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Abstract—In this work, we propose a novel representation
of optimization problem instances using a transformer-based
neural network architecture trained for the task of problem
classification of the 24 problem classes from the Black-box
Optimization Benchmarking (BBOB) benchmark. We show that
transformer-based methods can be trained to recognize problem
classes with accuracies in the range of 70%-80% for different
problem dimensions, suggesting the possible application of trans-
former architectures in acquiring representations for black-box
optimization problems.

Index Terms—single-objective continuous optimization, repre-
sentation learning, problem landscape features

I. INTRODUCTION

The representation of optimization problems in terms of
numerical features, often referred to as problem landscape
features, is essential for the Machine Learning based anal-
yses of the similarity and representativeness of problem in-
stances [1]–[3], automated algorithm selection and configura-
tion. Several types of features capturing properties of single-
objective continuous optimization problems have been pro-
posed, which can be broadly categorized as explicitly defined
features (such as those based on Fitness Landscape Analysis
(FLA) [4], Exploratory Landscape Analysis (ELA) [5] and
Topological Landscape Analysis (TLA) [6]), and feature-free
approaches [7], [8]. However, FLA features require human
effort to be computed, while the ELA features can be computa-
tionally expensive to compute for high dimensional problems,
have been shown to be sensitive to the sample size and
sampling method [9], and are not invariant to transformations
such as scaling and shifting of the optimization problem [1].

Motivated by the success of transformer-based models [10]
in various fields and applications, in this paper, we explore
the possibility of generating vectorized representations of
optimization problems through the use of transformer models
applied to samples of the optimization problem. In particular,
we train a transformer-based model architecture for classifying
optimization problem instances from the Black-box Optimiza-
tion Benchmarking (BBOB) [11], [12] suite into one of the
24 problem classes.

II. METHODOLOGY

The Black-box Optimization Benchmarking (BBOB) [11],
[12] suite contains 24 single-objective optimization problem
classes. Each problem class can further have multiple problem
instances, which are a transformation of the original problem
class. We use the first 999 instances of each problem class to
train the transformer model to predict one of the 24 problem
classes. We use problem classes of dimensions 3 and 20.

The first step of the proposed methodology involves the
generation of samples from which the problem representations
are calculated. The samples are obtained using Latin Hyper-
cube Sampling, and we explore sample sizes of 50d and 100d,
where d is the problem dimensionality. The objective values of
the samples (y-values) are scaled to be in the range [0,1], while
the candidate solutions (x-values) are kept in their original
range of [-5,5], since this range is fixed in the BBOB.

Figure 1 shows the model architecture. The input to the
model are the samples from the optimization problems. A
single training instance of the ML model is a matrix of shape
[s, d+1], where s is the number of problem instance samples,
and d is the dimensionality of the problem. In this case, the
second dimension of the input matrix is d+1, since the value
of the objective function is also included. The encoder part of
the transformer model produces an embedding of size e, which
is a specified model parameter, for each of the given samples
from the optimization problem, i.e. it outputs a matrix of the
shape [s, e]. In order to obtain a single, flat representation of
the problem, we calculate several descriptive statistics on the
matrix obtained from the encoder. In particular, we calculate
the minimum, maximum, mean, and standard deviation of
the representations of the samples produced by the encoder.
Concatenating the vectors obtained using each descriptive
statistic, we obtain the representation of the problem, which
is then fed into a classification head, which produces the class
of the problem. The classification head contains a linear layer
with a Rectified Linear Unit activation, a dropout layer, and a
linear layer which performs the classification into 24 problem
classes.

The model is trained with a cross-entropy loss, the Adam
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Fig. 1. Model architecture

Fig. 2. Accuracy obtained with different model parameters

optimizer and a maximal learning rate of 0.001. The training is
executed for a maximum of 200 epochs, with an early stopping
mechanism that prevents overfitting by terminating the training
process if the validation loss does not observe a decrease of
at least 0.001 for five epochs. We use stratified 10-fold cross-
validation to evaluate the model.

III. RESULTS

In order to find a set of reasonable model parameters for
further analysis of the architecture, we first ran an initial
analysis of the impact of different model parameters on the
obtained problem classification accuracy. Figure 2 shows the
accuracy obtained in the problem classification task with
different parameters for problems of dimension 3 and 20.
In particular, we tune the number of heads and layers in
the transformer architecture, as well as the dimension of the
generated embeddings. The results indicate that increasing
the number of heads and layers has a positive impact on
the classification accuracy for lower dimensions, however, the
same does not always hold for higher dimensions. Increasing
the sample size does not seem to substantially impact the
classification accuracy for problems of lower dimensions,
however, for larger dimensions, the model training is not
successful with a sample size of 100d. In general, smaller

models with lower values of the investigated parameters seem
to provide satisfactory results for all dimensions. The best
performing configuration is (sample size = 50d, embedding
size = 30, heads = 1, layers = 1), providing accuracies in the
range 70%-80% for problems of different dimensions.

IV. CONCLUSION

We propose a novel representation for single objective op-
timization problem instances, which uses a transformer model
trained for the task of problem classification of samples of the
problem instances. The proposed model achieves accuracies
around 70%-80% for different problem dimensions, indicating
its potential for representing high-dimensional problems and
possible utilization as end-to-end algorithm selection models.
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