24E+04 5.07E+04 8.96E+02 5.22E-02 8.60E+04 1.83E+03 2.94E+04 2.04E+04 1.91E+05

Rank AVG 5 7 2 1 8 3 4 6 8
F29.Vincent AVG -3.00E+01 -2.99E+01 -2.99E+01 -2.98E+01 -1.04E+01 -3.00E+01 -3.00E+01 -2.97E+01 -2.95E+01

SD 2.98E-10 6.16E-02 3.84E-02 7.16E-02 1.60E+00 6.78E-08 8.40E-10 6.52E-01 8.48E-01
Rank AVG 1 2 2 3 6 1 1 4 5

F30.Zakharov AVG 1.32E+02 2.13E+01 4.09E+02 4.70E-04 5.63E+02 8.57E+00 4.03E+01 2.76E+01 1.13E+02
SD 1.72E+01 1.18E+01 9.45E+01 5.12E-04 1.70E+02 1.44E+01 5.65E+01 4.41E+01 6.94E+01

Rank AVG 7 3 8 1 9 2 5 4 6
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