
Imprecise survival signature approximation using
interval predictor models

1st Jasper Behrensdorf
Institute for Risk and Reliability

Leibniz University Hannover
Hannover, Germany
0000-0001-9628-7250

2nd Matteo Broggi
Institute for Risk and Reliability

Leibniz University Hannover
Hannover, Germany
0000-0002-3683-3907

3rd Michael Beer
Institute for Risk and Reliability

Leibniz University Hannover
Hannover, Germany
0000-0002-0611-0345

Abstract—This paper presents a novel technique for the ap-
proximation of the survival signature for very large systems.
In recent years, the survival signature has seen promising
applications for the reliability analysis of critical infrastructures.
It outperforms traditional techniques by allowing for complex
modelling of dependencies, common causes of failures and
imprecision. However, as an inherently combinatorial method, the
survival signature suffers greatly from the curse of dimension-
ality. Computation for very large systems, as needed for critical
infrastructures, is mostly infeasible. New advancements have
applied Monte Carlo simulation to approximate the signature in-
stead of performing a full evaluation. This allows for significantly
larger systems to be considered. Unfortunately, these approaches
will also quickly reach their limits with growing network size
and complexity. In this work, instead of approximating the full
survival signature, we will strategically select key values of the
signature to accurately approximate it using a surrogate radial
basis function network. This surrogate model is then extended to
an interval predictor model (IPM) to account for the uncertainty
in the prediction of the remaining unknown values. In contrast to
standard models, IPMs return an interval bounding the survival
signature entry. The resulting imprecise survival signature is then
fed into the reliability analysis, yielding upper and lower bounds
on the reliability of the system. This new method provides a
significant reduction in numerical effort enabling the analysis of
larger systems where the required computational demand was
previously prohibitive.

Index Terms—survival signature, interval predictor models,
radial basis function networks

I. INTRODUCTION

The reliability analysis of critical infrastructure systems,
such as electrical, gas and water distribution systems, traffic
networks and communication networks is of paramount impor-
tance to the safety and development of modern societies. Our
increasing dependence on the availability of these systems only
escalates this fact. The analysis and assessment of reliability
comes with increasingly higher computational demand due
to the growing size and complexity of the infrastructure
systems. In addition, phenomena such as dependencies inside
or between these networks can have adverse effects and must
not be disregarded [1]. Unfortunately, this is where traditional
approaches such as fault tree analysis or reliability block
diagrams quickly reach their limits. A modern development
in system analysis built to circumvent these drawbacks is the
survival signature [2].

The survival signature was introduced as a generalization of
the system signature [3] to systems with multiple component
types. It excels in particular where diverse effects such as
dependencies, common causes of failure or imprecision need
to be included in the reliability analysis. Through the sepa-
ration of the system structure from probabilistic information
about component failures it provides a flexible method where
a variety of scenarios can be studied without unnecessary
reevaluation of the system structure.

However, like the traditional methodologies, the survival
signature suffers greatly from the curse of dimensionality. As a
result, the numerical demand to compute the survival signature
increases with non-polynomial growth with increasing network
size and number of component types. As the number of
components in critical infrastructure systems can quickly reach
upwards of hundreds or thousands this computational demand
to obtain the survival signature becomes prohibitive.

A number of promising solutions to this problem have been
proposed over the recent years. These involve for example
binary decision diagrams (BDD) [4], extended universal gen-
erating functions (UFG) [5] or Monte Carlo simulation [6], [7].
However, obtaining alternative system representations such as
the BDD or UFG are non-trivial problems themselves, while
standard Monte Carlo simulation will also quickly reach the
limits of its feasibility for larger systems.

In this paper we propose a new method based on building
an accurate surrogate model for the survival signature of large
systems. In a first step, an adaptive strategy is employed
to select which values of the survival signature to compute
as data points for the surrogate model. These values are
computed using the existing Monte Carlo method [6]. Then, a
normalized radial basis function network is constructed from
these data points to approximate the remaining values of
the survival signature. Finally, the uncertainty resulting from
the Monte Carlo simulation is used to extend the surrogate
model to an interval predictor model (IPM). The uncertainty
is propagated through the IPM which ultimately yields bounds
on the survival signature.

The remainder of the paper is structured as follows. Sec-
tion II presents the survival signature while Section III dis-
cusses the radial basis function based surrogate models. The
newly proposed methodology is introduced in Section IV
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followed by an application of the technique to a numerical
example in Section V. The paper closes with some concluding
remarks in Section VI.

II. SURVIVAL SIGNATURE

Consider a system with K different component types and
mk components of each type k ∈ {1, 2, . . . ,K}. The survival
signature condenses the structural information of the system
into a probability that the system is working for lk out of mk

components working per type as

Φ(l1, . . . , lK) =

[
K∏

k=1

(
mk

lk

)−1
]
×

∑
x∈Sl1,...,lK

φ(x), (1)

where Sl1,...,lK denotes the set of all state vectors of the system
with l1 . . . , lK working components and φ(x) is the structure
function which evaluates to 1 if the system is working for a
given state vector and 0 if it is not.

A state vector x = (x1, x2, . . . , xn) is the representation of
a distinct system state where xi = 0 indicates a component is
failed and xi = 1 indicates a working component for all i ∈
{1, 2, . . . , n} components of the system and n =

∑K
k=1mk.

The survival signature is defined for coherent systems,
for which it is monotonically nondecreasing. The monotone
behavior can be expressed as

Φ(la1 , . . . , l
a
K) ≤ Φ(lb1, . . . , l

b
K), if

lak ≤ lbk, ∀k ∈ {1, . . . ,K},
(2)

where the superscripts a and b refer to any two inputs of
the survival signature. This monotonicity property is exploited
later to design a monotone radial basis function network as a
surrogate model.

The survival function, that is the reliability of the system at
time t, is defined as

P (Ts > t) =

m1∑
l1=0

. . .

mK∑
lK=0

Φ(l1, . . . , lK) P

(
K⋂

k=1

{
Ck

t = lk
})

, (3)

where Ck
t denotes the number of components of type k

functioning at time t. For known failure time distributions with
cumulative distribution functions (CDF) Fk(t) the probabilis-
tic part of the survival function can be analytically computed
as

P

(
K⋂

k=1

{
Ck

t = lk
})

=

K∏
k=1

((
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]
lk

)
. (4)
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Fig. 1. Graphical representation of a radial basis function neural network.
From left to right: input layer, hidden layer, linear output layer.

III. MONOTONE RADIAL BASIS FUNCTION NETWORKS

Radial basis function (RBF) networks [8] are a very simple
type of artificial neural network with only one hidden layer,
where the activation functions are radial basis functions, and
a linear output layer. Radial basis functions in Rd are defined
with respect to a distance function between the input and
a fixed point called a center. This distance is usually the
Euclidean distance defined as

||x− c|| =

√√√√ d∑
j=1

(xj − cj)
2

2σ2
j

, (5)

where x ∈ Rd is the input vector and the σj are normalization
constants controlling the spread of the radial basis function in
each dimension. The most common radial basis function is the
Gaussian function

ψ(||x− c||) = e−||x−c||2 . (6)

Using the basis functions we can define the RBF network as

y(x) =

N∑
i=1

wiψ(||x− ci||), (7)

where N is the number of neurons, ci is the center point
associated with neuron i and wi is the weight of that neuron
in the linear output layer. Refer to Fig. 1 for a simple graphical
representation of an RBF network.

The output of the radial basis function network can be
normalized as

y(x) =

∑N
i=1 wiψ(||x− ci||)∑N
i=1 ψ(||x− ci||)

. (8)

Normalized radial basis function (NRBF) networks have
shown to improve extrapolation of the network when compared
to regular RBF networks [9]. For the remainder of this paper,
the basis functions used will be normalized as

ψ̂i(x) =
ψ(||x− ci||)∑N
ı̂=1 ψ(||x− cı̂||)

. (9)

In this work, we restrict the center locations of the NRBF
network to a regular uniform grid over the entire input domain.
This allows for easier selection of the σj shape parameters as
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well as greatly simplifying the monotonicity constraints. In
the next step, the NRBF network will be used as a surrogate
model of the survival signature. Enforcing monotonicity of
the surrogate model greatly improves its performance since
the survival signature itself is a monotone function.

Monotonicity of an NRBF network can be enforced through
simple linear constraints on the weights. For centers located
on a grid, only sequences of weights lying on a line in the
direction of the d dimensions need to be monotonic for the
NRBF network to be monotonic [10].

Assuming M data points xj with associated function values
yj for j ∈ {1, . . . ,M}, the optimal weights wi are determined
as the solution to the following constrained least squares
optimization problem

minimize
w

||Ψw − y||22
subject to wp ≤ wq, p, q ∈ {1, . . . , N},

if cαp < cαq , c
β
p = cβq , α ̸= β,

(10)

where the superscripts α, β ∈ {1, . . . , d} refer to the coordi-
nates in dimensions α and β with w = [w1, . . . , wN ]

T and
y = [y1, . . . , yM ]

T . The matrix Ψ ∈ RM×N is defined as

Ψji = ψ̂i(xj). (11)

This is a convex optimization problem which can be solved
by standard solvers. Here we use the splitting cone solver
(SCS) [11] in connection with JuMP [12].

IV. APPROXIMATION OF THE SURVIVAL SIGNATURE

This section presents the proposed methodology to the
approximation of the survival signature for very large systems.
Equation (1) clearly shows that the computation of the survival
signature is a combinatorial problem which greatly increases
in numerical demand with increasing number of components
and component types. Therefore, analytical computation of the
survival signature is infeasible for very large systems. In [6] we
presented an approach to approximating the survival signature
using percolation to exclude negligible parts of the signature
and approximating the remaining entries with Monte Carlo
simulation. While this enabled the analysis of larger systems,
this method still requires a significant number of system
evaluations and will quickly reach prohibitive computational
demand. In this paper, we propose an alternative solution
where the survival signature is approximated through a radial
basis function network based on a few strategically selected
values. In addition, the uncertainty in the survival signature
entries resulting from the Monte Carlo approximation is prop-
agated through an interval predictor model and reflected as
bounds on the survival signature.

While other types of neural networks, such as feed forward
networks, can be used to approximate the survival signa-
ture [7], RBF networks are explicitly chosen for their desirable
properties regarding monotonicity constraints as well as the
ability to be extended to interval predictor models.

A. Design of the NRBF network surrogate model

Similarly to the previously developed technique, this new
approach starts by applying percolation theory to find the
critical threshold fc and exclude a significant portion of
the survival signature where the probability that the system
functions is negligible, i.e. close to zero [6].

Next, let Ω be the set of remaining survival signature entries
l1, . . . , lK for lk ∈ {0, 1, . . . ,mk} and k ∈ {1, . . . ,K}
satisfying the condition

K∑
k=1

lk ≥ (1− fc)

K∑
k=1

mk. (12)

We start by selecting M initial entries from Ω and calculate
their survival signature values using Monte Carlo simulation.
Note that values that require less than the number of Monte
Carlo samples NMC structure function evaluations are com-
puted exactly. In order to have good coverage of the input
space, we generate the M data points by creating a uniform
grid between the lower and upper bounds of Ω and then select
the nearest neighbors in Ω as the starting values. In addition,
we create a uniform grid of centers ci for i = 1, . . . , N spread
over the entire domain of Ω. The spread of the radial basis
function σj is chosen as half of the distance between two
successive centers in the jth dimension. These have shown
to be a good starting point for NRBF networks [10]. Then,
the weights for the initial monotone NRBF approximation of
the survival signature are obtained by solving the optimization
problem (10).

In the next step, new values of the survival signature
to be approximated are selected and used to improve the
surrogate model. This is performed by means of a Taylor
expansion-based adaptive design (TEAD) [13]. The TEAD
is a combination of exploration and exploitation based on
nearest neighbor distance and Taylor expansion. This allows
to both adequately cover the input space as needed as well as
concentrate samples where the highest changes in the survival
signature are located to provide an accurate surrogate model
using a small sample size. At each point a new sample is
selected from Ω and added to the M data points. Then the
weights are updated by again solving the optimization problem
(10). The search for new points is aborted once the change in
weights falls below a defined threshold twice in a row.

B. Extension to an interval predictor model

Once an adequate surrogate model for the survival signature
is obtained, it is extended to an interval predictor model. In
difference to regular models, where a single output value is
returned for any inputs, interval predictor models return an
interval where the value is predicted to fall [14]. The goal
here is to propagate the uncertainty of using Monte Carlo
simulation to approximate individual entries of the survival
signature through the surrogate model. By simply fitting a
NRBF network to some estimated values of the survival signa-
ture the uncertainty of the Monte Carlo simulation represented
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by the coefficient of variation of the particular entries would
be lost.

The IPM approach is simple. Instead of fitting a single
surrogate model to the available data points we fit two models
that act as upper and lower bounds. These models are built
based on the points identified in the previous step. Both models
use the exact same center locations ci and their difference in
output is only influenced by two different sets of weights wmin

and wmax. The bounds are defined as

y(x,wmax) = Φ(x)
T
wmax (13)

y(x,wmin) = Φ(x)
T
wmin, (14)

where Ψ(x) = [ψ̂1(x), . . . , ψ̂N (x)].
The spread of the IPM, i.e. the separation between its limits,

is defined as

δy(x,wmax, wmin) = Φ(x)
T
(wmax − wmin). (15)

The parameters wmax and wmin are given by the following
optimization problem

minimize
wmax,wmin

1

N

N∑
j

δy(xj , wmax, wmin)

subject to y(xj , wmin) ≤ y
j

y(xj , wmax) ≥ yj

wmin ≤ wmax,

(16)

where (xj , yj , yj) for j ∈ {1, . . . ,M} are the data points. The
bounds y

j
and yj are obtained as

y
j
= yj − γ · yj · cvj (17)

yj = yj + γ · yj · cvj , (18)

where cvj is the coefficient of variation of the Monte Carlo
approximation for yj . The parameter γ ≥ 1 can be adapted to
obtain more conservative bounds. In addition to the constraints
in (16) we also invoke the monotonicity constraints of (10) on
wmax and wmin in order to ensure monotonicity of the IPM
bounds.

Once the IPM is obtained by solving the optimization
problem (16), the bounds on the survival signature can be
fed into (3) to estimate the bounds of the imprecise survival
function. Since bounds of the IPM are strictly monotone
functions, it is sufficient to evaluate the survival function for
the upper and lower bound. If the CDFs of the component
failure times are also imprecise, the bounds on the reliability
can be obtained by applying the vertex method [15].

V. NUMERICAL EXAMPLE

In this section we apply the proposed technique to a
numerical example. The example used is that of the Berlin S-
and U-Bahn system as presented in [6], see Fig. 2. The entire
network consists of 306 nodes and 350 edges. The nodes are
separated into two types based on their degree, with type 1
consisting of nodes with degree of two or less, while type 2
contains all nodes with a degree larger than two. As a result,

Fig. 2. Topology of the Berlin metro system with 306 nodes. Nodes high-
lighted in blue represent stations with more than two connections. Adapted
from [17].

there are 245 nodes of type 1 and 61 of type 2. The full
survival signature of this network has 15 252 entries. Let the
network efficiency be defined as

E(G) =
1

n(n− 1)

∑
u̸=v∈G

1

duv
, (19)

where G is the network consisting of n nodes and duv
measures the length of the shortest path between nodes u and
v [16]. Then, a structure function for the network analysis can
be defined by the loss of efficiency for a given network state.
Here we assume that the network fails to function once the
loss of efficiency exceeds 50% as given by

φ(x) =
E(G(x))

E(G)
< 0.5. (20)

Computing the full analytical survival signature given this
structure function is impossible and even the Monte Carlo
simulation requires more than 27 hours using 10 000 samples
per entry distributed among 64 cores [6].

The approximation of the survival signature starts by ap-
plying percolation to find the set of candidate points Ω. The
critical threshold fc ≈ 0.39550 reduces Ω from 15 252 points
down to 5673. 400 center points ci are generated uniformly
over the domain of Ω, of which 109 are excluded using (12),
leaving 291 centers. Then, 25 initial points are selected from
Ω. New points are chosen using the TEAD until the change in
weights is less than 1× 10−3 for two consecutive points. The
procedure aborts after 110 new points have been selected. The
survival signature entries for all points are approximated using
10 000 Monte Carlo samples. Fig. 3 shows the initial points as
well as the new points chosen by the TEAD. The plot clearly
presents how the new points selected by the adaptive technique
are concentrated in the area of the survival signature with
high relevance whereas only a few points are chosen where
the survival signature is negligible. This ability to identify
the important region of the signature allows to approximate
it accurately using only a low number of evaluated entries.
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Fig. 3. Initial data points and adaptive points selected by the TEAD.

In the final step, the coefficient of variation resulting from
the approximation is used to define the upper and lower bounds
of the evaluated survival signature entries and the weights for
the IPM are obtained from the optimization (16).

We assume the failure times for component types 1 are
exponentially distributed with λ = 0.25 while the failures of
type 2 components are exponentially distributed with λ = 0.5.
These values are arbitrarily chosen for illustrative purposes and
have no real world relevance. The bounds on the resulting
survival function are compared to the reliability of the full
Monte Carlo approximation in Fig. 4. For a closer look at
the reliability bounds between t = 0.25 and t = 0.5 refer
to Fig. 5. As evident from the plots, the IPM is able to
accurately predict upper and lower bounds on the reliability.
This accuracy is especially remarkable due to the fact that it
only requires the evaluation of 135 out of the 5673 survival
signature values necessary for the full Monte Carlo approach.
This is a significant reduction in numerical effort and enables
the analysis of even larger networks than using the Monte
Carlo method alone.

VI. CONCLUSIONS

This paper presents a novel approach to the approximation
of the survival signature using normalized radial basis function
networks and interval predictor models as surrogate models.
The NRBF networks are able to accurately predict the entire
survival signature given only a small fraction of the evalu-
ated signature entries. The uncertainty resulting from using
Monte Carlo simulation to approximate individual entries is
efficiently propagated through the IPM to yield bounds on
the survival signature. An adaptive procedure to select the
data points for the surrogate model ensures high accuracy
while keeping the numerical demand low. The effectivity
of the developed method was proven by applying it to the
analysis of a large system and comparing the results with a
previously presented technique. The code developed as part

of this work will be added to the open source Julia package
SurvivalSignature.jl [18].

Future effort will be focused on improving the NRBF fit.
While the number of centers and parameters controlling the
spread of the basis functions chosen in this work serve as a
good basis, optimizing these parameters to the specific prob-
lem could proof beneficial. Furthermore, the method should be
applied to even larger systems with more than two component
types to investigate the scalability.

By extending this method to include imprecise probabilities
for the failure time distributions of the components such as
probability boxes, a fully imprecise survival function can be
devised.
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