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Abstract—Particle swarm optimization (PSO) is a swarm in-
telligence algorithm that finds candidate solutions by iteratively
updating the positions of particles in a swarm. PSO performance
depends on the use of a suitable control parameter (CP)
configuration, which governs the trade-off between exploration
and exploitation in the swarm. Various methods of adapting or
tuning CPs exist, but many result in exploding particle velocities
and an unstable search process. Poli’s stability condition ensures
convergence in the mathematical limit, and is often used to
inform CP configuration. However, this study shows that since
it does not place any practical convergence constraints, it cannot
be used to guarantee a stable search process. Velocity explosion
occurs nonetheless and can lead to floating-point overflow
and numerical instability. The investigation into various CP
configurations across diverse functions and measurements of
particle velocities provides empirical evidence of velocity explo-
sion, and cautions against the assumption that enforcing Poli’s
criterion guarantees stability. The findings underline the need
for comprehensive understanding of CP tuning and stability
conditions in PSO, as well as the crucial role of empirical
evidence in evaluating the real-world performance of swarm
intelligence algorithms.

Index Terms—Particle swarm optimization, Stability condi-
tion, Poli, Swarm intelligence

I. INTRODUCTION

Particle swarm optimization (PSO) is a form of swarm
intelligence algorithm, initially proposed by Kennedy and
Eberhart [1], and draws inspiration from the congregation
patterns of bird flocks. The PSO method finds potential
solutions through continuous modification of the position and
velocities of particles within a swarm. The momentum of
each particle, the best position it has visited, and the best
position visited by any particle in its neighbourhood are used
to calculate these changes in position and velocity.

PSO is suitable for multiobjective optimization problems,
and complicated problems with deceptive fitness landscapes
where standard gradient-based algorithms are prone to be-
come stuck in a local minimum. The effectiveness of PSO is
reliant on the usage of an appropriate control parameter (CP)
configuration, which balances exploration and exploitation
within the swarm [2]–[5]. Furthermore, the CP configuration
dictates whether the swarm approaches an equilibrium or
diverges.

The No Free Lunch theorem [6] states that any two
algorithms are equivalent when their performance is assessed
as an average over all problems, which extends to CPs in that
no CP configuration is optimal for all problems. Therefore,
the CP configuration must be tuned for the problem at hand
if optimal performance is desired [3], [7]. Furthermore, if
the particle swarm diverges and leaves the search space
permanently, no good solutions are found.

To prevent divergence, various stability conditions have
been derived, all defining convergence regions from which
stable CP values can be sampled. Examples of stability
conditions are those by Van den Bergh [3], Kadirkamanathan
[8], Gazi [9], and Poli [10]. Poli’s criterion was also derived
in an assumption free manner [11]–[15], and has empiri-
cally been demonstrated to be the most accurate amongst
the various stability conditions [16], [17]. Poli’s criterion
therefore provides useful guidance with regards to setting
CP configurations conducive towards convergence, defined
in this context as an equilibrium state where particles do not
move anymore, not that they necessarily end up at the same
point in the landscape.

However, while Poli’s criterion ensures convergence in
the mathematical limit, it does not place any practical con-
vergence constraints. The criterion does not specify that
convergence will occur within K time-steps, or that particle
step sizes will remain below some bound Vmax. PSO can
only ever be run within a finite computational budget and
with a finite floating point precision. Therefore, PSO search
often diverges in a practical sense when considering the
computational budget constraints, even when CPs lie well
within the convergence region defined by Poli’s criterion.
Nonetheless, an equilibrium may still be reached if the search
continues in the limit.

This paper emprically shows velocity explosion in PSO,
despite satisfaction of Poli’s stability condition. The PSO
search behaviour is investigated by stepping through CP con-
figurations for various functions, and measuring particle ve-
locities during the search. This study thereby cautions against
the blind assumption that enforcing Poli’s criterion will
necessarily ensure a computationally stable search process
under limited computational budgets, as doing so could well
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result in numerical instability and floating-point overflow.
The contribution is therefore to gain a better understanding
of the practical implications of PSO stability conditions.

The remainder of this paper is structured as follows: Sec-
tion II provides background information on PSO and Poli’s
stability condition. Section III describes the experimental
setup and methodology. Section IV presents the results of
the experiments, and Section V concludes the paper.

II. BACKGROUND

This section elucidates the PSO algorithm and its CPs, as
well as Poli’s stability condition.

A. Particle swarm optimization

PSO employs swarm search to address optimization prob-
lems. It modifies particle velocities and subsequently their
positions on each time-step. This is based on the best position
found by a particular particle, the best position discovered
by the particle’s neighbourhood [1]. The inertia weight PSO
variant also takes into account the particle’s previous velocity
[18] The velocity update equation is expressed as

vij(t+ 1) = ωvij(t) + c1r1ij(t) [yij(t)− xij(t)]

+c2r2ij(t) [ŷij(t)− xij(t)] (1)

where at a certain time-step t, particle i in dimension j
possesses a velocity vij(t), a position xij(t), a personal best
position of yij(t), and a neighbourhood best position of ŷj(t).

The PSO CPs consist of the inertia weight ω, the cognitive
acceleration coefficient c1, and the social acceleration coef-
ficient c2. The CPs govern the trade-off between exploration
and exploitation in the swarm, and have bearing on the con-
vergence properties of the swarm [2]–[5]. Random elements
r1j and r2j are sampled uniformly from the range (0,1), to
prevent the swarm from cycling through the same positions
repeatedly. Position updates are performed using

xi(t+ 1) = xi(t) + vi(t+ 1) (2)

where vi signifies the velocity vector and xi signifies the
position vector of particle i. The PSO pseudocode is given
by Algorithm 1.

B. Control Parameter Configurations

PSO performance and behaviour is extremely sensitive to
the CP configuration used. Even small changes in CPs can
have a significant impact on the search process [4]. The
optimal CP configuration also usually is problem-specific
[19]. Furthermore, a CP configuration which is suitable at
the current time step may also not be suitable at a later time
step [20].

CP values can be fixed, often with the values ω =
0.729844, c1 = 1.496180, and c2 = 1.496180 [19]. However,
appropriate adjustment of CPs enables fine-grained control
over the exploration-exploitation trade-off to improve PSO
performance [4]. This trade-off is crucial torwards adequately
exploring uncharted areas of the fitness landscape, while
avoiding excessive computation on unpromising areas. In an

Algorithm 1 PSO Algorithm
1: Let f be the objective function of the optimization

problem.
2: Uniformly initialize a swarm of ns particles in nd

dimensions within the boundaries of the search space.
3: Initialize the personal best position yi to xi(0).
4: Initialize the neighbourhood best position ŷi to xi(0).
5: Initialize vi(0) to 0.
6: repeat
7: for all particles i = 1, . . . , ns do
8: if f(xi) < f(yi) then
9: yi = xi

10: end if
11: for all particles î with neighbouring particle i do
12: if f(yi) < f(ŷî) then
13: ŷî = yi

14: end if
15: end for
16: end for
17: for all particles i = 1, . . . , ns do
18: update vi with the velocity update equation (1)
19: update xi with the position update equation (2)
20: end for
21: until stopping condition reached

attempt to dynamically control this trade-off based on the
function landscape at hand, various approaches towards self-
adaptive PSO (SAPSO) have been proposed [19]. SAPSO has
the advantage that CPs do not need to be tuned anew for each
problem, but rather are adjusted during the search process.
Since SAPSO algorithms dynamically adapt CPs during the
search process, it often occurs that the selected CPs result
in velocity explosion and an unstable search processes [19],
[21].

C. Stability Condition
To address the problem of unstable PSO search which re-

sults from velocity explosion, a number of stability conditions
have been proposed, and are generally derived using certain
assumptions. Given a stability condition, CP configurations
which conform to the condition can then be sampled in the
hope that this will result in a stable search process. A number
of stability conditions are considered in this paper:

Van den Bergh [3] derived the following stability condi-
tion:

c1 + c2 < 2(1 + w), c1 > 0, c2 > 0, 0 < w < 1. (3)

using the stagnation assumption,

yi(t) = yi ∀ t,

ŷi(t) = ŷi ∀ t,
(4)

and the deterministic assumption,

θ1 = θ1(t) = c1r1(t) ∀ t,

θ2 = θ2(t) = c2r2(t) ∀ t,
(5)
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Derived by Kadirkamanathan under the stagnation assump-
tion, the following provides a potential region for particle
convergence [8], [16]:{

c1 + c2 < 2(1 + ω) ω ∈ (−1, 0]

c1 + c2 < 2(1−ω)2

1+ω ω ∈ (0, 1).
(6)

Also under the stagnation assumption, Gazi [9], [16] derived
the stability condition:{

c1 + c2 < 24(1+ω)
7 ω ∈ (−1, 0]

c1 + c2 < 24(1−ω)2

7(1+ω) ω ∈ (0, 1)
(7)

Finally, also under the stagnation assumption, Poli [10], [22]
derived the stability condition:

c1 + c2 <
24

(
1− ω2

)
7− 5ω

and ω ∈ [−1, 1] (8)

which is diplayed in Figure 1.
Poli’s criterion has also been derived in an assumption free

manner [11] at a later stage. The criterion has also empirically
been shown to be the most accurate [16], [17]. Poli’s criterion
guarantees that, in the limit, particle step sizes will converge
to zero. Here, convergence is used to imply order-2 stability
[10] where particles do not move anymore. Random variable
sequences zn are order-2 stable if

lim
n→∞

E [zn] = µ and lim
n→∞

StdDev [zn] = σ (9)

However, this equilibrium state might never even practically
occur, when considered that the stability condition does
not denote a specific number of iterations to attain this
state. Likewise, the particle velocities might also explode to
very high magnitudes throughout the search process before
achieving the equilibrium state.

III. EXPERIMENTAL PROCEDURE

The purpose of the investigation is to empirically deter-
mine whether velocity explosion occurs, while CPs are sam-
pled from the convergent region of Poli’s stability condition.
To this end, evaluation metrics are defined to assess the stabil-
ity of the PSO search. This section thus provides an overview
of the experimental procedure, focusing on evaluation metrics
and specifics regarding the PSO implementation.

A. Evaluation Metrics

The metrics used to assess the PSO search behaviour are:
1) Percentage of particles in infeasible space. A particle

resides in infeasible space if at least one of its dimen-
sions exceeds the feasible search space boundaries.

2) Percentage of particles that are stable. Equation (8)
in Section II-C gives Poli’s stability condition, with
the convergent region shown in Figure 1. If CPs are
sampled from within the convergent region, they are
considered stable.

3) Average particle velocity refers to the average step
sizes taken by the particles. Velocities must decrease

Fig. 1. Poli’s stability condition convergent region [10], [22].

if the search process is to converge, but should not
decrease so quickly that the search becomes stuck in a
local minimum. Average particle velocity is calculated
using [19]:

∆(t+ 1) =
1

ns

ns∑
i=1

∥xi(t+ 1)− xi(t)∥ (10)

4) Average swarm diversity can give insight about the
balance of exploration and exploitation [23], as it
measures how spread out the particles are. Diversity
is calculated [24] as

D =
1

ns

ns∑
i=1

√√√√ nx∑
j=1

(xij − x̄j)
2 (11)

where the swarm center is located at

xj =

∑ns

i=1 xij

ns
(12)

where ns is the number of particles in the swarm, and
nx is the number of dimensions.

B. Implementation

The PSO algorithm used is the inertia weight PSO, where
the neighbourhood of each particle is the entire swarm [18],
with governing equations given by Equations (1) and (2). The
PSO is run on the functions given in Appendix A, stepping
through different combinations of CPs, all of which are
sampled from within the convergent region of Poli’s stability
condition. The inertia weight ω is stepped from 0 to 1 in
increments of 0.025, while the acceleration coefficients c1
and c2 are stepped (seperately) from 0 to 4 in increments of
0.05, so as to create a 3D CP search space. The CP stepping
results in a total of 13073 CP configurations. CP areas which
result in large particle velocities are then further investigated
by stepping the CPs in smaller increments of 0.01. Given
the large number of PSO runs which are performed, the
computational budget is quite high. Furthermore, since many
runs have CP configurations which are extremely similar, this
study does not perform a number of independent runs for
every CP configuration.

Function dimensionality is set to nd = 30, and the number
of particles is also chosen as ns = 30, with a maximum
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of imax = 5000 iterations for each run. Particles are
initialized uniformly over all dimensions within the feasible
search space. The objective function value is only computed
for feasible particles, by setting infinite objective function
values for particles in infeasible space. Doing so under the
assumption of minimization automatically disqualifies those
particles from global best position updates.

IV. RESULTS

This section presents the results of the experimental pro-
cedure described in Section III, with figures to illustrate the
search characteristics.

Figures 2 through 5 show PSO search behaviour plots
for the metrics in Section III-A. Each figure shows the
results for a different function for the specific CPs of
ω = 0.72, c1 = 3.37, c2 = 0.01. This CP configuration is
plotted as it resulted in the largest velocities amongst those
tested, but any number of other configurations also lead to
massively exploded velocities.

Note that while the discussion will focus on Figure 2,
the same discussion applies to all other functions, which are
given here to demonstrate the similarity in search behaviour
despite different landscapes. This indicates that velocity
explosion is in larger part due to certain (stable) CPs,
more so than due to the objective function landscape. The
landscape of course still plays a role, seen therein that the
velocities explode to different orders of magnitude in Figures
2c through 5c.

Figure 2a plots the percentage of stable particles and
confirms all particles as stable, so to leave no doubt about
the cause of the velocity explosion. Nonetheless, almost
all particles are nigh permanently outside of the feasible
space, as shown by the percentage of infeasible particles
plot in Figure 2b. In principle, this is not a problem for the
search process, and it has been shown that particles generally
leave the feasible search space within the first few iterations
[25]. However, if nearly the entire swarm is permanently in
infeasible space, as is the case here, the effectiveness of the
search process becomes questionable.

Figure 2c portrays how the average particle velocity ex-
plodes to above 2.0× 1027 (and up to 1.0× 1040 for Figure
5c!) Figure 2d portrays the explosion on the log scale, and
clearly demonstrates that the particles do not, in fact, come
back down to the order of magnitude of the search space, but
remain exploded.

Velocity explosion naturally affects the swarm diversity
calculation similarly, shown in Figure 2e. This is an addi-
tional problem with velocity explosion, because even if one
particle assumes such a large velocity, it will dominate the
swarm diversity calculation. The swarm will appear to be
very diverse, even though it is not. The swarm diversity
plot will also become equivalent to the particle velocity plot,
because the highest velocity particles dominate in Equation
(11). The latter can be seen clearly when Figures 2c and 2e
are compared.

A 3D heatmap (log-scale) is given in Figure 6 to visualize
where in CP space velocity explosion is most likely. The

heatmap makes use of the maximum velocity attained during
the search, and not the final velocity, as the choice of
maximum time steps used is essentially arbitrary. However, as
Figures 2c through 5c show, the maximum and final velocities
are not much different, and it is unlikely to assume that the
velocities would die out at any arbitrary, but fixed point in
time. Despite the cautionary note against purely relying on
Poli’s criterion, Figure 6 actually also validates the accuracy
of Poli’s criterion, because the 3D region heatmap shows
that the largest velocities are indeed attained close to the
boundaries of the convergent region.

While stepping through the CP configurations, 26.5% of
CP configurations resulted in particle velocities in excess of
∆lim = 103. ∆lim was chosen to be an order of magnitude
larger than the boundaries of the search space, which are
5 × 102 for the biggest landscape used. Similarly, 3.1% of
CP configurations resulted in particle velocities in excess of
105, arbitrarily chosen to illustrate the extreme cases, with
some particle velocities reaching up to 1040. Ideally, particle
velocities should remain in the order of magnitude of the
search space, namely 102 for the functions as used here.

Fig. 6. 3D heatmap of maximum particle velocities (log) for all CP
configurations.

V. CONCLUSION

An investigation of particle swarm optimization (PSO)
search behaviour, constrained by Poli’s stability condition,
was presented in this study. The results illuminate challenges
for self-adaptive PSO (SAPSO) strategies which attempt to
dynamically adjust the control parameter (CP) configuration,
as well as for the use of stability conditions in PSO more
generally. Despite the theoretical promise of stability con-
ditions, the observed practical behavior often demonstrates
considerable divergence of particles due to the intractability
of running the PSO search to the mathematical limit.

Velocity explosion was empirically demonstrated, with
particle velocities of up to 1040 observed during the search
process. The study unambiguously demonstrated the discrep-
ancy between the theoretical promise of stability conditions,
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(a) (b) (c) (d) (e)

Fig. 2. Ackley1: (a) Stable particles (b) Infeasible particles (c) Particle velocities (d) Particle velocities (log) (e) Swarm diversity

(a) (b) (c) (d) (e)

Fig. 3. Rana: (a) Stable particles (b) Infeasible particles (c) Particle velocities (d) Particle velocities (log) (e) Swarm diversity

(a) (b) (c) (d) (e)

Fig. 4. Rastrigin: (a) Stable particles (b) Infeasible particles (c) Particle velocities (d) Particle velocities (log) (e) Swarm diversity

(a) (b) (c) (d) (e)

Fig. 5. XinSheYang1: (a) Stable particles (b) Infeasible particles (c) Particle velocities (d) Particle velocities (log) (e) Swarm diversity

and their real-world performance. It therefore emphasizes
caution against relying solely on Poli’s criterion or similar
theoretical constructs to guarantee a stable search process.

Nonetheless, the empirical results confirm Poli’s stability
condition to be accurate, since velocity explosion occurs with
increasing frequency as CPs approach the stability boundary.

Moreover, the research establishes the pressing need for a
deeper understanding of the practical implications of stability
conditions in PSO and CP tuning. The criticality of empirical
evidence in the evaluation of swarm intelligence algorithms
performance is underscored.
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APPENDIX A
FUNCTIONS

The functions used are given in below, with their
properties in Table I.

• Ackley 1:

f(x) = −20e−0.2
√

1
n

∑n
j=1 x2

i

− e
1
n

∑n
j=1 cos(2πxi) + 20 + e

(13)

for xi ∈ [−32, 32]

• Rana:

f(x) =

n−1∑
i=1

(xi+1 + 1) cos(t2) sin(t1)

+ xi cos(t1) sin(t2)

(14)

where
t1 =

√
|xi+1 + xi + 1|

and
t2 =

√
|xi+1 − xi + 1|

for xi ∈ [−500, 500]

• Rastrigin:

f(x) = 10n+

n∑
i=1

(
x2
i − 10 cos(2πxi)

)
(15)

for xi ∈ [−5.12, 5.12]

• XinSheYang 1:

f(x) =

n∑
i=1

ϵi|xi|i (16)

for ϵi ∼ U(0, 1)

TABLE I
FUNCTION CHARACTERISTICS [26] (C=CONTINUOUS,

NC=NON-CONTINUOUS, D=DIFFERENTIABLE,
ND=NON-DIFFERENTIABLE, S=SEPARABLE, NS=NON-SEPARABLE,

MM=MULTI-MODAL, UM=UNIMODAL.)

Function Eq. Cont. Diff. Sep. Mod.
Ackley 1 13 C D NS MM
Rana 14 C ND NS MM
Rastrigin 15 C D S MM
XinSheYang 1 16 NC (?) D (?) S MM
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