
Theory of Evolutionary Systems Engineering
Simon Hickinbotham∗, Rahul Dubey∗, Edgar Buchanan∗,

Imelda Friel†, Andrew Colligan†, Mark Price†, and Andy M. Tyrrell∗
∗Intelligent Systems & Robotics Research Group, School of Physics, Engineering and Technology

University of York, UK
†School of Mechanical & Aerospace Engineering, Queen’s University Belfast

Email: ∗simon.hickinbotham, rahul.dubey, edgar.buchanan, andy.tyrrell(@york.ac.uk),
†I.Friel, A.Colligan, M.Price(@qub.ac.uk)

Abstract—Evolutionary approaches to engineering design in-
volve generating populations of candidate solutions that compete
via a selection process iteratively, to improve measures of perfor-
mance over many generations. Although the attractive properties
of biological evolutionary systems have motivated researchers
to investigate emulating them for engineering design, there has
been an emphasis on using encodings of the technical artefacts
themselves, rather than encoding a complete bio-inspired system
which is capable of producing such artefacts. It is the latter
approach which is the subject of this contribution: how might a
bio-inspired system be designed that self-organises the process of
engineering design and manufacture? To make progress in the
application of evolutionary processes to problems in engineering
design, the evolutionary model must encompass the complexity
of systems engineering. A new theory of evolutionary systems
engineering is presented, based on von Neumann’s Universal
Constructor Architecture (UCA), drawing from more recent
understanding of biology and applying the resulting system to
the task of engineering design. It demonstrates how individual
bioinspired algorithms fit into a coherent whole, and how
they can be combined to drive open-endedness in automated
design. The resulting system provides a common language for
multidisciplinary applications in generative design, whereby in-
dustrial systems engineering approaches can be developed using
principles from the UCA for the first time.

Index Terms—Evolvable Systems; Bio-inspired; Multi-Agent
System

I. INTRODUCTION

PRESENTED with a particular design challenge, a
concept-level human designer is commonly thought to be

free to suggest the best solution that comes to their mind. For
example, in a simple bridge-construction problem, such an
unconstrained designer might suggest a ferry or rope bridge
instead of a Warren truss bridge structure. However, under the
constraints of the manufacturing organisation, as described by
Systems Engineering (SE), the full range of design options is
increasingly restricted, leaving a particular design vulnerable
to rival approaches. The SE ‘V’ diagram [1], [2] is funnel-
shaped for a reason: it forces concept-level designs down to
a small number of possibilities. Both traditional model-based
systems engineering and traditional evolutionary algorithms
are constrained to optimise within very tight bounds. How
could a system escape these limits in engineering, as biology
does via evolution?
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Capturing design intent in Systems Engineering

Engineering design is the process of making operational
products from abstract ideas. This involves obtaining one or
more precise geometric representations of the product [3].
Straight away the dual nature of designed artefacts is revealed,
in that the intention of a design (the design intent) must
be manifested in a physical object, but cannot be encoded
into the object – it is not possible to recover the intent
from the physical object without external knowledge. In the
simple example of a hammer, the design intent is to deliver
momentum and energy into nail head, but this information
cannot be discovered within the hammer itself. Biological
artefacts also have this dual nature, but the absence of the
designer in evolution makes this point moot. In industry, this
problem is reduced by keeping a record of the decisions made
during the design process. However, such record-keeping is
not actionable. In addition, the geometry of the design must
be translated into a physical object via manufacture, adding a
third level of complexity to the artefact. So far, the design
process must deal with intent, geometry and manufacture.
Coupling these perspectives with multiple geometric represen-
tations needed for a single object, the imperative for Systems
Engineering as a framework for managing the complexity of
these processes becomes clear.

Systems Engineering (SE) is a discipline which attempts
to align the specification, design and manufacturing of engi-
neering artefacts with their intended use cases [4]: the set of
functions needed to fulfil the requirements of the product or
system. The way in which these processes happen is loosely
analogous to biological phenomena and it is not unusual to
encounter comparisons with the multi-scale levels of organ-
isation in cells, tissues, organs, organisms, communities and
ecologies in the natural world – see for example [5] and [6]
figure 1. The SE process attempts to preserve the design intent
through the design and production processes (via the current
V diagram), but the design solution that comes out tends to
be highly constrained. One of the attractions of approaching
this via an evolutionary system is that a more unconstrained
set of solutions are allowed to appear: diversity is key, and
commutability and associativity across sub-systems is also
key. Accordingly, there have been various attempts to use bio-
inspired control systems to re-imagine how engineering design
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might be realised, e.g. [7], [8], with the goal of emulating
the capabilities of biological systems to self-organise in an
apparently efficient manner.

Although the attractive properties of biological systems
have motivated researchers to investigate emulating them for
engineering design, there has been an emphasis on using
encodings of the technical artefacts themselves, rather than
encoding a complete bio-inspired system which is capable of
producing such artefacts. It is the latter approach which is the
subject of this contribution: how might a bio-inspired system
be designed that self-organises the process of engineering
design and manufacture?

Bio-inpsired Systems Engineering

The emergence and evolution of life on earth is documented
to have undergone a series of transitions, in which the scale
of organisation and complexity has generally increased [9].
Natural evolution is apparently open-ended in its complexity
[10], and it is capable of self-organisation via properties of
self-reference, from simple feedback loops up to levels of
recursion seen in the notion of semantic closure [11]. All of
these properties are desirable in systems engineering because
they offer a route to automating the response to new design
applications and opportunities, but the challenge is to arrive at
a formulation of the biological processes that is simple enough
to capture the dynamics but no simpler, and all this despite any
obvious intent in the (physical manifestation of the) system.

There exists in the literature many and varied computa-
tional methods of leveraging bio-inspired evolutionary and
neural techniques among others to perform various tasks, for
example in pattern recognition and optimisation [12]. The
process of engineering design is resistant to direct evolu-
tionary approaches because the space of possible designs is
extremely large, with non-linear relationships between the
specification of the engineered artefact and its performance
criteria. More recently, a body of work [13]–[15], is emerging
around the topic of generative systems, which are tasked with
the challenge of producing artefacts from relatively simple
and indirect encodings of growth patterns, describing and
exploiting iterative growth processes in order to achieve the
final form. However, the manufacturing process tends to be
at most a minor consideration, going against many of the
principles of systems engineering. There is no overarching
framework for designing such bio-inspired systems. Is there
more that can be done to exploit commonalities between
design challenges, embrace new technologies as they emerge,
and build new design methods based on the generative, open-
ended power of evolution as observed in the natural world?

In this contribution, such a framework is presented as a
means of obtaining the desirable properties outlined above to
create a new systems engineering paradigm. The framework’s
power in covering such systems and the logic behind its
organisation offers a route to unifying the range of concepts
needed to achieve truly bio-inspired systems engineering.
The framework is based on John von Neumann’s Universal
Constructor architecture [16] (UCA). The goal of von Neu-
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Fig. 1. John von Neumann’s Universal Constructor Architecture. The abstract
description, or Genotype is shown as boxes with solid lines. The executing
machine, or Phenotype is shown as boxes with rounded corners and dashed
lines. The Copier and Constructor machines act on the Genotype, as indicated
by arrows.

mann’s design was to devise a machine that was capable of
constructing a second machine that was more complex than
itself. This was seen by von Neumann as the central problem
which biological evolution had solved. The work was divided
into two parts: a theoretical component, which describes how
the task of self-reproduction could be broken down in to a
set of sub-tasks; and an implementation of the theory in what
is now known as a cellular automaton. Research on the UCA
has tended to focus on the implementation of the machine -
in the original cellular automata form, and emulated in Tierra
and Stringmol [17]–[19]. These systems prove that the UCA
can be implemented for self-replication, but the challenges
beyond that for systems engineering are two-fold: firstly, such
systems tend to focus on the problem of self-replication, but
not on the application of self-replication to solving a particular
design problem via evolution; secondly, the requirement for
the system to increase in complexity has received relatively
little attention, particularly with respect to how variation in
the machine can be generated. The next section reviews
this architecture and gives an interpretation that applies to
biological and engineering systems simultaneously.

II. COMPONENTS OF THE UNIVERSAL CONSTRUCTOR

A representative diagram of von Neumann’s Universal
Constructor (UC) is shown in figure 1. In an attempt to
bridge the gap between von Neumann’s description and the
terminology of modern biology, the groupings ‘Genotype’ and
‘Phenotype’ are used to delimit the description of a component
from the instantiaion respectively. In this aspect of his work,
von Neumann was grappling with the problem of how the
complexity of any system can increase. The system itself was
not specified in detail, but mechanical artefacts were useful
examples of such a system. A key insight was that a system of
any complexity could not reproduce itself by self-inspection,
since this would entail a process of (self-)disassembly in
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order to inspect the parts, and this in turn would prevent
the system from functioning. What was needed was a simpler
representation of the system, referred to here as the “abstract
description” or the “genotype” to emphasise the biological
analogy. This representation should describe the complete
instantiation of the system, but its nature should be such that
it would be relatively simple to i) copy the genotype; and ii)
interpret the genotype to generate instances of the other entities
in the system. Following this reasoning, a UC architecture
(UCA) must contain the following components:

The Constructor: A

The role of the constructor A is to build a copy of all of the
parts of the architecture as specified in the abstract description,
including itself (but excluding the abstract description). Each
component of the machine is less complex than the construc-
tor, but the ensemble of machines is more complex, and is
capable of becoming even more complex through evolutionary
processes.

The biological analogy is that of the ribosome/tRNA com-
plex, which aligns itself on mRNA strands and “decodes”
the RNA sequence into a sequence of amino acids. Key to
the success of this operation is the physico-chemical state of
the cell in which the construction operation happens, which
governs the folding of the 1-dimensional string of amino acids
into the 3D shape of the artefact being constructed. If a cell is
struggling to maintain benign internal conditions, the enzymes
involved in reproduction are de-natured and the mutation rate
increases, increasing the ability of the system to discover
novel solutions. Thus, the “meaning” of a sub-assembly is
partly embedded in the abstract description G, but also partly
embedded in the prevailing physical conditions in which the
decoding happens.

The Copier: B

The Copier’s (B) sole responsibility is to create a copy of
one thing: the abstract description of the machine – analogues
of which include the ‘genotype’ or the ‘blueprint’ or possibly
the CAD (computer-aided design) model of a designed arte-
fact. Von Neumann recognised that a direct copying activity
of some sort was vital for the UCA to function, but also that
copying descriptions of things decouples the need to align
the way things are allowed to change with the features that
are used to represent them. Von Neumann also postulated
that any entity which copies must be more complex than the
entities which are copied by it, and solves the problem of
how complexity can therefore increase by restricting what is
possible to be copied and making the copier part of a wider
assembly.

The copier embodies the evolutionary process of variation
by introducing changes to the specification whilst creating the
copy of it, commonly known as mutation. Epigenetic processes
controlling the rate and location of mutations in the new copy
do so by influencing the precision of the way the copier
interprets the genome.

The Controller: C

The controller C is the component of the UCA that or-
chestrates the operation of the other replication machinery. In
biological systems, the sort of control described here tends to
be distributed, based on states induced by the gene regulatory
network (GRN) among other control networks such as neural
and immune systems. All these are interconnected, working at
different spatial and temporal scales, and have similar prop-
erties of emergent control based on communication between
networks.

The process of evolution allows appropriate control mecha-
nisms to emerge through selection: individuals in the popula-
tion with better control are selected for reproduction according
to their fitness. Where the UCA is to be used for engineering
purposes, the control mechanism can be approximated initially,
and then optimised through evolution.

The Ancillary: D

Von Neumann was concerned with the process of replication
in the UCA, so the focus of reasoning is upon this process.
He recognised that there needs to be something to replicate
beyond the replication machinery itself - and this is what the
Ancillary machine D is. In biology, this can be any part of the
phenotype that is not directly concerned with reproduction -
the peacock’s tail for example (NB survival to reproduce is not
considered here). In engineering terms, ‘product’ or ‘artefact’
are appropriate labels.

The distinction between an engineering artefact and a living
organism is clear in the UCA model: a biological organism
(e.g., a Merlin Falco columbarius, the UK’s smallest bird of
prey) carries within it all the components it needs to manu-
facture a copy of itself (albeit in tandem with a reproductive
partner). Instances of UCA components A,B,C,D and G can
be identified in every living entity. By contrast, an engineering
artefact such as the Rolls Royce Merlin engine [20], (One
of the most successful aircraft engines of the 1940s) is not
capable of reproduction - it is an instance of machine D in the
wider context of an industrial manufacturing process, which
contains instances of each of the other components in the
UCA.

The Genome: G

The final component of the UCA is the abstract description
of everything else in the system: G = ϕ(A,B,C,D). The
description is one-dimensional - a string of symbols, which
allows the work of copying it to be set out relatively simply,
but also allowing evolutionary changes in the abstract system
to emerge via various imprecisions in the way that copying
takes place.

Properties of the UCA

The UCA solves the central problem of how complexity in a
self-replicating system could increase. However, there are two
particular features of the UCA that von Neumann recognised
as problematic. Firstly, an evolving system implies variation in
the abstract description of the machines. Whilst this variability
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is to be encouraged in machine D, it is far less likely to allow
a replicating system to remain viable if mutations occur in
A,B or C. These concerns can be mitigated by two biological
phenomena. Firstly, it is now recognised that mutation rates
vary widely across the genome [21]; and secondly the survival
of populations of entities mitigates somewhat the potential
catastrophic effect of deleterious changes in machines A,B
and C in one particular offspring.

The second feature of the UCA system regards the re-
quirement to encode the phenotype on the genome. Any
process of encoding a specification of a system introduces
notions of syntax and semantics, which involves the concept of
meaning in the encoding. An idealised genome system could
represent any physical design, but that does not happen, even
in biology. Von Neumann wrote “by axiomatizing automata
in this manner, one has thrown half of the problem out of the
window, and it may be the more important half”. However,
the concept of semantic closure in these symbol systems, as
explored by Pattee [11] and evaluated experimentally in [19],
demonstrates that it is possible for the mapping of the genotype
to the phenotype to evolve, as long as the Constructor machine
B is itself encoded on the genome. This also provides a
mechanism to tune the abstract representation such that viable
or improved designs are more likely to emerge via evolution.

This process of tuning the representation has analogues in
Systems Engineering, where for example a CAD model is
parameterised in such a way that the manner in which it can
be varied is aligned to its intended function [4], [22]. One of
the attractive features of being able to evolve a representation
is that the design intent of an artefact can be reflected in the
way that artefact is represented. Thus, the UCA provides a
mechanism to evolve intent into the system.

III. PARTIAL IMPLEMENTATIONS

Here, the way that two classes of bio-inspired systems fit
into the UCA are described in order to draw out the limitations
of such systems and how they relate to one another within
this framework. The way these systems differ is in which
components are represented on the genome, and are thus
available to evolution. These are shown side-by-side in figure
2(a) and (b).

Evolutionary algorithms: G = ϕ(D) and fig. 2(a)

An abstract description of a machine X is denoted ϕ(X).
Within the context of the UCA, canonical evolutionary al-
gorithms only concern themselves with encodings ϕ(D) of
machine D, as shown in figure 2(a). In these systems, it is
only possible to optimize the system by variation in the set
of parameters that are encoded on G = ϕ(D). Because the
way that ϕ(D) is decoded into D by machine B is fixed,
and because the way that changes on ϕ(D) produce variation
is also fixed, the range of possible states of D is severely
limited compared with the range of potential solutions in an
unconstrained design space. For example, Deb and Gulati [23]
evolve configurations of truss structures using a fixed set of
nodes, where the genome represents the presence or absence of

a connection between nodes. There is no possibility of moving
any of the node positions to improve the structure - only
the connections between them. Specifically, the complexity of
D cannot increase. For many optimisation problems, this is
sufficient, but for generative problems where a wider range
of candidate designs is desirable, the arrangement may be too
limiting.

Generative algorithms: G = ϕ(C) and fig. 2(b)

A generative system can be developed within the UCA
model as having only the abstract description of the Controller
C to the genome: G = ϕ(C). Unpicking this, it can be
seen that the gene regulatory network architecture (GRN) [24]
emerges from this situation: the interaction of C with A is
applied iteratively to the phenotype D to allow it to grow
into its final form, and the process controlling the growth of
the organism is the only thing that can evolve. For example
Hickinbotham et al [25] evolved a GRN for modifying the
design of bridge trusses, allowing the position of nodes to
move freely via an iterative development scheme using local
feedback from finite element analysis.

IV. EXTENDING BIO-INSPIRED SYSTEMS INTO THE UCA

The emphasis in the previous section has been on optimisa-
tion, either of the physical artefact as represented by D or of
the control architecture for growing it, as represented by C.
Where C is fixed, the system is identical to a evolutionary
algorithm with a direct description of D, and because the
description has to be direct, the resulting artefacts must be
simple enough to discover with evolutionary search. Where D
is fixed, the only thing that can evolve is the way that it grows,
but growth always has to start with the same, simple version
of D, potentially limiting what is possible given available
resources. In addition, fitness measures as applied to the final
form of the artefact play no direct part in organising the initial
layout, or body plan – some additional components (seen in
biology as the homeobox genes) are responsible for evolving
the way that the body plan organises growth before the final
structure can be tested. In this section, the effects of adding
more abstract descriptions into G of the components of the
UCA are explored. These are shown side-by-side in figure
2(c) and (d).

Homeobox EvoDevo algorithms: G = ϕ(C,D) and fig. 2(c)

If both the artefact D and the control mechanism C are
encoded on G to give G = ϕ(C,D) as shown in figure
2(c), a much more powerful algorithm is possible: the two
components of the UCA are able to combine to control the
response to local conditions (via C) by reference to a body
plan via D. The latter have been identified in biology as
homeobox genes, whose contribution to the final shape of D
is explored in [26].

The organisation of the development of D within a growth
model organised by C can be interpreted as a production
of a grammar from a start symbol. Shape grammars can be
used to generate artefacts by stochastic firing of production
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(a) EA

Genotype G = ϕ(D)

ϕ(D)

P = {A,B,C,D}

A B C D

(b) GD

Genotype G = ϕ(C)

ϕ(C)

P = {A,B,C,D}

A B C D

(c) HED

Genotype G = ϕ(C,D)

ϕ(C) ϕ(D)

P = {A,B,C,D}

A B C D

(d) SMA

Genotype G = ϕ(A,C,D)

ϕ(A) ϕ(C) ϕ(D)

P = {A,B,C,D}

A B C D

Fig. 2. Genetic Sub-components of the UCA. All the phenotye sub-components are present, but only a subset have genetic representations and are evolvable.
These yield different bioinspired algorithms: a) Evolutionary Algorithm; b) Generative Design; c) Homeobox EvoDevo, d) Systems Manufacturing Algorithm

rules which have attributes, which allow a symbol to be
interpreted as a shape. A comprehensive summary of the range
of grammars available can be found in [27]. A key advantage
of this approach is that the linkage between functional differ-
entiation promoted by the body plan and growth promoted by
feedback of local physical states can be combined to generate
appropriate artefacts.

Systems Manufacturing algorithms: G = ϕ(A,C,D) and fig.
2(d)

Incorporating the specification of A on the genome has the
effect of bringing (elements of) the manufacturing process
under evolutionary control, allowing co-evolution of artefact
and manufacturing process. Rather than directly using fitness
measures for manufacturing on the form of D alone, evolvable
practices could be encoded on the construction of D, as shown
figure 2(d), then a better fit between A and D could be
discovered via evolutionary search, allowing more efficient
manufacturing methods to be discovered and optimised. This
is a key facet of the UCA that realises the goal of allowing the
complexity of designs to increase, compared with alternative
approaches which fix features of systems forever by not
including them on the genome.

V. CONCLUSION

As Artifical Intelligence systems get more complex in order
to exploit the greater level of available compute power, the
requirement to organise such systems increases in importance.
The similarities between learning algorithms (which use train-
ing data to allow a model to reason over new data in some
way) and generative evolutionary algorithms (which produce
patterns without training data that are then subject to fitness
measures) are driving the blurring of boundaries between these
concepts. Common to all these endeavours is the question
of how any generative system can increase its complexity
in an appropriate manner to the task at hand. The Universal
Constructor Architecture solves this central problem: it pro-
vides a framework for a complete evolutionary system that
is able to increase its complexity by reference to a complete
representation of itself on the genome. In addition, the UCA
model provides a common language in which bio-inspired
concepts such as evolutionary and generative algorithms are
placed in context with the networks that control them.

Any observed intent in biology is emergent: organisms act
in order to survive to reproduce and all other behaviours and
properties are tailored in some way to meet that goal. This is
the fundamental challenge in adopting bio-inspired techniques
for engineering – how to encode intent within a system that
does not capture intent explicitly. How then does this relate
to the engineering challenge of design? Simply put, technical
artefacts also have no intrinsic notion of intent: the purpose for
which they were designed is external to the physical realisation
of the design, and even the precise purpose of an artefact will
vary in the minds of all parties involved with it. Kroess et
al. [3] discuss the dual nature of technical artefacts, in which
the relationship between the intention of the design and the
artefact is described via the physical realisation of the physical
aspects of design intent. Human intentionality is built into an
artefact as it is produced, endowing technical artefacts with
‘for-ness’. The function of an artefact bridges its intentional
and physical domains.

In computing, reflection is defined as any part of a computer
program that is ‘about itself’ [28]. There has to be a causal
connection between the source code and the executing pro-
gram. If it is considered that the relationship between source
and executing code is closely analogous to the relationship
between genotype and phenotype, then von Neumann’s UCA
embodies this causal connection, both in the constructor ma-
chine A and the control machine C. The former reads the
genotype to make the machines in the phenotype, whereas
the latter uses local feedback to control the growth of the
artefact into its final form. In addition, the control machine is
also evolved – providing a second level of causal connection
directly related to fitness of the gestalt, which contributes to
the goal of realising the “Evolution of Things” as described in
[29]. These feedback loops, combined with the evolvability of
the genotype-phenotype mapping, allow the UCA architecture
the flexibility to change the way the system is represented
to itself – a key requirement if intent is to be represented
within the system, and a highly desirable property of systems
engineering.

The novelty of this contribution has been to apply von
Neumann’s UCA model to the modern paradigm of systems
engineering. Implementations of the UCA have previously
focused on using it to explore the process of self-replication
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in artificial life [19], [30], and in these systems the artefact
machine D was either removed or represented trivially. For
Systems Engineering, this machine moves front-and-centre,
because it is the main goal of the analysis. Whereas systems
engineering results in a siloed approach to design and conse-
quently imposes additional constraints on the solution space,
by adopting the more holistic approach described herein the
use of Von Neumann’s UCA model offers the possibility of
allowing the complexity of the solution to increase propor-
tionally to the design challenge, and that the design intent can
then be embedded via evolutionary processes.
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